首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Ubiquitination is an important post-translational protein modification that functions in diverse cellular processes of all eukaryotic organisms. Conventional Lys48-linked poly-ubiquitination leads to the degradation of specific proteins through 26S proteasomes, while Lys63-linked polyubiquitination appears to regulate protein activities in a non-proteolytic manner. To date, Ubc13 is the only known ubiquitin-conjugating enzyme capable of poly-ubiquitinating target proteins via Lys63-linked chains, and this activity absolutely requires a Ubc variant (Uev or Mms2) as a co-factor. However, Lys63-linked poly-ubiquitination and error-free DNA damage tolerance in zebrafish are yet to be defined. Here, we report molecular cloning and functional characterization of two zebrafish ubc13 genes, ubc13a and ubc13b. Analysis of their genomic structure, nucleotide and protein sequence indicates that the two genes are highly conserved during evolution and derived from whole genome duplication. Zebrafish Ubc13 proteins are able to physically interact with yeast or human Mms2 and both zebrafish ubc13 genes are able to functionally complement the yeast ubc13 null mutant for spontaneous mutagenesis and sensitivity to DNA damaging agents. In addition, upon DNA damage, the expression of zebrafish ubc13a and ubc13b is induced during embryogenesis and zebrafish Ubc13 is associated with nuclear chromatin. These results suggest the involvement of Lys63-linked poly-ubiquitylation in DNA damage response in zebrafish.  相似文献   

2.
The repair of DNA double strand breaks by homologous recombination relies on the unique topology of the chains formed by Lys-63 ubiquitylation of chromatin to recruit repair factors such as breast cancer 1 (BRCA1) to sites of DNA damage. The human RING finger (RNF) E3 ubiquitin ligases, RNF8 and RNF168, with the E2 ubiquitin-conjugating complex Ubc13/Mms2, perform the majority of Lys-63 ubiquitylation in homologous recombination. Here, we show that RNF8 dimerizes and binds to Ubc13/Mms2, thereby stimulating formation of Lys-63 ubiquitin chains, whereas the related RNF168 RING domain is a monomer and does not catalyze Lys-63 polyubiquitylation. The crystal structure of the RNF8/Ubc13/Mms2 ternary complex reveals the structural basis for the interaction between Ubc13 and the RNF8 RING and that an extended RNF8 coiled-coil is responsible for its dimerization. Mutations that disrupt the RNF8/Ubc13 binding surfaces, or that truncate the RNF8 coiled-coil, reduce RNF8-catalyzed ubiquitylation. These findings support the hypothesis that RNF8 is responsible for the initiation of Lys-63-linked ubiquitylation in the DNA damage response, which is subsequently amplified by RNF168.  相似文献   

3.
DNA damage tolerance (DDT) in budding yeast requires Lys-63-linked polyubiquitination of the proliferating cell nuclear antigen. The ubiquitin-conjugating enzyme Ubc13 and the Ubc enzyme variant (Uev) methyl methanesulfonate2 (Mms2) are required for this process. Mms2 homologs have been found in all eukaryotic genomes examined; however, their roles in multicellular eukaryotes have not been elucidated. We report the isolation and characterization of four UEV1 genes from Arabidopsis thaliana. All four Uev1 proteins can form a stable complex with At Ubc13 or with Ubc13 from yeast or human and can promote Ubc13-mediated Lys-63 polyubiquitination. All four Uev1 proteins can replace yeast MMS2 DDT functions in vivo. Although these genes are ubiquitously expressed in most tissues, UEV1D appears to express at a much higher level in germinating seeds and in pollen. We obtained and characterized two uev1d null mutant T-DNA insertion lines. Compared with wild-type plants, seeds from uev1d null plants germinated poorly when treated with a DNA-damaging agent. Those that germinated grew slower, and the majority ceased growth within 2 weeks. Pollen from uev1d plants also displayed a moderate but significant decrease in germination in the presence of DNA damage. This report links Ubc13-Uev with functions in DNA damage response in Arabidopsis.  相似文献   

4.
Ubc13, a ubiquitin-conjugating enzyme (Ubc), requires the presence of a Ubc variant (Uev) for polyubiquitination. Uevs, although resembling Ubc in sequence and structure, lack the active site cysteine residue and are catalytically inactive. The yeast Uev (Mms2) incites noncanonical Lys63-linked polyubiquitination by Ubc13, whereas the increased diversity of Uevs in higher eukaryotes suggests an unexpected complication in ubiquitination. In this study, we demonstrate that divergent activities of mammalian Ubc13 rely on its pairing with either of two Uevs, Uev1A or Mms2. Structurally, we demonstrate that Mms2 and Uev1A differentially modulate the length of Ubc13-mediated Lys63-linked polyubiquitin chains. Functionally, we describe that Ubc13-Mms2 is required for DNA damage repair but not nuclear factor kappaB (NF-kappaB) activation, whereas Ubc13-Uev1A is involved in NF-kappaB activation but not DNA repair. Our finding suggests a novel regulatory mechanism in which different Uevs direct Ubcs to diverse cellular processes through physical interaction and alternative polyubiquitination.  相似文献   

5.
Lys63-linked polyubiquitin chains participate in nonproteolytic signaling pathways, including regulation of DNA damage tolerance and NF-kappaB activation. E2 enzymes bound to ubiquitin E2 variants (UEV) are vital in these pathways, synthesizing Lys63-linked polyubiquitin chains, but how these complexes achieve specificity for a particular lysine linkage has been unclear. We have determined the crystal structure of an Mms2-Ubc13-ubiquitin (UEV-E2-Ub) covalent intermediate with donor ubiquitin linked to the active site residue of Ubc13. In the structure, the unexpected binding of a donor ubiquitin of one Mms2-Ubc13-Ub complex to the acceptor-binding site of Mms2-Ubc13 in an adjacent complex allows us to visualize at atomic resolution the molecular determinants of acceptor-ubiquitin binding. The structure reveals the key role of Mms2 in allowing selective insertion of Lys63 into the Ubc13 active site and suggests a molecular model for polyubiquitin chain elongation.  相似文献   

6.
Polyubiquitin chains assembled through lysine 48 (Lys-48) of ubiquitin act as a signal for substrate proteolysis by 26 S proteasomes, whereas chains assembled through Lys-63 play a mechanistically undefined role in post-replicative DNA repair. We showed previously that the products of the UBC13 and MMS2 genes function in error-free post-replicative DNA repair in the yeast Saccharomyces cerevisiae and form a complex that assembles Lys-63-linked polyubiquitin chains in vitro. Here we confirm that the Mms2.Ubc13 complex functions as a high affinity heterodimer in the chain assembly reaction in vitro and report the results of a kinetic characterization of the polyubiquitin chain assembly reaction. To test whether a Lys-63-linked polyubiquitin chain can signal degradation, we conjugated Lys-63-linked tetra-ubiquitin to a model substrate of 26 S proteasomes. Although the noncanonical chain effectively signaled substrate degradation, the results of new genetic epistasis studies agree with previous genetic data in suggesting that the proteolytic activity of proteasomes is not required for error-free post-replicative repair.  相似文献   

7.
Human Ubc13 and Mms2 (or its homolog, Uev1) form a unique ubiquitin-conjugating enzyme (Ubc) complex that generates atypical Lys(63)-linked ubiquitin conjugates. Such conjugates are attached to specific targets that modulate the activity of various cellular processes including DNA repair, mitotic progression, and nuclear factor-kappaB signaling. Whereas Ubc13 is a typical Ubc, Mms2 is a non-catalytic Ubc variant. Substantial biochemical evidence has revealed a mechanism whereby Mms2 properly orients ubiquitin to allow for Lys(63) conjugation by Ubc13; however, how this specific Ubc13-Mms2 complex is formed and why Mms2 does not form a complex with other Ubcs have not been reported. In order to address these questions, we used a structure-based approach to design mutations and characterize the human Ubc13-Mms2 interface. We used the yeast two-hybrid assay, glutathione S-transferase pull-downs, and surface plasmon resonance to test in vivo and in vitro binding. These experiments were paired with functional complementation and ubiquitin conjugation studies to provide in vivo and in vitro functional data. The results in this study allowed us to identify important residues of the Ubc13-Mms2 interface, determine a correlation between heterodimer formation and function, and conclude why Mms2 forms a specific complex with Ubc13 but not other Ubc proteins.  相似文献   

8.
Different ubiquitin modifications to proliferating cell nuclear antigen (PCNA) signal distinct modes of lesion bypass in the RAD6 pathway of DNA damage tolerance. The modification of PCNA with monoubiquitin signals an error-prone bypass, whereas the extension of this modification into a Lys-63-linked polyubiquitin chain promotes error-free bypass. Chain formation is catalyzed by the Mms2/Ubc13 conjugating enzyme variant/conjugating enzyme (UEV.E2) complex together with the Rad5 ubiquitin ligase. In vitro studies of this UEV.E2 complex have identified a ubiquitin binding site that is mainly localized on Mms2. However, the role of this site in DNA damage tolerance and the molecular features of the ubiquitin/Mms2 interaction are poorly understood. Here we identify two molecular determinants, the side chains of Mms2-Ile-57 and ubiquitin-Ile-44, that are required for chain assembly in vitro and error-free lesion bypass in vivo. Mutating either of these side chains to alanine elicits a severe 10-20-fold inhibition of chain synthesis that is caused by compromised binding of the acceptor ubiquitin to Mms2. These results suggest that the ubiquitin binding site of Mms2 is necessary for error-free lesion bypass in the RAD6 pathway and provide new insights into ubiquitin recognition by UEV proteins.  相似文献   

9.
Wen R  Li J  Xu X  Cui Z  Xiao W 《DNA Repair》2012,11(2):157-166
The ubiquitin-conjugating enzyme Ubc13 together with a Ubc/E2 variant (Uev) form a stable complex and mediate K63-linked polyubiquitination, which is implicated in DNA damage tolerance in yeast and mammalian cells. The zebrafish Danio rerio is a lower vertebrate model organism widely used in the studies of vertebrate development and environmental stress responses. Here we report the identification and functional characterization of two zebrafish UEV genes, Drmms2 and Druev1. Their deduced amino acid sequences indicate that the two UEV genes evolved separately prior to the appearance of vertebrates. Both zebrafish Uevs form a stable complex with DrUbc13 as well as Ubc13s from yeast and human, and are able to promote Ubc13-mediated K63 polyubiquitination in vitro, suggesting that their biochemical activities are conserved. Despite the fact that both zebrafish UEV genes can functionally replace the yeast MMS2 DNA-damage tolerance function, they exhibited differences in DNA-damage response in zebrafish embryos: ablation of DrMms2, but not DrUev1, enhances both spontaneous and DNA-damage induced expression of p53 effectors p21 and mdm2. In addition, DrUbc13 specifically binds Drp53 in an in vitro assay. These observations collectively indicate that zebrafish Mms2 and Ubc13 form a stable complex, which is required for p53-mediated DNA-damage response.  相似文献   

10.
Ashley C  Pastushok L  McKenna S  Ellison MJ  Xiao W 《Gene》2002,285(1-2):183-191
The E2 enzyme, Ubc13, and the E2 enzyme variants, Uevs, form stable, high affinity complexes for the assembly of Lys63-linked ubiquitin chains. This process is involved in error-free DNA postreplication repair, the activation of kinases in the NF-kappaB signaling pathway and possibly other cellular processes. To further investigate the roles played by Ubc13 in a whole animal model, we report here the molecular cloning of mouse UBC13 and show for the first time that a mammalian UBC13 gene is able to complement the yeast ubc13 null mutant. Furthermore, in vitro analyses and a yeast two-hybrid assay show that mUbc13 is able to form stable complexes with various Uevs. In the presence of E1 and ATP, mUbc13 forms thiolesters with ubiquitin; however, the formation of Lys63-linked di-ubiquitin and multi-ubiquitin chains is dependent on Uevs. These results suggest that the roles of UBC13 are conserved throughout eukaryotes and that the mouse is an appropriate model for the study of Ubc13-mediated Lys63-linked ubiquitin signaling pathways in humans.  相似文献   

11.
Lys(63)-linked polyubiquitin (poly-Ub) chains appear to play a nondegradative signaling and/or recruitment role in a variety of key eukaryotic cellular processes, including NF-kappaB signal transduction and DNA repair. A protein heterodimer composed of a catalytically active ubiquitin-conjugating enzyme (Ubc13) and its homologue (Mms2 or Uev1a) forms a catalytic scaffold upon which a noncovalently associated acceptor Ub and thiolester-linked donor Ub are oriented such that Lys(63)-linked poly-Ub chain synthesis is facilitated. In this study, we have used (1)H-(15)N nuclear magnetic resonance spectroscopy, in combination with isothermal titration calorimetry, to determine the thermodynamics and kinetics of the interactions between various components of the Lys(63)-linked poly-Ub conjugation machinery. Mms2 and Uev1a interact in vitro with acceptor Ub to form 1/1 complexes with macroscopic dissociation constants of 98 +/- 15 and 213 +/- 14 microM, respectively, and appear to bind Ub in a similar fashion. Interestingly, the Mms2.Ubc13 heterodimer associates with acceptor Ub in a 1/1 complex and binds with a dissociation constant of 28 +/- 6 microM, significantly stronger than the binding of Mms2 alone. Furthermore, a dissociation constant of 49 +/- 7 nM was determined for the interaction between Mms2 and Ubc13 using isothermal titration calorimetry. In connection with previous structural studies for this system, the thermodynamics and kinetics of acceptor Ub binding to the Mms2.Ubc13 heterodimer described in detail in this study will allow for a more thorough rationalization of the mechanism of formation of Lys(63)-linked poly-Ub chains.  相似文献   

12.
The RAD6 pathway allows replication across DNA lesions by either an error-prone or error-free mode. Error-prone replication involves translesion polymerases and requires monoubiquitylation at lysine (K) 164 of PCNA by the Rad6 and Rad18 enzymes. By contrast, the error-free bypass is triggered by modification of PCNA by K63-linked polyubiquitin chains, a reaction that requires in addition to Rad6 and Rad18 the enzymes Rad5 and Ubc13-Mms2. Here, we show that the RAD6 pathway is also critical for controlling repair pathways that act on DNA double-strand breaks. By using gapped plasmids as substrates, we found that repair in wild-type cells proceeds almost exclusively by homology-dependent repair (HDR) using chromosomal DNA as a template, whereas non-homologous end-joining (NHEJ) is suppressed. In contrast, in cells deficient in PCNA polyubiquitylation, plasmid repair occurs largely by NHEJ. Mutant cells that are completely deficient in PCNA ubiquitylation, repair plasmids by HDR similar to wild-type cells. These findings are consistent with a model in which unmodified PCNA supports HDR, whereas PCNA monoubiquitylation diverts repair to NHEJ, which is suppressed by PCNA polyubiquitylation. More generally, our data suggest that the balance between HDR and NHEJ pathways is crucially controlled by genes of the RAD6 pathway through modifications of PCNA.  相似文献   

13.
Hofmann RM  Pickart CM 《Cell》1999,96(5):645-653
Ubiquitin-conjugating enzyme variant (UEV) proteins resemble ubiquitin-conjugating enzymes (E2s) but lack the defining E2 active-site residue. The MMS2-encoded UEV protein has been genetically implicated in error-free postreplicative DNA repair in Saccharomyces cerevisiae. We show that Mms2p forms a specific heteromeric complex with the UBC13-encoded E2 and is required for the Ubc13p-dependent assembly of polyubiquitin chains linked through lysine 63. A ubc13 yeast strain is UV sensitive, and single, double, and triple mutants of the UBC13, MMS2, and ubiquitin (ubiK63R) genes display a comparable phenotype. These findings support a model in which an Mms2p/Ubc13p complex assembles novel polyubiquitin chains for signaling in DNA repair, and they suggest that UEV proteins may act to increase diversity and selectivity in ubiquitin conjugation.  相似文献   

14.
Protein modifications by ubiquitin and small ubiquitin-like modifier (SUMO) play key roles in cellular signaling pathways. SUMO-targeted ubiquitin ligases (STUbLs) directly couple these modifications by selectively recognizing SUMOylated target proteins through SUMO-interacting motifs (SIMs), promoting their K48-linked ubiquitylation and degradation. Only a single mammalian STUbL, RNF4, has been identified. We show that human RNF111/Arkadia is a new STUbL, which used three adjacent SIMs for specific recognition of poly-SUMO2/3 chains, and used Ubc13–Mms2 as a cognate E2 enzyme to promote nonproteolytic, K63-linked ubiquitylation of SUMOylated target proteins. We demonstrate that RNF111 promoted ubiquitylation of SUMOylated XPC (xeroderma pigmentosum C) protein, a central DNA damage recognition factor in nucleotide excision repair (NER) extensively regulated by ultraviolet (UV)-induced SUMOylation and ubiquitylation. Moreover, we show that RNF111 facilitated NER by regulating the recruitment of XPC to UV-damaged DNA. Our findings establish RNF111 as a new STUbL that directly links nonproteolytic ubiquitylation and SUMOylation in the DNA damage response.  相似文献   

15.
While the signaling properties of ubiquitin depend on the topology of polyubiquitin chains, little is known concerning the molecular basis of specificity in chain assembly and recognition. UEV/Ubc complexes have been implicated in the assembly of Lys63-linked polyubiquitin chains that act as a novel signal in postreplicative DNA repair and I kappa B alpha kinase activation. The crystal structure of the Mms2/Ubc13 heterodimer shows the active site of Ubc13 at the intersection of two channels that are potential binding sites for the two substrate ubiquitins. Mutations that destabilize the heterodimer interface confer a marked UV sensitivity, providing direct evidence that the intact heterodimer is necessary for DNA repair. Selective mutations in the channels suggest a molecular model for specificity in the assembly of Lys63-linked polyubiquitin signals.  相似文献   

16.
DNA post-replication repair (PRR) functions to bypass replication-blocking lesions and is subdivided into two parallel pathways: error-prone translesion DNA synthesis and error-free PRR. While both pathways are dependent on the ubiquitination of PCNA, error-free PRR utilizes noncanonical K63-linked polyubiquitinated PCNA to signal lesion bypass through template switch, a process thought to be dependent on Mms2-Ubc13 and a RING finger motif of the Rad5 ubiquitin ligase. Previous in vitro studies demonstrated the ability of Rad5 to promote replication fork regression, a function dependent on its helicase activity. To investigate the genetic and mechanistic relationship between fork regression in vitro and template switch in vivo, we created and characterized site-specific mutations defective in the Rad5 RING or helicase activity. Our results indicate that both the Rad5 ubiquitin ligase and the helicase activities are exclusively involved in the same error-free PRR pathway. Surprisingly, the Rad5 helicase mutation abolishes its physical interaction with Ubc13 and the K63-linked PCNA polyubiquitin chain assembly. Indeed, physical fusions of Rad5 with Ubc13 bypass the requirement for either the helicase or the RING finger domain. Since the helicase domain overlaps with the SWI/SNF chromatin-remodelling domain, our findings suggest a structural role of this domain and that the Rad5 helicase activity is dispensable for error-free lesion bypass.  相似文献   

17.
Recent structural analyses support a model whereby Mms2 interacts with and orientates Ub to promote Ubc13-mediated Lys63 chain formation. However, residues of the hMms2-Ub interface have not been addressed. We found two hMms2 residues to be critical for binding and polyUb conjugation. Surprisingly, while each single mutation reduces the binding affinity, the double mutation causes significant reduction of Ub binding and abolishes polyUb chain formation. Furthermore, the corresponding yeast mms2 double mutant exhibited an additive phenotype that caused a complete loss of MMS2 function. Taken together, this study identifies key residues of the Mms2-Ub interface and provides direct experimental evidence that Mms2 physical association with Ub is correlated with its ability to promote Lys63-linked Ub chain assembly.  相似文献   

18.
19.
Ubiquitin-conjugating enzyme variants share significant sequence similarity with typical E2 (ubiquitin-conjugating) enzymes of the protein ubiquitination pathway but lack their characteristic active site cysteine residue. The MMS2 gene of Saccharomyces cerevisiae encodes one such ubiquitin-conjugating enzyme variant that is involved in the error-free DNA postreplicative repair pathway through its association with Ubc13, an E2. The Mms2-Ubc13 heterodimer is capable of linking ubiquitin molecules to one another through an isopeptide bond between the C terminus and Lys-63. Using highly purified components, we show here that the human forms of Mms2 and Ubc13 associate into a heterodimer that is stable over a range of conditions. The ubiquitin-thiol ester form of the heterodimer can be produced by the direct activation of its Ubc13 subunit with E1 (ubiquitin-activating enzyme) or by the association of Mms2 with the Ubc13-ubiquitin thiol ester. The activated heterodimer is capable of transferring its covalently bound ubiquitin to Lys-63 of an untethered ubiquitin molecule, resulting in diubiquitin as the predominant species. In (1)H (15)N HSQC ((1)H (15)N heteronuclear single quantum coherence) NMR experiments, we have mapped the surface determinants of tethered and untethered ubiquitin that interact with Mms2 and Ubc13 in both their monomeric and dimeric forms. These results have identified a surface of untethered ubiquitin that interacts with Mms2 in the monomeric and heterodimeric form. Furthermore, the C-terminal tail of ubiquitin does not participate in this interaction. These results suggest that the role of Mms2 is to correctly orient either a target-bound or untethered ubiquitin molecule such that its Lys-63 is placed proximally to the C terminus of the ubiquitin molecule that is linked to the active site of Ubc13.  相似文献   

20.

Background

Several pathways that control cell survival under stress, namely RNF8-dependent DNA damage recognition and repair, PCNA-dependent DNA damage tolerance and activation of NF-κB by extrinsic signals, are regulated by the tagging of key proteins with lysine 63-based polyubiquitylated chains, catalyzed by the conserved ubiquitin conjugating heterodimeric enzyme Ubc13-Uev.

Methodology/Principal Findings

By applying a selection based on in vivo protein-protein interaction assays of compounds from a combinatorial chemical library followed by virtual screening, we have developed small molecules that efficiently antagonize the Ubc13-Uev1 protein-protein interaction, inhibiting the enzymatic activity of the heterodimer. In mammalian cells, they inhibit lysine 63-type polyubiquitylation of PCNA, inhibit activation of NF-κB by TNF-α and sensitize tumor cells to chemotherapeutic agents. One of these compounds significantly inhibited invasiveness, clonogenicity and tumor growth of prostate cancer cells.

Conclusions/Significance

This is the first development of pharmacological inhibitors of non-canonical polyubiquitylation that show that these compounds produce selective biological effects with potential therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号