首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Site-specific DNA inversion by the Hin recombinase requires the formation of a multicomponent nucleo-protein structure called an invertasome. In this structure, the two recombination sites bound by Hin are assembled together at the Fis-bound recombinational enhancer with the requisite looping of the intervening DNA segments. We have analyzed the role of the HU protein in invertasome assembly when the enhancer is located at variable positions close to one of the recombination sites. In the absence of HU in vitro and in hupA hupB mutant cells in vivo, invertasome assembly is very inefficient when there is < 104 bp of DNA between the enhancer and recombination site. Invertasome assembly in the presence of HU in vitro or in vivo displayed a periodicity beginning with 60 bp of intervening DNA that reflected its helical repeat. The average helical repeat for this DNA region was calculated by autocorrelation and Fourier transformation to be 11.2 bp per turn for supercoiled DNA both in the presence of HU in vitro and in hup+ cells in vivo. HU is the only protein in Escherichia coli that can promote invertasome formation with short DNA lengths between the enhancer and recombination sites. However, the presence of certain polyamines and a protein activity present in HeLa nuclear extracts can efficiently substitute for HU in invertasome assembly. These data support a model in which HU binds non-specifically to the DNA between the enhancer and recombination site to facilitate DNA looping.  相似文献   

2.
The site-specific inversion reaction controlling flagellin synthesis in Salmonella involves the function of three proteins: Hin, Fis and HU. The DNA substrate must be supercoiled and contain a recombinational enhancer sequence in addition to the two recombination sites. Using mutant substrates or modified reaction conditions, large amounts of complexes can be generated which are recognized by double-stranded breaks within both recombination sites upon quenching. The cleaved molecules contain 2-bp staggered cuts within the central dinucleotide of the recombination site. Hin is covalently associated with the 5' end while the protruding 3' end contains a free hydoxyl. We demonstrate that complexes generated in the presence of an active enhancer are intermediates that have advanced past the major rate limiting step(s) of the reaction. In the absence of a functional enhancer, Hin is also able to assemble and catalyze site-specific cleavages within the two recombination sites. However, these complexes are kinetically distinct from the complexes assembled with a functional enhancer and cannot generate inversion without an active enhancer. The results suggest that strand exchange leading to inversion is mediated by double-stranded cleavage of DNA at both recombination sites followed by the rotation of strands to position the DNA into the recombinant configuration. The role of the enhancer and DNA supercoiling in these reactions is discussed.  相似文献   

3.
An Escherichia coli chromosomally coded factor termed FIS (Factor for Inversion Stimulation) stimulates the Cin protein-mediated, site-specific DNA inversion system of bacteriophage P1 more than 500-fold. We have purified FIS and the recombinase Cin, and studied the inversion reaction in vitro. DNA footprinting studies with DNase I showed that Cin specifically binds to the recombination site, called cix. FIS does not bind to cix sites but does bind to a recombinational enhancer sequence that is required in cis for efficient recombination. FIS also binds specifically to sequences outside the enhancer, as well as to sequences unrelated to Cin inversion. On the basis of these data, we discuss the possibility of additional functions for FIS in E. coli.  相似文献   

4.
G inversion in bacteriophage Mu requires the product of the DNA invertase gene gin and an Escherichia coli host factor termed FIS (factor for inversion stimulation). A recombination substrate must contain two recombination sites, arranged as inverted repeats, and a recombinational enhancer sequence termed sis. FIS has been purified to homogeneity. The purified protein has a relative molecular weight of 12,000 when analyzed under denaturing conditions. The intact protein behaves as a dimer of relative molecular weight 25,000 in gel filtration analysis. The purified protein does not possess any recombinogenic activity when assayed in the absence of the DNA-invertase Gin. In the presence of purified Gin FIS is the only additional protein required for efficient inversion. By performing gel retention assays, we show that FIS is a DNA-binding protein, which specifically binds to DNA fragments containing the recombinational enhancer sis.  相似文献   

5.
DNA inversions in phages and bacteria   总被引:3,自引:0,他引:3  
In certain phages and bacteria, there is a recombination system that specifically promotes the inversion of a DNA fragment. These inversion events appear to act as genetic switches allowing the alternate expression of different sets of genes which in general code for surface proteins. The mechanism of inversion in one class of inversion systems (Gin/Hin) has been studied in detail. It involves the formation of a highly specific nucleoprotein complex in which not only the two recombination sites and the DNA invertase participate but also a recombinational enhancer to which the DNA-bending protein Fis is bound.  相似文献   

6.
The host range of bacteriophage Mu is regulated through an invertible segment. Inversion requires the presence of two properly oriented recombination sites and a recombinational enhancer sis. The reaction is catalyzed by the Mu-encoded DNA invertase Gin and a host factor termed factors for inversion stimulation (FISs). We present a novel purification scheme for Gin. Purified Gin alone catalyzes the inversion reaction at very low efficiency recombining less than 0.8% of substrate molecules. When supplemented with FIS substrates containing the recombinational enhancer are recombined efficiently. Stoichiometric amounts of Gin are required for recombination.  相似文献   

7.
The site-specific DNA inversion system Cin encoded by the bacteriophage P1 consists of a recombinase, two inverted crossing-over sites and a recombinational enhancer. The latter approximately 75 bp long genetic element is bifunctional due to its location within the 5' part of the cin gene encoding the recombinase. In order to determine the essential nucleotides for each of its two biological functions we randomly mutated the recombinational enhancer sequence sis(P1) and analysed both functions of the mutants obtained. Three distinct regions of this sequence were found to be important for the enhancer activity. One of them occupies the middle third of the enhancer sequence and it can suffer a number of functionally neutral base substitutions, while others are detrimental. The other two regions occupy the two flanking thirds of the enhancer. They coincide with binding sites of the host-coded protein FIS (Factor for Inversion Stimulation) needed for efficient DNA inversion in vitro. These sequences appear to be highly evolved allowing only a few mutations without affecting either of the biological functions. Taking the effect of mutations within these FIS binding sites into account a consensus sequence for the interaction with FIS was compiled. This FIS consensus implies a palindromic structure for the recombinational enhancer. This is in line with the orientation independence of enhancer action with respect to the crossing-over sites.  相似文献   

8.
R C Johnson  M I Simon 《Cell》1985,41(3):781-791
The alternate expression of flagellin genes in Salmonella is the result of an inversion of a 996 bp segment of chromosomal DNA. We have analyzed the components of this site-specific recombination reaction in an in vitro system derived from E. coli. Efficient Hin-mediated inversion requires the 20,000 MW Hin protein and a proteinase K-sensitive host component. The supercoiled DNA substrate must contain two 26 bp recombination sites in inverted configuration and a 60 bp sequence that increases the rate of recombination over 20-fold. This recombinational enhancer can function at many different locations and consists of at least two noncontiguous sequence domains whose relative orientation, but not precise spacing, with respect to each other is important. Synthetically derived wild-type and mutant recombination sites were constructed to analyze the sequence and structural features that are important within the recombination site.  相似文献   

9.
R Osuna  S E Finkel    R C Johnson 《The EMBO journal》1991,10(6):1593-1603
The Fis protein of E. coli binds to a recombinational enhancer sequence that is required to stimulate Hin-mediated DNA inversion. Fis is also required for efficient lambda prophase excision in vivo. The properties of mutant Fis proteins were examined in vivo and in vitro with respect to their stimulatory effects on these two different site-specific DNA recombination reactions. Both recombination reactions are dramatically affected by mutations altering a helix-turn-helix DNA binding motif located near the Fis C-terminus (residues 74-93). These mutations invariably decrease DNA binding affinity and some cause reduced DNA bending. Mutations in the Fis N-terminal region reduce or abolish the stimulation of Hin-mediated DNA recombination by Fis, but have little or no effect on DNA binding or lambda excision. We conclude that there are at least two functionally distinct domains in Fis: a C-terminal DNA binding region that is required for promoting both DNA recombination reactions and an N-terminal region that is uniquely required for Hin-mediated inversion.  相似文献   

10.
Efficient DNA inversion catalysed by the invertase Gin requires the cis-acting recombinational enhancer and the Escherichia coliFIS protein. Binding of FIS bends the enhancer DNA and, on a negatively supercoiled DNA inversion substrate, facilitates the formation of a synaptic complex with specific topology. Previous studies have indicated that FIS-independent Gin mutants can be isolated which have lost the topological constraints imposed on the inversion reaction yet remain sensitive to the stimulatory effect of FIS. Whether the effect of FIS is purely architectural, or whether in addition direct protein contacts between Gin and FIS are required for efficient catalysis has remained an unresolved question. Here we show that FIS mutants impaired in DNA binding are capable of either positively or negatively affecting the inversion reaction both in vivo and in vitro. We further demonstrate that the mutant protein FIS K25E/V66A/M67T dramatically enhances the cleavage of recombination sites by FIS-independent Gin in an enhancer-independent manner. Our observations suggest that FIS plays a dual role in the inversion reaction and stimulates both the assembly of the synaptic complex as well as DNA strand cleavage.  相似文献   

11.
Isolation and characterization of unusual gin mutants.   总被引:19,自引:8,他引:11       下载免费PDF全文
Site-specific inversion of the G segment in phage Mu DNA is promoted by two proteins, the DNA invertase Gin and the host factor FIS. Recombination occurs if the recombination sites (IR) are arranged as inverted repeats and a recombinational enhancer sequence is present in cis. Intermolecular reactions as well as deletions between direct repeats of the IRs rarely occur. Making use of a fis- mutant of Escherichia coli we have devised a scheme to isolate gin mutants that have a FIS independent phenotype. This mutant phenotype is caused by single amino acid changes at five different positions of gin. The mutant proteins display a whole set of new properties in vivo: they promote inversions, deletions and intermolecular recombination in an enhancer- and FIS-independent manner. The mutants differ in recombination activity. The most active mutant protein was analysed in vitro. The loss of site orientation specificity was accompanied with the ability to recombine even linear substrates. We discuss these results in connection with the role of the enhancer and FIS protein in the wild-type situation.  相似文献   

12.
A wealth of new information regarding the structure of the synaptic complex, the mechanism of DNA strand exchange, and the role of the recombinational enhancer in promoting DNA inversion has been obtained from a combination of approaches. These include: electron microscopy of reaction intermediates, topological analysis of recombination products, and X-ray crystallography coupled with genetic analysis.  相似文献   

13.
Serine recombinases, which generate double-strand breaks in DNA, must be carefully regulated to ensure that chemically active DNA complexes are assembled correctly. In the Hin-catalyzed site-specific DNA inversion reaction, two inversely oriented recombination sites on the same DNA molecule assemble into a synaptic complex that uniquely generates inversion products. The Fis-bound recombinational enhancer, together with topological constraints directed by DNA supercoiling, functions to regulate Hin synaptic complex formation and activity. We have isolated a collection of gain-of-function mutants in 22 positions within the catalytic and oligomerization domains of Hin using two genetic screens and by site-directed mutagenesis. One genetic screen measured recombination in the absence of Fis and the other assessed SOS induction as a readout of increased DNA cleavage. These mutations, together with molecular modeling, identify important sites of dynamic intrasubunit and intersubunit interactions that regulate assembly of the active tetrameric recombination complex. Of particular interest are interactions between the oligomerization helix (helix E) and the catalytic domain of the same subunit that function to hold the dimer in an inactive state in the absence of the Fis/enhancer system. Among these is a relay involving a triad of phenylalanines that are proposed to switch positions during the transition from dimers to the catalytically active tetramer. Novel Hin mutants that generate synaptic complexes that are blocked at steps prior to DNA cleavage are also described.  相似文献   

14.
The beta recombinase from plasmid pSM19035 catalyzes intramolecular site-specific recombination between two directly or inversely oriented six sites in the presence of a chromatin-associated protein (Hbsu, HU or HMG-1). The six site is a DNA segment containing two binding sites (I and II) for beta protein dimers. We show that beta recombinase binds sequentially to both sites, having a different affinity for each one. Hydroxyl radical footprints show a different protection pattern at each site. Positions critical for beta protein binding have been identified by methylation interference and missing nucleoside assays. The results indicate that the protein recognizes each site in a different way. Comparison of the beta protein recombination site with that of DNA resolvases and DNA invertases of the Tn3 family, to which it belongs, shows that these sequences can be divided into two regions. One corresponds to the crossover point and is similar for all recombinases of the family. The other region differs in the different subfamilies and seems to have an architectural role in aligning the crossover sites at the synaptic complex. The different ways to assemble this complex could explain why each system leads to a particular recombination event: DNA resolution (resolvases), inversion (invertases) or both (beta recombinase).  相似文献   

15.
RadA/Sms is a highly conserved eubacterial protein that shares sequence similarity with both RecA strand transferase and Lon protease. We examined mutations in the radA/sms gene of Escherichia coli for effects on conjugational recombination and sensitivity to DNA-damaging agents, including UV irradiation, methyl methanesulfonate (MMS), mitomycin C, phleomycin, hydrogen peroxide, and hydroxyurea (HU). Null mutants of radA were modestly sensitive to the DNA-methylating agent MMS and to the DNA strand breakage agent phleomycin, with conjugational recombination decreased two- to threefold. We combined a radA mutation with other mutations in recombination genes, including recA, recB, recG, recJ, recQ, ruvA, and ruvC. A radA mutation was strongly synergistic with the recG Holliday junction helicase mutation, producing profound sensitivity to all DNA-damaging agents tested. Lesser synergy was noted between a mutation in radA and recJ, recQ, ruvA, ruvC, and recA for sensitivity to various genotoxins. For survival after peroxide and HU exposure, a radA mutation surprisingly suppressed the sensitivity of recA and recB mutants, suggesting that RadA may convert some forms of damage into lethal intermediates in the absence of these functions. Loss of radA enhanced the conjugational recombination deficiency conferred by mutations in Holliday junction-processing function genes, recG, ruvA, and ruvC. A radA recG ruv triple mutant had severe recombinational defects, to the low level exhibited by recA mutants. These results establish a role for RadA/Sms in recombination and recombinational repair, most likely involving the stabilization or processing of branched DNA molecules or blocked replication forks because of its genetic redundancy with RecG and RuvABC.  相似文献   

16.
The Hin DNA invertase promotes a site-specific DNA recombination reaction in the Salmonella chromosome. The native Hin reaction exhibits overwhelming selectivity for promoting inversions between appropriately oriented recombination sites and requires the Fis regulatory protein, a recombinational enhancer, and a supercoiled DNA substrate. Here, we report a robust recombination reaction employing oligonucleotide substrates and a hyperactive mutant form of Hin. Synaptic complex intermediates purified by gel electrophoresis were found to contain four Hin protomers bound to two recombination sites. Each Hin protomer is associated covalently with a cleaved DNA end. The cleaved complexes can be ligated into both parental and recombinant orientations at equivalent frequencies, provided the core residues can base-pair, and are readily disassembled into separated DNA fragments bound by Hin dimers. Kinetic analyses reveal that synapsis occurs rapidly, followed by comparatively slow Hin-catalyzed DNA cleavage. Subsequent steps of the reaction, including DNA exchange and ligation, are fast. Thus, post-synaptic step(s) required for DNA cleavage limit the overall rate of the recombination reaction.  相似文献   

17.
Moraxella bovis EPP63 is able to produce two antigenically distinct pili called Q and I pili (previously called beta and alpha pili). Hybridization studies have shown that the transition between the types is due to inversion of a 2.1-kilobase segment of chromosomal DNA. We present the sequence of a 4.1-kilobase region of cloned DNA spanning the entire inversion region in orientation 1 (Q pilin expressed). Comparison of this sequence with the sequence of the polymerase chain reaction-amplified genomic DNA from orientation 2 (I pilin expressed) allows the site-specific region of recombination to be localized to a 26-base-pair region in which sequence similarity to the left inverted repeat of the Salmonella typhimurium hin system was previously noted. In addition, 50% sequence similarity was seen in a 60-base-pair segment of our sequence to the recombinational enhancer of bacteriophage P1, an inversion system related to the hin system of S. typhimurium. Finally, two open reading frames representing potential genes were identified.  相似文献   

18.
The HU protein of Escherichia coli has been implicated in various site-specific recombination reactions. Moreover, recent data suggest that HU may also participate in homologous recombination. In particular, it has been shown that P1 transduction is inhibited in the absence of HU [Kano and Imamoto, Gene 89 (1990) 133-137]. In contrast, we found that transductional recombination and conjugational recombination were almost normal in hupA hupB mutants. However, it appeared that the recombination proficiency of hupA hupB mutant bacteria was reduced tenfold in an intrachromosomal recombination assay. Moreover, we found that intrachromosomal recombination was reduced tenfold in a gyrB226 strain and by more than 100-fold in an osmZ205 strain. The gyrB226 mutation affects the DNA gyrase activity, while mutations in osmZ are highly pleiotropic, affecting the expression of a variety of genes and increasing the frequency of site-specific inversion events. Since it has been shown that the hupA hupB mutations, like the gyrB226 mutation, decrease the level of DNA supercoiling, whereas the osmZ205 mutation increases the level of DNA supercoiling, it appears that the histone-like proteins HU and OsmZ may play a key role in intrachromosomal recombination by affecting the DNA topology.  相似文献   

19.
The DNA invertase Gin encoded by bacteriophage Mu catalyses efficient site-specific recombination between inverted repeat sequences (IR) in vivo and in vitro in the presence of the host factor FIS and the recombinational enhancer. We demonstrate that Gin alone is able to introduce single strand breaks into duplex DNA fragments which contain the IR sequence. Strand cleavage is site-specific and can occur on either strand within the IR. Cleaved molecules contain Gin covalently attached to DNA. The covalent complex is formed through linkage of Gin to the 5' DNA phosphate at the site of the break via a phosphoserine. Extensive site-directed mutational analysis showed that all mutants altered at serine position 9 were completely recombination deficient in vivo and in vitro. The mutant proteins bind to DNA but lack topoisomerase activity and are unable to introduce nicks. This holds true even for a conservative amino acid substitution at position 9. We conclude that serine at position 9 is part of the catalytic domain of Gin. The intriguing finding that the DNA invertase Gin has the same catalytic center as the DNA resolvases that promote deletions without recombinational enhancer and host factor FIS is discussed.  相似文献   

20.
The Fis protein regulates site-specific DNA inversion catalyzed by a family of DNA invertases when bound to a cis-acting recombinational enhancer. As is often found for transactivation domains, previous crystal structures have failed to resolve the conformation of the N-terminal inversion activation region within the Fis dimer. A new crystal form of a mutant Fis protein now reveals that the activation region contains two beta-hairpin arms that protrude over 20 A from the protein core. Saturation mutagenesis identified the regulatory and structurally important amino acids. The most critical activating residues are located near the tips of the beta-arms. Disulfide cross-linking between the beta-arms demonstrated that they are highly flexible in solution and that efficient inversion activation can occur when the beta-arms are covalently linked together. The emerging picture for this regulatory motif is that contacts with the recombinase at the tip of the mobile beta-arms activate the DNA invertase in the context of an invertasome complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号