首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Affibody molecules are a new class of small targeting proteins based on a common three-helix bundle structure. Affibody molecules binding a desired target may be selected using phage-display technology. An Affibody molecule Z HER2:342 binding with subnanomolar affinity to the tumor antigen HER2 has recently been developed for radionuclide imaging in vivo. Introduction of a single cysteine into the cysteine-free Affibody scaffold provides a unique thiol group for site-specific labeling of recombinant Affibody molecules. The recently developed maleimido-CHX-A' DTPA was site-specifically conjugated at the C-terminal cysteine of Z HER2:2395-C, a variant of Z HER2:342, providing a homogeneous conjugate with a dissociation constant of 56 pM. The yield of labeling with (111)In was >99% after 10 min at room temperature. In vitro cell tests demonstrated specific binding of (111)In-CHX-A' DTPA-Z 2395-C to HER2-expressing cell-line SKOV-3 and good cellular retention of radioactivity. In normal mice, the conjugate demonstrated rapid clearance from all nonspecific organs except kidney. In mice bearing SKOV-3 xenografts, the tumor uptake of (111)In-CHX-A' DTPA-Z 2395-C was 17.3 +/- 4.8% IA/g and the tumor-to-blood ratio 86 +/- 46 (4 h postinjection). HER2-expressing xenografts were clearly visualized 1 h postinjection. In conclusion, coupling of maleimido-CHX-A' DTPA to cysteine-containing Affibody molecules provides a well-defined uniform conjugate, which can be rapidly labeled at room temperature and provides high-contrast imaging of molecular targets in vivo.  相似文献   

2.
Affibody molecules generated by combinatorial protein engineering to bind the human epidermal growth factor receptor 2 (HER2) have in earlier studies proven to be promising tracers for HER2-mediated molecular imaging of cancer. Amino acid extensions either at the N- or C-terminus of these Z(HER2) affibody molecules, have been successfully employed for site-specific radiolabeling of the tracer candidates. Hexahistidyls or other tags, which would be convenient for recovery purposes, should be avoided since they could negatively influence the tumor targeting efficacy and biodistribution properties of the tracer. Using a new ?-lactamase-based protein fragment complementation assay (PCA), an affibody molecule was isolated which bound a Z(HER2) affibody molecule with sub-micromolar affinity, but not unrelated affibody molecules. This suggests that the interacting area include the HER2-binding surface of Z(HER2). This novel anti-idiotypic affibody molecule Z(E01) was produced in Escherichia coli, purified, and chemically coupled to a chromatography resin in order to generate an affibody-based affinity column, suitable for recovery of different variants of Z(HER2) affibody molecules, having a common binding surface for HER2. Eight such Z(HER2) affibody molecules, designed for future radioimaging investigations, having different C-terminal peptide extensions aimed for radioisotope ((??m)Tc)-chelation, were successfully produced and recovered in a single step to high purity using the anti-idiotypic affibody ligand for the affinity purification. These results clearly suggest a potential for the development of anti-idiotypic affibody-based resins for efficient recovery of related variants of a target protein that might have altered biochemical properties, thus avoiding the cumbersome design of specific recovery schemes for each variant of a target protein.  相似文献   

3.
A novel HER2-targeted carrier was developed using bionanocapsules (BNCs). Bionanocapsules (BNCs) are 100-nm hollow nanoparticles composed of the l-protein of hepatitis B virus surface antigen. An affibody of HER2 was genetically displayed on the BNC surface (ZHER2-BNC). For the investigation of binding affinity, ZHER2-BNC was incubated with the cancer cell lines SK-BR-3 (HER2 positive), and MDA-MB-231 (HER2 negative). For analysis of HER2 targeting specificity, ZHER2-BNC or ZWT-BNC (without affibody) was incubated with both SK-BR-3 and MDA-MB-231 cells by time lapse and concentration. For the delivery of encapsulated molecules (calcein), fluorescence of ZHER2-BNC mixed with liposomes was also compared with that of ZWT-BNC and nude liposomes by incubation with SK-BR-3 cells. As a result, ZHER2-BNC-liposome complex demonstrated the delivery to HER2-expressing cells (SK-BR-3) with a high degree of specificity. This indicates that genetically engineered BNCs are promising carrier for cancer treatment.  相似文献   

4.
In this study we initially examined the interaction between CD44v3 (a hyaluronan (HA) receptor) and Vav2 (a guanine nucleotide exchange factor) in human ovarian tumor cells (SK-OV-3.ipl cell line). Immunological data indicate that both CD44v3 and Vav2 are expressed in SK-OV-3.ipl cells and that these two proteins are physically linked as a complex in vivo. By using recombinant fragments of Vav2 and in vitro binding assays, we have detected a specific binding interaction between the SH3-SH2-SH3 domain of Vav2 and the cytoplasmic domain of CD44. In addition, we have observed that the binding of HA to CD44v3 activates Vav2-mediated Rac1 signaling leading to ovarian tumor cell migration. Further analyses indicate that the adaptor molecule, growth factor receptor-bound protein 2 (Grb2) that is bound to p185(HER2) (an oncogene product), is also associated with the CD44v3-Vav2 complex. HA binding to SK-OV-3.ipl cells promotes recruitment of both Grb2 and p185(HER2) to the CD44v3-Vav2 complex leading to Ras activation and ovarian tumor cell growth. In order to determine the role of Grb2 in CD44v3 signaling, we have transfected SK-OV-3.ipl cells with Grb2 mutant cDNAs (e.g. Delta N-Grb2 that has a deletion in the amino-terminal SH3 domain or Delta C-Grb2 that has a deletion in the carboxyl-terminal SH3 domain). Our results clearly indicate that the SH3 domain deletion mutants of Grb2 (i.e. the Delta N-Grb2 (and to a lesser extent the Delta C-Grb2) mutant) not only block their association with p185(HER2) but also significantly impair their binding to the CD44v3-Vav2 complex and inhibit HA/CD44v3-induced ovarian tumor cell behaviors. Taken together, these findings strongly suggest that the interaction of CD44v3-Vav2 with Grb2-p185(HER2) plays an important role in the co-activation of both Rac1 and Ras signaling that is required for HA-mediated human ovarian tumor progression.  相似文献   

5.
Affibody molecules are a class of affinity proteins. Their small size (7 kDa) in combination with the high (subnanomolar) affinity for a number of cancer-associated molecular targets makes them suitable for molecular imaging. Earlier studies demonstrated that the selection of radionuclide and chelator may substantially influence the tumor-targeting properties of affibody molecules. Moreover, the placement of chelators for labeling of affibody molecules with (99m)Tc at different positions in affibody molecules influenced both blood clearance rate and uptake in healthy tissues. This introduces an opportunity to improve the contrast of affibody-mediated imaging. In this comparative study, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to the synthetic affibody molecule Z(HER2:S1) at three different positions: DOTA-A1-Z(HER2:S1) (N-terminus), DOTA-K58-Z(HER2:S1) (C-terminus), and DOTA-K50-Z(HER2:S1) (middle of helix 3). The affinity for HER2 differed slightly among the variants and the K(D) values were determined to be 133 pM, 107 pM and 94 pM for DOTA-A1-Z(HER2:S1), DOTA-K50-Z(HER2:S1), and DOTA-K58-Z(HER2:S1), respectively. Z(HER2:S1)-K50-DOTA showed a slightly lower melting point (57 °C) compared to DOTA-A1-Z(HER2:S1) (64 °C) and DOTA-K58-Z(HER2:S1) (62 °C), but all variants showed good refolding properties after heat treatment. All conjugates were successfully labeled with (111)In resulting in a radiochemical yield of 99% with preserved binding capacity. In vitro specificity studies using SKOV-3 and LS174T cell lines showed that the binding of the radiolabeled compounds was HER2 receptor-mediated, which also was verified in vivo using BALB/C nu/nu mice with LS174T and Ramos lymphoma xenografts. The three conjugates all showed specific uptake in LS174T xenografts in nude mice, where DOTA-A1-Z(HER2:S1)and DOTA-K58-Z(HER2:S1) showed the highest uptake. Overall, DOTA-K58-Z(HER2:S1) provided the highest tumor-to-blood ratio, which is important for a high-contrast imaging. In conclusion, the positioning of the DOTA chelator influences the cellular processing and the biodistribution pattern of radiolabeled affibody molecules, creating preconditions for imaging optimization.  相似文献   

6.
Human epidermal growth factor receptor 2 (HER2) contributes to the development of breast cancers and malignancies. On the other hand, engineered affibody Z(HER2:342) that binds to HER2 can be successfully used for both diagnostic purposes and specific ablation of malignant HER2-positive cell lines. In the current study, electrostatics-based prediction was applied for improving Z(HER2:342) binding affinity using computational design. The affibody Z(HER2:342) alone and in complex with HER2 was energetically minimized, solvated in explicit water, and neutralized. After heating and equilibration steps, the system was studied by isothermal-isobaric (NPT) MD simulation. According to trajectories, Z(HER2:342) specifically binds to HER2 through hydrogen bonds and salt bridges. Based on the electrostatic binding contributions, two affinity-matured variants namely V1 (Tyr35Arg) and V2 (Asn6Asp and Met9Glu) were rationally designed. More investigations through MD simulation show that V1 interacts with HER2 receptor more strongly, compared to Z(HER2:342) and V2.  相似文献   

7.
Affibody molecules are a new class of small (7 kDa) scaffold affinity proteins, which demonstrate promising properties as agents for in vivo radionuclide targeting. The Affibody scaffold is cysteine-free and therefore independent of disulfide bonds. Thus, a single thiol group can be engineered into the protein by introduction of one cysteine. Coupling of thiol-reactive bifunctional chelators can enable site-specific labeling of recombinantly produced Affibody molecules. In this study, the use of 1,4,7,10-tetraazacyclododecane-1,4,7-tris-acetic acid-10-maleimidoethylacetamide (MMA-DOTA) for 111 In-labeling of anti-HER2 Affibody molecules His 6-Z HER2:342-Cys and Z HER2:2395-Cys has been evaluated. The introduction of a cysteine residue did not affect the affinity of the proteins, which was 29 pM for His 6-Z HER2:342-Cys and 27 pM for Z HER2:2395-Cys, comparable with 22 pM for the parental Z HER2:342. MMA-DOTA was conjugated to DTT-reduced Affibody molecules with a coupling efficiency of 93% using a 1:1 molar ratio of chelator to protein. The conjugates were labeled with 111 In to a specific radioactivity of up to 7 GBq/mmol, with preserved binding for the target HER2. In vivo, the non-His-tagged variant 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys demonstrated appreciably lower liver uptake than its His-tag-containing counterpart. In mice bearing HER2-expressing LS174T xenografts, 111 In-[MMA-DOTA-Cys61]-Z HER2:2395-Cys showed specific and rapid tumor localization, and rapid clearance from blood and nonspecific compartments, leading to a tumor-to-blood-ratio of 18 +/- 8 already 1 h p.i. Four hours p.i., the tumor-to-blood ratio was 138 +/- 8. Xenografts were clearly visualized already 1 h p.i.  相似文献   

8.
Affibody molecules present a new class of affinity proteins, which utilizes a scaffold based on a 58-amino acid domain derived from protein A. The small (7 kDa) Affibody molecule can be selected to bind to cell-surface targets with high affinity. An Affibody molecule (ZHER2:342) with a dissociation constant (Kd) of 22 pM for binding to the HER2 receptor has been reported earlier. Preclinical and pilot clinical studies have demonstrated the utility of radiolabeled ZHER2:342 in imaging of HER2-expressing tumors. The small size and cysteine-free structure of Affibody molecules enable complete peptide synthesis and direct incorporation of radionuclide chelators. The goal of this study was to evaluate if incorporation of the natural peptide sequences cysteine-diglycine (CGG) and cysteine-triglycine (CGGG) sequences would enable labeling of Affibody molecules with 99mTc. In a model monomeric form, the chelating sequences were incorporated by peptide synthesis. The HER2-binding affinity was 280 and 250 pM for CGG-ZHER2:342 and CGGG-ZHER2:342, respectively. Conjugates were directly labeled with 99mTc with 90% efficiency and preserved the capacity to bind specifically to HER2-expressing cells. The biodistribution in normal mice showed a rapid clearance from the blood and the majority of organs (except kidneys). In the mice bearing SKOV-3 xenografts, tumor uptake of 99mTc-CGG-ZHER2:342 was HER2-specific and a tumor-to-blood ratio of 9.2 was obtained at 6 h postinjection. Gamma-camera imaging with 99mTc-CGG-ZHER2:342 clearly visualized tumors at 6 h postinjection. The results show that the use of a cysteine-based chelator enables 99mTc-labeling of Affibody molecules for imaging.  相似文献   

9.
Eklund M  Axelsson L  Uhlén M  Nygren PA 《Proteins》2002,48(3):454-462
Three pairs of small protein domains showing binding behavior in analogy with anti-idiotypic antibodies have been selected using phage display technology. From an affibody protein library constructed by combinatorial variegation of the Fc binding surface of the 58 residue staphylococcal protein A (SPA)-derived domain Z, affibody variants have been selected to the parental SPA scaffold and to two earlier identified SPA-derived affibodies. One selected affibody (Z(SPA-1)) was shown to recognize each of the five domains of wild-type SPA with dissociation constants (K(D)) in the micromolar range. The binding of the Z(SPA-1) affibody to its parental structure was shown to involve the Fc binding site of SPA, while the Fab-binding site was not involved. Similarly, affibodies showing anti-idiotypic binding characteristics were also obtained when affibodies previously selected for binding to Taq DNA polymerase and human IgA, respectively, were used as targets for selections. The potential applications for these types of affinity pairs were exemplified by one-step protein recovery using affinity chromatography employing the specific interactions between the respective protein pair members. These experiments included the purification of the Z(SPA-1) affibody from a total Escherichia coli cell lysate using protein A-Sepharose, suggesting that this protein A/antiprotein A affinity pair could provide a basis for novel affinity gene fusion systems. The use of this type of small, robust, and easily expressed anti-idiotypic affibody pair for affinity technology applications, including self-assembled protein networks, is discussed.  相似文献   

10.
Nygren PA 《The FEBS journal》2008,275(11):2668-2676
In recent years, classical antibody-based affinity reagents have been challenged by novel types of binding proteins developed by combinatorial protein engineering principles. One of these classes of binding proteins of non-Ig origin are the so-called affibody binding proteins, functionally selected from libraries of a small (6 kDa), non-cysteine three-helix bundle domain used as a scaffold. During the first 10 years since they were first described, high-affinity affibody binding proteins have been selected towards a large number of targets for use in a variety of applications, such as bioseparation, diagnostics, functional inhibition, viral targeting and in vivo tumor imaging/therapy. The small size offers the possibility to produce functional affibody binding proteins also by chemical synthesis production routes, which has been found to be advantageous for the site-specific introduction of various labels and radionuclide chelators.  相似文献   

11.
Affinity reagents capable of selective recognition of the different human immunoglobulin isotypes are important detection and purification tools in biotechnology. Here we describe the development and characterization of affinity proteins (affibodies) showing selective binding to human IgA. From protein libraries constructed by combinatorial mutagenesis of a 58-amino-acid, three-helix bundle domain derived from the IgG-binding staphylococcal protein A, variants showing IgA binding were selected by using phage display technology and IgA monoclonal antibodies (myeloma) as target molecules. Characterization of selected clones by biosensor technology showed that five out of eight investigated affibody variants were capable of IgA binding, with dissociation constants (K(d)) in the range between 0.5 and 3 microm. One variant (Z(IgA1)) showing the strongest binding affinity was further analyzed, and showed that human IgA subclasses (IgA(1) and IgA(2)) as well as secretory IgA were recognized with similar efficiencies. No detectable cross-reactivity towards human IgG, IgM, IgD or IgE was observed. The potential use of the Z(IgA1) affibody as a ligand in affinity chromatography applications was first demonstrated by selective recovery of IgA protein from a spiked Escherichia coli total cell lysate, using an affinity column containing a divalent head-to-tail Z(IgA1) affibody dimer construct as a ligand. In addition, efficient affinity recovery of IgA from unconditioned human plasma was also demonstrated.  相似文献   

12.
Targeting of non‐phagocytic tumor cells and prompt release of gene cargos upon entry into tumors are two limiting steps in the bacterial gene delivery path. To tackle these problems, the non‐pathogenic Escherichia coli strain BL21(DE3) was engineered to display the anti‐HER2/neu affibody on the surface. After co‐incubation with tumor cells for 3 h, the anti‐HER2/neu affibody‐presenting E. coli strain was selectively internalized into HER2/neu‐positive SKBR‐3 cells. The invasion efficiency reached as high as 30%. Furthermore, the bacteria were equipped with the phage ϕX174 lysin gene E‐mediated autolysis system. Carrying the transgene (e.g., eukaryotic green fluorescent protein, GFP), the tumor‐targeting bacteria were subjected to the thermal shock to trigger the autolysis system upon entry into HER2/neu‐positive cells. Flow cytometric analysis revealed that 3% of infected cells expressed GFP 24 h post thermal induction. Overall, the results show a promise of the proposed approach for developing bacteria as a delivery carrier. Biotechnol. Bioeng. 2011; 108:1662–1672. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Human epidermal growth factor receptor 3 (HER3, also known as ErbB3) has emerged as relevant target for antibody-mediated tumor therapy. Here, we describe a novel human antibody, IgG 3–43, recognizing a unique epitope formed by domain III and parts of domain IV of the extracellular region of HER3, conserved between HER3 and mouse ErbB3. An affinity of 11 nM was determined for the monovalent interaction. In the IgG format, the antibody bound recombinant bivalent HER3 with subnanomolar affinity (KD = 220 pM) and HER3-expressing tumor cells with EC50 values in the low picomolar range (27 - 83 pM). The antibody competed with binding of heregulin to HER3-expressing cells, efficiently inhibited phosphorylation of HER3 as well as downstream signaling, and induced receptor internalization and degradation. Furthermore, IgG 3–43 inhibited heregulin-dependent proliferation of several HER3-positive cancer cell lines and heregulin-independent colony formation of HER2-overexpressing tumor cell lines. Importantly, inhibition of tumor growth and prolonged survival was demonstrated in a FaDu xenograft tumor model in SCID mice. These findings demonstrate that by binding to the membrane-proximal domains III and IV involved in ligand binding and receptor dimerization, IgG 3–43 efficiently inhibits activation of HER3, thereby blocking tumor cell growth both in vitro and in vivo.  相似文献   

14.
In the present study, we report the synthesis and human growth factor receptor-2 (HER2) specific tumor targeting properties of a dendrimer conjugated to anti-HER2 mAb (monoclonal antibody) conjugate. The polyamidoamine (PAMAM) dendrimer generation five (G5) was labeled with alexaFluor 488 and conjugated to anti-HER2 mAb. The binding and internalization of the antibody-conjugated dendrimer to HER2-expressing cells was evaluated by flow cytometry and confocal microscopy. Uniquely, the conjugate demonstrated cellular uptake and internalization in HER2-expressing cells as compared to free antibody. The time course of internalization and blocking experiments with free antibody suggest that the rapid and efficient cellular internalization of the dendrimer-antibody conjugate was achieved without alterations in specificity of targeting. Animal studies demonstrated that the conjugate targets HER2-expressing tumors.  相似文献   

15.
HER2-specific affibody molecules in different formats have previously been shown to be useful tumor targeting agents for radionuclide-based imaging and therapy applications, but their biological effect on tumor cells is not well known. In this study, two dimeric ((ZHER2:4)2 and (ZHER2:342)2) and one monomeric (ZHER2:342) HER2-specific affibody molecules are investigated with respect to biological activity. Both (ZHER2:4)2 and (ZHER2:342)2 were found to decrease the growth rate of SKBR-3 cells to the same extent as the antibody trastuzumab. When the substances were removed, the cells treated with the dimeric affibody molecules continued to be growth suppressed while the cells treated with trastuzumab immediately resumed normal proliferation. The effects of ZHER2:342 were minor on both proliferation and cell signaling. The dimeric (ZHER2:4)2 and (ZHER2:342)2 both reduced growth of SKBR-3 cells and may prove therapeutically useful either by themselves or as carriers of radionuclides or other cytotoxic agents.  相似文献   

16.
The oligomerization and aggregation of the amyloid-β (Aβ) peptide, a cleavage product of the amyloid precursor protein predominantly 40 or 42 amino acids in length, has been implicated in the pathogenesis of Alzheimer's disease. The identification of Aβ-binding agents, e.g., antibodies or peptides, constitutes a promising therapeutic approach. However, the amount of structural and biophysical data on the underlying Aβ interactions is currently very limited. We have earlier determined the structure of Aβ(1-40) in complex with the affibody protein ZAβ3, a selected binding protein based on a three-helix bundle scaffold (Z domain). ZAβ3 is a dimer of affibody subunits linked via a disulfide bridge involving a selected cysteine mutation at position 28. ZAβ3 binds to the central and C-terminal part of Aβ (residues 17-36), which adopts a β-hairpin conformation in the complex. Here we present a detailed biophysical analysis of the ZAβ3:Aβ(1-40) interaction, employing NMR, circular dichroism spectroscopy, 8-anilino-1-naphthalenesulfonic acid and tyrosine fluorescence, size-exclusion chromatography, thermal denaturation profiles and isothermal titration calorimetry. We conclude that (i) free ZAβ3 is characterized by conformational exchange and the loss of helix 1 of the three-helix bundle scaffold; (ii) a high-energy barrier is associated with the conversion of an initial ZAβ3:Aβ(1-40) recognition complex into the native complex structure, entailing slow binding kinetics; (iii) both Aβ and ZAβ3 fold upon binding, which, e.g., becomes manifest in the binding thermodynamics that feature a large negative change in heat capacity; (iv) the C28-disulfide does not merely afford dimerization, but its impact on the binding interfaces of the affibody subunits and Aβ is a prerequisite for tight binding. The extensive folding coupled to binding observed here likely constitutes an obligate feature of biomolecular interactions involving the central and C-terminal part of Aβ. Options for improvement of Z binding proteins are discussed.  相似文献   

17.
Affibody binding proteins are selected from phage-displayed libraries of variants of the 58 residue Z domain. Z(Taq) is an affibody originally selected as a binder to Taq DNA polymerase. The anti-Z(Taq) affibody was selected as a binder to Z(Taq) and the Z(Taq):anti-Z(Taq) complex is formed with a dissociation constant K(d)=0.1 microM. We have determined the structure of the Z(Taq):anti-Z(Taq) complex as well as the free state structures of Z(Taq) and anti-Z(Taq) using NMR. Here we complement the structural data with thermodynamic studies of Z(Taq) and anti-Z(Taq) folding and complex formation. Both affibody proteins show cooperative two-state thermal denaturation at melting temperatures T(M) approximately 56 degrees C. Z(Taq):anti-Z(Taq) complex formation at 25 degrees C in 50 mM NaCl and 20 mM phosphate buffer (pH 6.4) is enthalpy driven with DeltaH degrees (bind) = -9.0 (+/-0.1) kcal mol(-1)(.) The heat capacity change DeltaC(P) degrees (,bind)=-0.43 (+/-0.01) kcal mol(-1) K(-1) is in accordance with the predominantly non-polar character of the binding surface, as judged from calculations based on changes in accessible surface areas. A further dissection of the small binding entropy at 25 degrees C (-TDeltaS degrees (bind) = -0.6 (+/-0.1) kcal mol(-1)) suggests that a favourable desolvation of non-polar surface is almost completely balanced by unfavourable conformational entropy changes and loss of rotational and translational entropy. Such effects can therefore be limiting for strong binding also when interacting protein components are stable and homogeneously folded. The combined structure and thermodynamics data suggest that protein properties are not likely to be a serious limitation for the development of engineered binding proteins based on the Z domain.  相似文献   

18.
OBJECTIVE: A micro-molecule peptide TP1623 of 99mTc-human epithelial growth factor receptor 2 (HER2) was prepared and the feasibility of using it as a HER2-positive molecular imaging agent for breast cancer was evaluated. METHODS: TP1623 was chemically synthesized and labeled with 99mTc. The labeling ratio and stability were detected. HER2 expression levels of breast cancer cells (SKBR3 and MDA-MB-231) and cell binding activity were measured. Biodistribution of 99mTC-TP1623 in normal mice was detected. SKBR3/MDA-MB-231-bearing nude mice models with high/low expressions of HER2 were established. Tumor tissues were stained with hematoxylin–eosin (HE) and measured by immunohistochemistry to confirm the formation of tumors and HER2 expression. SPECT imaging was conducted for HER2-overexpressing SKBR3-bearing nude mice. The T/NT ratio was calculated and compared with that of MDA-MB-231-bearing nude mice with low HER2 expression. The competitive inhibition image was used to discuss the specific binding of 99mTc- TP1623 and the tumor. RESULTS: The labeling ratio of 99mTc-TP1623, specific activity, and radiochemical purity (RCP) after 6 h at room temperature were (97.39 ± 0.23)%, (24.61 ± 0.06) TBq/mmol, and (93.25 ± 0.06)%, respectively. HER2 of SKBR3 and MDA-MB-231 cells showed high and low expression levels by immunohistochemistry, respectively. The in vitro receptor assays indicated that specific binding of TP1623 and HER2 was retained. Radioactivity in the brain was always at the lowest level, while the clearance rate of blood and the excretion rate of the kidneys were fast. HE staining showed that tumor cells were observed in SKBR3- and MDA-MB-231-bearing nude mice, with significant heteromorphism and increased mitotic count. The imaging of mice showed that targeted images could be made of 99mTc-TP1623 in high HER2-expressing tumors, while no obvious development was shown in tumors in low HER2-expressing nude mice. No development was visible in tumors in competitive inhibition of imaging, which indicates the combination of 99mTc-TP1623 and tumor was mediated by HER2. CONCLUSION: High labeling ratio and specific activity of 99mTc-TP1623 is successfully prepared; it is a molecular imaging agent for HER2-positive tumors that has potential applicative value.  相似文献   

19.
目的:探讨S100钙结合蛋白A14(S100A14)在乳腺癌不同分子亚型中的表达及临床病理意义,为确定新的分子分型标志物提供参考依据。方法:254例乳腺癌石蜡组织来源于2013年1月16日至2014年5月22日在中南大学湘雅医学院附属肿瘤医院暨湖南省肿瘤医院进行乳腺癌根治术的患者。应用免疫组织化学方法检测S100A14在乳腺癌组织中的表达,分析其S100A14在不同分子亚型乳腺癌组织中表达及其与患者临床病理指标间的相关性,采用Kaplan-Meier法分析S100A14蛋白表达与乳腺癌患者预后的关系。结果:S100A14在ER+/PR+/HER2+型、ER+/PR+/HER2-型、ER-/PR-/HER2+型、ER-/PR-/HER2-型乳腺癌四种分子亚型中的阳性表达分别为38.5%、47.1%、75.5%、80.0%,以在ER-/PR-/HER2-型中表达最高,在ER+/PR+/HER2+型中表达最低,四组间的阳性表达比较差异有显著统计学意义(P0.01);S100A14的表达与乳腺癌患者术后肝转移呈正相关(r=0.134,P0.05),与ER、PR表达均呈负相关(r=-0.353,P0.01),而与ER+/PR+/HER2+型、ER+/PR+/HER2-型乳腺癌的临床病理特征无显著相关性(P0.05)。在ER-/PR-/HER2+型乳腺癌中,有腋窝淋巴结转移组患者的S100A14阳性表达率明显高于无腋窝淋巴结转移组,差异有统计学意义(P0.05);在ER-/PR-/HER2-型中,S100A14表达与术后肺转移呈负相关(r=-0.272, P=0.044)。结论:S100A14在不同分子亚型乳腺癌中表达存在差异,其表达与不同分子类型乳腺癌转移或复发有关,可能作为乳腺癌分子分型的候选标记物。  相似文献   

20.
The human epidermal growth factor receptor 2 (HER2) has been targeted as a breast cancer-associated Ag by T cell-based immunotherapeutical strategies such as cancer vaccines and adoptive T cell transfer. The prerequisite for a successful T cell-based therapy is the induction of T cells capable of recognizing the HER2-expressing tumor cells. In this study, we generated human cytotoxic T cell clones directed against the HER2(369-377) epitope known to be naturally presented with HLA-A*0201. Those HER2-reactive CTLs, which were also tumor lytic, exhibited a similar lysis pattern dividing the targets in lysable and nonlysable tumor cells. Several HER2-expressing tumor cells became susceptible to CTL-mediated lysis after IFN-gamma treatment and, in parallel, up-regulated molecules of the Ag-presenting machinery, indicating that the tumor itself also contributes to the success of CTL-mediated killing. Some of the HER2(369-377)-reactive T cells specifically cross-reacted with the corresponding peptides derived from the family members HER3 and/or HER4 due to a high sequence homology. The epitopes HER3(356-364) and HER4(361-369) were endogenously processed and contributed to the susceptibility of cell lysis by HER cross-reacting CTLs. The principle of "double" or "triple targeting" the HER Ags by cross-reacting T cells will impact the further development of T cell-based therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号