首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Flocculent cells ofKluyveromyces marxianus SM 16-10 were used for batch production of ethanol from the inulin sugars derived from Jerusalem artichoke tubers. Using 20% initial sugar concentration, a maximum ethanol concentration of 92 g/l was achieved in 7 h, when the flocculent cell concentration was 30 g dry wt./l bioreactor volume. The same flocculent cells were used repeatedly for 7 batch runs starting with fresh medium at the beginning of each run. The ethanol yield was found to be almost constant at about 94% of the theoretical for all the 7 batch cycles, while the maximum ethanol production rate increased from 17.21 g ethanol/1/h during the first batch run to 21 g ethanol/1/h during the last batch run.  相似文献   

2.
3.
一步法发酵菊芋生产乙醇   总被引:12,自引:0,他引:12  
利用马克斯克鲁维酵母(Kluyveromyces marxianus)YX01具有菊粉酶生产能力且乙醇发酵性能良好的特点,直接发酵菊粉生成乙醇.在摇瓶中考察了该菌株最适发酵温度,进而在2.5L发酵罐中考察了通气量和底物浓度的影响.实验结果表明:该菌株最适发酵温度为35℃;在通气量为50 mL/min和100 mL/min时菌体生长加快,发酵时间缩短,但在不通气条件下糖醇转化率明显提高;在菊粉浓度235 g/L时,发酵终点乙醇浓度达到92.2 g/L,乙醇对糖的得率为0.436,为理论值的85.5%.在此基础上,使用近海滩涂种植海水灌溉收获的菊芋为底物,以批式补料方式直接发酵菊芋干粉浓度为280 g/L的底物,发酵终点乙醇浓度为84.0 g/L,乙醇对糖的得率为0.405,为理论值的80.0%.这些研究工作,为以菊芋为原料的燃料乙醇技术开发奠定了基础.  相似文献   

4.
黄玉玲  隆小华  刘兆普  王琳  王博 《生态学杂志》2012,31(12):3187-3192
为获得菌株发酵菊芋生产燃料乙醇的最佳方案,首先选取实验室保存的重组菌株R32对其产酶条件进行优化,其最高产菊粉酶活性为298.8 U· mL-1,此时的最佳培养基配方为:YPG培养基为酵母粉1% (w/v),蛋白胨2% (w/v),甘油0.5% (v/v);YPM培养基为酵母粉1% (w/v),蛋白胨2% (w/v),甲醇1%(v/v);培养基pH为自然初始pH.然后选取酿酒酵母S.c和克鲁维酵母Klu,比较是否在添加重组菌株R32粗酶液条件下,两株酵母菌分别进行单独发酵和混合发酵时的产乙醇能力,以获得最佳的发酵组合.结果表明,酿酒酵母S.c和克鲁维酵母Klu在未添加重组菌株R32粗酶液时,混合一步发酵获得的乙醇含量较高,发酵84 h时乙醇含量为11.37%.添加重组菌株R32粗酶液进行两步发酵时,2株酵母菌混合发酵72 h时,乙醇含量为11.43%.2种发酵组合的最高乙醇含量以及各个发酵参数基本相同,虽然一步法发酵时间延长,但节省成本,操作简单,更适宜工业生产应用.最后对其进行正交试验优化,培养条件为菊粉浓度225 g· L-1,脲素浓度40 g·L-1,接种量15%,pH为5时,酿酒酵母菌S.c和克鲁维酵母Klu混合一步发酵法的最高乙醇体积比达11.82%.  相似文献   

5.
In a cytotoxicity-guided study using the MCF-7 human breast cancer cell line, nine known compounds, ent-17-oxokaur-15(16)-en-19-oic acid (1), ent-17-hydroxykaur-15(16)-en-19-oic acid (2), ent-15β-hydroxykaur-16(17)-en-19-oic acid methyl ester (3), ent-15-nor-14-oxolabda-8(17),12E-dien-18-oic acid (4), 4,15-isoatriplicolide angelate (5), 4,15-isoatriplicolide methylacrylate (6), (+)-pinoresinol (7), (?)-loliolide (8), and vanillin (9) were isolated from the chloroform-soluble subfraction of a methanol extract of the whole plant of Helianthus tuberosus collected in Ohio, USA. This is the first time that diterpenes have been isolated and identified from this economically important plant. The bioactivities of all isolates were evaluated using the MCF-7 human breast cancer cell line as well as a soybean isoflavonoid defense activation bioassay. The results showed that two germacrane-type sesquiterpene lactones, 5 and 6, are cytotoxic agents. While compounds 2, 3, 5 and 6 blocked isoflavone accumulation in the soybean, the norisoprenoid (?)-loliolide (8) was somewhat stimulatory of these defense metabolites.  相似文献   

6.
Ethanol production from Jerusalem artichoke tubers through a consolidated bioprocessing (CBP) strategy using the inulinase-producing yeast Kluyveromyces marxianus is an economical and competitive than that from a grainbased feedstock. However, poor inulinase production under ethanol fermentation conditions significantly prolongs the fermentation time and compromises ethanol productivity. Improvement of inulinase activity appears to be promising for increasing ethanol production from Jerusalem artichoke tubers by CBP. In the present study, expression of the inulinase gene INU with its own promoter in K. marxianus (K/INU2) was explored using the integrative cassette. Overexpression of INU was explored using chromosome integration via the HO locus of the yeast. Inulinase activity and ethanol were determined from inulin and Jerusalem artichoke tubers under fed-batch operation. Inulinase activity was 114.9 U/mL under aerobic conditions for K/INU2, compared with 52.3 U/mL produced by the wild type strain. Importantly, inulinase production was enhanced in K/INU2 under ethanol fermentation conditions. When using 230 g/L inulin and 220 g/L Jerusalem artichoke tubers as substrates, inulinase activities of 3.7 and 6.8 U/mL, respectively, were measured using K/INU2, comparing favorably with 2.4 and 3.1 U/mL, respectively, using the wide type strain. Ethanol concentration and productivity for inulin were improved by the recombinant yeast to 96.2 g/L and 1.34 g/L/h, respectively, vs 93.7 g/L and 1.12 g/L/h, respectively, by the wild type strain. Ethanol concentration and productivity improvements for Jerusalem artichoke tubers were 69 g/L and 1.44 g/L/h, respectively, from the recombinant strain vs 62 g/L and 1.29 g/L/h, respectively, from the wild type strain.  相似文献   

7.
The new route of the plant lipoxygenase pathway, directed specifically towards the ketodiene formation, was detected during in vitro experiments with Jerusalem artichoke (Helianthus tuberosus) tubers. Through this pathway (9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoic acid (13-HPOD) is reduced to corresponding 13-hydroxy acid (13-HOD), which is in turn dehydrogenated into ketodiene (9Z,11E,13S)-13-oxo-9,11-octadecadienoic acid (13-KOD). Dehydrogenation of 13-HOD into 13-KOD was not dependent on the presence of either NAD or NADP, but was strongly dependent on the presence of oxygen. Under anoxic conditions, 13-HOD dehydrogenation was blocked, but addition of 2,6-dichlorophenolindophenol restored it. Sulfite addition fully suppressed the aerobic dehydrogenation of 13-HOD. Hydrogen peroxide is a by-product formed by the enzyme along with 13-KOD. These data suggest that the ketodiene biosynthesis in H. tuberosus tubers is catalyzed by flavin dehydrogenase. (9S,10E,12Z)-9-Hydroxy-10,12-octadecadienoic acid (9-HOD) is dehydrogenated by this enzyme as effectively as 13-HOD, while alpha-ketol, (9Z)-12-oxo-13-hydroxy-9-octadecenoic acid, and ricinoleic acid did not act as substrates for dehydrogenase. The enzyme was soluble and possessed a pH optimum at pH 7.0-9.0. The only 13-HOD dehydrogenase known so far was detected in rat colon. However, unlike the H. tuberosus enzyme, the rat dehydrogenase is NAD-dependent.  相似文献   

8.
Kluyveromyces marxianus UCD (FST) 55-82 cells were immobilized in Na alginate beads and used in a packed-bed bioreactor system for the continuous production of ethanol from the extract of Jerusalem artichoke tubers. Volumetric ethanol productivities of 104 and 80 g ethanol/ L/h were obtained at 80 and 92% sugar utilization, respectively. The maximum volumetric ethanol productivity of the immobilized cell bioreactor system was found to be 15 times higher than that of an ordinary-stirred-tank (CST) bioreactor using cells of K. marxianus. The immobilized cell bioreactor system was operated continuously at a constant dilution rate of 0.66 h(-1) for 12 days resulting in only an 8% loss of the original immobilized cell activity, which corresponds to an estimated half-life of ca. 72 days. The maximum specific ethanol productivity and maximum specific sugar uptake rate of the immobilized cells were found to be 0.55 g ethanol/g/biomass/h and 1.21 g sugars/g biomass/h, respectively.  相似文献   

9.
The Continuous fermentation of Jerusalem artichoke juice to ethanol by free cells of Kluyveromyces marxianus UCD (FST) 55-82 has been studied in a continuous-stirred-tank bioreactor at 35 degrees C and pH 4.6. A maximum yield of 90% of the theoretical was obtained at a dilution rate of 0.05 h(-1). About 95% of the sugars were utilized at dilution rates lower than 0.15 h(-1). Volumetric ethanol productivity and volumetric biomass productivity reached maximum values of 7 g ETOH/L/h and 0.6 g dry wt/L/h, respectively, at a dilution rate of 0.2 h(-1). The maintenance energy coefficient for K. marxianus culture was found to be 0.46 g sugar/g biomass/h/ Oscillatory behavior was following a change in dilution rate from a previous steady state and from batch to continuous culture. Values of specific ethanol production rate and specific sugar uptake were found to increase almost linearly with the increase of the dilution rate. The maximum specific ethanol production rate and maximum specific sugar uptake rate were found to be 2.6 g ethanol/g/ cell/h and 7.9 sugars/g cell/h, respectively. Washout occurred at a dilution rate of 0.41 h(-1).  相似文献   

10.
Aims: Developing an innovative process for ethanol fermentation from Jerusalem artichoke tubers under very high gravity (VHG) conditions. Methods and Results: A consolidated bioprocessing (CBP) strategy that integrated inulinase production, saccharification of inulin contained in Jerusalem artichoke tubers and ethanol production from sugars released from inulin by the enzyme was developed with the inulinase‐producing yeast Kluyveromyces marxianus Y179 and fed‐batch operation. The impact of inoculum age, aeration, the supplementation of pectinase and nutrients on the ethanol fermentation performance of the CBP system was studied. Although inulinase activities increased with the extension of the seed incubation time, its contribution to ethanol production was negligible because vigorously growing yeast cells harvested earlier carried out ethanol fermentation more efficiently. Thus, the overnight incubation that has been practised in ethanol production from starch‐based feedstocks is recommended. Aeration facilitated the fermentation process, but compromised ethanol yield because of the negative Crabtree effect of the species, and increases the risk of contamination under industrial conditions. Therefore, nonaeration conditions are preferred for the CBP system. Pectinase supplementation reduced viscosity of the fermentation broth and improved ethanol production performance, particularly under high gravity conditions, but the enzyme cost should be carefully balanced. Medium optimization was performed, and ethanol concentration as high as 94·2 g l?1 was achieved when 0·15 g l?1 K2HPO4 was supplemented, which presents a significant progress in ethanol production from Jerusalem artichoke tubers. Conclusions: A CBP system using K. marxianus is suitable for efficient ethanol production from Jerusalem artichoke tubers under VHG conditions. Significance and Impact of the Study: Jerusalem artichoke tubers are an alternative to grain‐based feedstocks for ethanol production. The high ethanol concentration achieved using K. marxianus with the CBP system not only saves energy consumption for ethanol distillation, but also significantly reduces the amount of waste distillage discharged from the distillation system.  相似文献   

11.
Clonal micropropagation of Jerusalem artichoke (Helianthus tuberosus L.) was initiated from axillary meristems of lateral shoots of field-grown plants on medium with MS salts, 2% sucrose, 1 mg l-1 thiamine-HCl, 1 mg l-1 IAA and 0.6% agar. Plantlets were cut into nodal sections and used for subsequent subcultures and for microtuber induction. Microtubers were induced from axillary meristems on medium with half-strength MS salts, 8% sucrose and 0.5 mg l-1 BA in darkness at 18 °C. They had near to 30% of dry matter. Microtubers resumed growth in light room at 23 °C after 4–6 months of cold storage. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Thermotolerant inulin-utilizing yeast strains are desirable for ethanol production from Jerusalem artichoke tubers by consolidated bioprocessing (CBP). To obtain such strains, 21 naturally occurring yeast strains isolated by using an enrichment method and 65 previously isolated Saccharomyces cerevisiae strains were investigated in inulin utilization, extracellular inulinase activity, and ethanol fermentation from inulin and Jerusalem artichoke tuber flour at 40?°C. The strains Kluyveromyces marxianus PT-1 (CGMCC AS2.4515) and S. cerevisiae JZ1C (CGMCC AS2.3878) presented the highest extracellular inulinase activity and ethanol yield in this study. The highest ethanol concentration in Jerusalem artichoke tuber flour fermentation (200?g?L(-1)) at 40?°C achieved by K. marxianus PT-1 and S. cerevisiae JZ1C was 73.6 and 65.2?g?L(-1), which corresponded to the theoretical ethanol yield of 90.0 and 79.7?%, respectively. In the range of 30 to 40?°C, temperature did not have a significant effect on ethanol production for both strains. This study displayed the distinctive superiority of K. marxianus PT-1 and S. cerevisiae JZ1C in the thermotolerance and utilization of inulin-type oligosaccharides reserved in Jerusalem artichoke tubers. It is proposed that both K. marxianus and S. cerevisiae have considerable potential in ethanol production from Jerusalem artichoke tubers by a high temperature CBP.  相似文献   

13.
Summary Recycled immobilized cells of Kluyveromyces fragilis ATCC 28244 were used for repeated batch production of ethanol from the inulin sugars derived from Jerusalem artichoke tubers. Using 10% initial sugar concentration, a maximum ethanol concentration of 48 g/l was achieved in 7 h when the immobilized cell concentration in the Ca alginate beads was 72 g dry wt. immobilized cell/l bead volume. The maximum ethanol production rate was 13.5 g ethanol/l bioreactor volume/h. The same Ca alginate beads containing the cells were used repeatedly for 11 batch runs starting with fresh medium at the beginning of each run. The ethanol yield was found to be almost constant at 96% of the theoretical for all 11 batch runs, while the maximum ethanol production rate during the last batch run was found to be 70% of the original ethanol rate obtained in the first batch run.  相似文献   

14.
Fermentation conditions were optimized for the production of ethanol from Jerusalem artichoke with a strain of Saccharomyces cerevisiae able to use high-concentration juice and undiluted pulp. Yields (95 to 125 g ethanol/l=85 to 98% of the theoretical value) exceeded those obtained with strain of Kluyveromyces used classically.The authors are with the Laboratoire de Pharmacognosie et Biotechnologie, UFR Pharmacie, 28 Place Henri-Dunant, 63001 Clermont-Ferrand Cédex, France. H. Pourrat is the corresponding author.  相似文献   

15.
Plasmalemma-enriched fractions were isolated from Jerusalem artichoke tubers along the time course of dormancy break produced by cold treatment. A decrease of membrane fluidity was noted from the 3rd to the 8th week of this treatment, as well as a decrease of plasmalemma NADH dehydrogenase activity from the 5th to the 8th week. The plasmalemma lipid extracts studied revealed two major phospholipidic components: phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Their respective quantities decreased until the 12th week, where the phosphatidylcholine level is lower than the phosphatidylethanolamine one. The observed changes are discused in relation to dormant and non-dormant states of tubers and the breaking of dormancy.  相似文献   

16.
17.
Jerusalem artichoke mashed tubers were fermented using single yeasts and a bacterium as well as mixed culture of microorganisms. Kluyveromyces fragilis, a yeast with an active inulinase, was used together with either a commercial distillery yeast, Saccharomyces cerevisiae, or the bacterium Zymomonas mobilis. After batch fermentation the best ethanol concentration of 0.48 g g(-1) for the mixed population and 0.46 g g(-1) for the single population can be obtained. The theoretical yield of the mixed cultures was 2-12% higher than for the single microorganism.  相似文献   

18.
The adenine nucleotide carrier from Jerusalem artichoke (Helianthus Tuberosus L.) tubers mitochondria was solubilized with Triton X-100 and purified by sequential chromatography on hydroxapatite and Matrex Gel Blue B in the presence of cardiolipin and asolectin. SDS gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent molecular mass of 33 kDa. When reconstituted in liposomes, the adenine nucleotide carrier catalyzed a pyridoxal 5-phosphate-sensitive ATP/ATP exchange. It was purified 75-fold with a recovery of 15% and a protein yield of 0.18% with respect to the mitochondrial extract. Among the various substrates and inhibitors tested, the reconstituted protein transported only ATP, ADP, and GTP and was inhibited by bongkrekate, phenylisothiocyanate, pyridoxal 5-phosphate, mersalyl and p-hydroxymercuribenzoate (but not N-ethylmaleimide). Atractyloside and carboxyatractyloside (at concentrations normally inhibitory in animal and plant mitochondria) were without effect in Jerusalem artichoke tubers mitochondria. V max of the reconstituted ATP/ATP exchange was determined to be 0.53 mol/min per mg protein at 25°C. The half-saturation constant K m and the corresponding inhibition constant K i were 20.4 M for ATP and 45 M for ADP. The activation energy of the ATP/ATP exchange was 28 KJ/mol between 5 and 30°C. The N-terminal amino acid partial sequence of the purified protein showed a partial homology with the ANT protein purified from mitochondria of maize shoots.  相似文献   

19.
20.
以乙醇耐受力较强的酿酒酵母为受体菌,构建了能够分泌菊粉酶的基因工程菌并进行了菊芋粉的生料发酵。首先,以马克斯克鲁维酵母Kluyveromyces marxianus中的基因组DNA为模板,PCR扩增菊粉酶编码基因inu,分别使用菊粉酶自身启动子和酵母磷酸甘油激酶 (Phosphoglycerate kinase,pgk) 启动子,构建重组表达质粒HO/p-inu和HO/pgk-inu。经NotⅠ线性化后,采用电击法转化酿酒酵母工业菌株Saccharomyces cerevisiae 6525,分别得到含菊  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号