首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine if there was a synergistic or additive effect of a thiazolidinedione derivative (rosiglitazone (ROS)) and a vanadium compound (bis(ethylmaltolato)oxovanadium(IV) (BEOV)) on plasma glucose and insulin levels following chronic oral administration to Zucker diabetic fatty (ZDF) rats. Whole-blood vanadium levels were determined at time 0 and at days 1, 6, and 18. The doses of BEOV (0.1 mmol/kg) and ROS (2.8 micromol/kg) were selected to produce a glucose-lowering effect in 30% (ED30) of animals. Both drugs were administered daily by oral gavage as suspensions in 1% carboxymethylcellulose (CMC) in a volume of 2.5 mL/kg. The total volume administered to all rats was 5 mL/(kg.day). The combination of BEOV and ROS was effective in lowering plasma glucose levels to <9 mmol/L in 60% of fatty animals as compared with 30% for BEOV and 10% for ROS alone. The age-dependent decrease in plasma insulin levels associated with beta-cell failure in the ZDF rats did not occur in the BEOV-treated fatty groups. There was no effect of any treatment on body weight; however, there was a significant reduction in both food and fluid intake in fatty groups treated with BEOV. There were no overt signs of toxicity and no mortality in this study. Both BEOV and ROS were effective in lowering plasma glucose levels, as stated above, and there was at least an additive effect when BEOV and ROS were used in combination.  相似文献   

2.
3-Hydroxy-2-methyl-4-pyrone and 2-ethyl-3-hydroxy-4-pyrone (maltol and ethyl maltol, respectively) have proven especially suitable as ligands for vanadyl ions, in potential insulin enhancing agents for diabetes mellitus. Both bis(maltolato)oxovanadium(IV) (BMOV), and the ethylmaltol analog, bis(ethylmaltolato)oxovanadium(IV) (BEOV), have the desired intermediate stability for pro-drug use, and have undergone extensive pre-clinical testing for safety and efficacy. Pharmacokinetic evaluation indicates a pattern of biodistribution consistent with fairly rapid dissociation and uptake, binding to serum transferrin for systemic circulation and transport to tissues, with preferential uptake in bone. These bis-ligand oxovanadium(IV) (VOL2) compounds have a clear advantage over inorganic vanadyl sulfate in terms of bioavailability and pharmaceutical efficacy. BEOV has now completed Phase I and has advanced to Phase II clinical trials. In the Phase I trial, a range of doses from 10 mg to 90 mg BEOV, given orally to non-diabetic volunteers, resulted in no adverse effects; all biochemical parameters remained within normal limits. In the Phase IIa trial, BEOV (AKP-020), 20 mg, daily for 28 days, per os, in seven type 2 diabetic subjects, was associated with reductions in fasting blood glucose and %HbA1c; improved responses to oral glucose tolerance testing, versus the observed worsening of diabetic symptoms in the two placebo controls.  相似文献   

3.
Increased potency of vanadium using organic ligands   总被引:5,自引:0,他引:5  
Thein vivo glucose lowering effect of orally administered inorganic vanadium compounds in diabetes was first reported in our laboratory in 1985. While both vanadate and vanadyl forms of vanadium are orally active, they are still not well absorbed. We have synthesized several organic vanadium compounds and one compound, bis(maltolato)oxovanadium(IV) or BMOV, has been extensively investigated. BMOV proved effective in lowering plasma glucose and lipids in STZ-diabetic rats when administered in drinking water over a 25 week period. The maintenance dose (0.18 mmol/kg/day) was approximately 50% of that required for vanadyl sulfate (VS). Secondary complications of diabetes were prevented by BMOV and no marked toxicity was noted. Oral gavage of STZ-diabetic rats with BMOV also reduced blood glucose levels. The ED50 for BMOV was 0.5 mmol/kg, while for VS the estimated ED50 was 0.9 mmol/kg. BMOV was also effective by the intraperitoneal route in STZ-diabetic rats. The ED50 was 0.08 mmol/kg compared to 0.22 mmol/kg for VS. Some animals treated p.o. or i.p. remained euglycemic for up to 14 weeks. An i.v. infusion of BMOV of 0.05 mmol/kg over a 30 min period reduced plasma glucose levels by 50% while VS was not effective.  相似文献   

4.
PURPOSE: Recently, our laboratory group has reported that rats with Type 1 diabetes have decreased plasma homocysteine and cysteine levels compared to non-diabetic controls and that organic vanadium treatment increased plasma homocysteine concentrations to non-diabetic concentrations. However, to date, no studies have been done investigating the effects of organic vanadium compounds on plasma homocysteine and its metabolites in Type 2 diabetic animal model. These studies examined the effect of organic vanadium compounds [bis(maltolato)oxovanadium(IV) and bis(ethylmaltolato)oxovanadium(IV); BMOV and BEOV] administered orally on plasma concentrations of homocysteine and its metabolites (cysteine and cysteinylglycine) in lean, Zucker fatty (ZF) and Zucker diabetic fatty (ZDF) rats. ZF rats are a model of pre-diabetic Type 2 diabetes characterized by hyperinsulinemia and normoglycemia. The ZDF rat is a model of Type 2 diabetes characterized by relative hypoinsulinemia and hyperglycemia. METHODS: Zucker lean and ZF rats received BMOV in the drinking water at a dose of 0.19 +/- 0.02 mmol/kg/day. Lean and ZDF rats received BEOV by oral gavage daily at dose of 0.1 mmol/kg. The treatment period for both studies was 21 days. At termination, animals were fasted overnight (approximately 16 h) and blood samples were collected by cardiac puncture for determination of plasma glucose, insulin and homocysteine levels. Plasma homocysteine and its metabolites levels were determined using high-pressure liquid chromatography. Plasma glucose was determined using a Glucose Analyzer 2. Plasma insulin levels were determined by radioimmunoassay. Plasma triglycerides were determined by an enzymatic assay methodology. RESULTS: ZF (n = 4) and ZDF (n = 10) rats had significantly lower plasma homocysteine as compared to their respective lean groups (ZF 0.78 +/- 0.1 micromol/L vs. Zucker lean 2.19 +/- 0.7 micromol/L; ZDF 1.71 +/- 0.2 micromol/L vs. Zucker lean 3.02 +/- 0.3 micromol/L; p < 0.05). BMOV treatment in ZF rats restored plasma homocysteine levels to those observed in lean untreated rats (ZF treated: 2.04 +/- 0.2 micromol/L; lean 2.19 +/- 0.7 micromol/L). There was a modest effect of BMOV treatment on plasma glucose levels in ZF rats. BEOV treatment significantly decreased the elevated plasma glucose levels in the ZDF rats (lean 7.9 +/- 0.1 mmol/L; lean + vanadium 7.7 +/- 0.2 mmol/L; ZDF 29.9 +/- 0.4 mmol/L; ZDF + vanadium 17.4 +/- 0.3 mmol/L, p < 0.05). Organic vanadium treatment reduced cysteine levels in both ZF and ZDF rats. No differences in total plasma cysteinylglycine concentrations were observed. CONCLUSION: Plasma homocysteine levels are significantly reduced in a pre-diabetic model of Type 2 diabetes, which was restored to lean levels upon vanadium treatment; however, this restoration of plasma homocysteine levels was not seen in ZDF Type 2 diabetic rats following vanadium treatment. In the latter case vanadium treatment may not have totally overcome the insulin resistance seen in these animals.  相似文献   

5.
The effect of the vanadium complex bis[curcumino]oxovanadium (BCOV) on blood glucose level, serum lipid levels, blood pressure and vascular reactivity were studied in non-diabetic and streptozotocin-induced diabetic (STZ-diabetic) rats and compared to that of vanadyl sulfate. Blood glucose level, serum lipid levels, and blood pressure were significantly increased in STZ-diabetic rats. Vascular reactivity to various agonists such as noradrenaline and acetylcholine were significantly increased in STZ-diabetic rats. Blood glucose and serum lipid levels were restored to normal in STZ-diabetic animals treated with vanadyl sulfate at a concentration of 0.5 mmol/kg/day (p.o.). However, vanadyl sulfate at a concentration of 0.2 mmol/kg/day (p.o.) did not produce any significant change in blood glucose and lipid levels. There was no significant effect of vanadyl sulfate (0.2 or 0.5 mmol/kg/day) treatment on blood pressure and vascular reactivity in STZ-diabetic rats. Vanadyl sulfate significantly reduced the body weight of non-diabetic and STZ-diabetic rats. Moreover, it also caused severe diarrhea in both groups of animals. Treatment with BCOV (0.05, 0.1 and 0.2mmol/kg/day, p.o.) significantly decreased blood glucose level and serum lipids in STZ-diabetic rats. Furthermore, administration of BCOV to STZ-diabetic rats restored the blood pressure and vascular reactivity to agonists to normal. There was no significant change in the body weight of BCOV treated non-diabetic and STZ-diabetic rats. Diarrhea was not observed in both BCOV treated groups. In conclusion, the present study shows that the vanadium complex BCOV has antidiabetic and hypolipedimic effects. In addition, it improves the cardiovascular complications associated with diabetes.  相似文献   

6.
We synthesized vanadyl (oxidation state +IV) and vanadate (oxidation state +V) complexes with the same hydroxamic acid derivative ligand, and assessed their glucose-lowering activities in relation to the vanadium biodistribution behavior in streptozotocin-induced diabetic mice. When the mice received an intraperitoneal injection of the complexes, the vanadate complex more effectively lowered the elevated glucose levels compared with the vanadyl one. The glucose-lowering effect of the vanadate complex was linearly related to its dose within the range from 2.5 to 7.5 mg V/kg. In addition, pretreatment of the vanadate complex induced a larger insulin-enhancing effect than the vanadyl complex. Both complexes were more effective than the corresponding inorganic vanadium compounds. The vanadyl and vanadate complexes, but not the inorganic vanadium compounds, resulted in almost the same organ vanadium distribution. Consequently, the observed differences in the insulin-like activity between the complexes would reflect the potency of the two compounds in the +IV and +V oxidation states in the subcellular region.  相似文献   

7.
Amavadine is a vanadium natural product from the mushroom Amanita muscaria. Earlier reports have characterized the compound as a vanadyl (VO2+) complex with two N-hydroxy-αα-iminodipropionic acid ligands, but no hypothesis as to its function has yet been put forward. We report here the synthesis, isolation, and properties of bis(iminodiacetato)oxovanadium(IV) and bis(αα-iminodipropionato)oxovanadium(IV). The complex bis(ββ-iminodipropionato)oxovanadium(IV) has been prepared in solution. These complexes serve as models for Amavadine. The structures of the models are analogous to that of Amavadine, with two bidentate, singly charged ligands bonding through one oxygen and one nitrogen atom. The visible spectra suggest the possibility of 1:1 complexes in solution in addition to the 2:1 ligand to metal complexes. Preliminary electrochemical data suggest reversible V(IV) ? V(III) couples.  相似文献   

8.
Among the previously studied organic vanadium derivatives showing an anti-diabetic action, we investigated a new complex, bis(2,2'-bipyridine)oxovanadium(IV) sulphate. We tested its ability to normalise parameters previously described for streptozotocin (STZ)-diabetes, such as lower yields of Golgi-rich membrane fraction isolation, decreased activity of Golgi membrane marker enzyme - galactosyltransferase (GalT) - and altered morphology of rat liver Golgi complexes. Oral application as a drinking solution of 1.8 mmol bis(2,2'-bipyridine)oxovanadium(IV) (dissolved in 0.09 M NaCl) caused a similar dispersion of GalT activities in both vanadium treated groups, control and diabetic. Very low activities of the enzyme (characteristic for untreated diabetes) we found only in approximately 35 % of the STZ-diabetic rats treated with the new vanadium compound. The morphology of liver Golgi complexes in diabetic rats treated with bis(2,2'-bipyridine)oxovanadium(IV) sulphate was improved, which manifested itself in the reappearance of vacuoles with VLDL and coated and uncoated secretory vesicles. In view of biochemical and morphological parameters of normalised diabetic rat liver Golgi apparatus, the new vanadium complex was more effective than bis(oxalato)oxovanadium(IV) or bis(kojato)oxovanadium(IV), but in our experimental model, the best anti-diabetic, orally applied drug was the bis(maltolato)oxovanadium(IV) previously investigated.  相似文献   

9.
Bis(maltolato)oxovanadium(IV) (BMOV), and its ethylmaltol analog, bis(ethylmaltolato)oxovanadium(IV) (BEOV), are candidate insulin-enhancing agents for the treatment of type 2 diabetes mellitus; in mid-2008, BEOV advanced to phase II clinical testing. The interactions of BMOV and its inorganic congener, vanadyl sulfate (VOSO4), with human serum apo-transferrin (hTf) were investigated using differential scanning calorimetry (DSC). Addition of BMOV or VOSO4 to apo-hTf resulted in an increase in thermal stability of both the C- and N-lobes of transferrin as a result of binding to either vanadyl compound. A series of DSC thermograms of hTf solutions containing different molar ratios of BMOV and VOSO4 were used to determine binding constants; at 25 °C the binding constants of BMOV to the C- and N-lobes of apo-hTf were found to be 3 (±1) × 105 and 1.8 (±0.7) × 105 M−1, respectively. The corresponding values for VOSO4 were 1.7 (±0.3) × 105 and 7 (±2) × 104 M−1. The results show that the vanadium species initially presented as either BMOV or VOSO4 had similar affinities for human serum transferrin due to oxidation of solvated vanadyl(IV) prior to complexation to transferrin. Binding of metavanadate () was confirmed by DSC and isothermal titration calorimetry (ITC) experiments of the interaction between sodium metavanadate (NaVO3) and hTf.  相似文献   

10.
The biological fate of a chelated vanadium source is investigated by/n vivo spectroscopic methods to elucidate the chemical form in which the metal ion is accumulated. A pulsed electron paramagnetic resonance study of vanadyl ions in kidney tissue, taken from rats previously treated with bis(ethylmaltolato)oxovanadium(IV) (BEOV) in drinking water, is presented. A combined approach using stimulated echo (3-pulse) electron spin echo envelope modulation (ESEEM) and the two dimensional 4-pulse hyperfine sublevel correlation (HYSCORE) spectroscopies has shown that at least some of the VO2+ ions are involved in the coordination with nitrogen-containing ligands. From the experimental spectra, a 4N hyperfine coupling constant of 4.9 MHz and a quadrupole coupling constant of 0.6 + 0.04 MHz were determined, consistent with amine coordination of the vanadyl ions. Study of VO-histidine model complexes allowed for a determination of the percentage of nitrogen-coordinated VO2+ ions in the tissue sample that is found nitrogen-coordinated. By taking into account the bidentate nature of histidine coordination to VO2+ ions, a more accurate determination of this value is reported. The biological fate of chelated versus free (i.e. salts) vanadyl ion sources has been deduced by comparison to earlier reports. In contrast to its superior pharmacological efficacy over VOSO4, BEOV shares a remarkably similar biological fate after uptake into kidney tissue.  相似文献   

11.
A new vanadyl complex, bis(5-iodopicolinato)oxovanadium(IV), VO(IPA)2, with a VO(N2O2) coordination mode, was prepared by mixing 5-iodopicolinic acid and VOSO4 at pH 5, with the structure characterized by electronic absorption, IR, and EPR spectra. Introduction of the halogen atom on to the ligand enhanced the in vitro insulinomimetic activity (IC50 = 0.45 mM) compared with that of bis(picolinato)oxovanadium(IV) (IC50 = 0.59 mM). The hyperglycemia of streptozotocin-induced insulin-dependent diabetic rats was normalized when VO(IPA)2 was given by daily intraperitoneal injection. The normoglycemic effect continued for more than 14 days after the end of treatment. To understand the insulinomimetic action of VO(IPA)2, the organ distribution of vanadium and the blood disposition of vanadyl species were investigated. In diabetic rats treated with VO(IPA)2, vanadium was distributed in almost all tissues examined, especially in bone, indicating that the action of vanadium is not peripheral. Vanadyl concentrations in the blood of normal rats given VO(IPA)2 remain significantly higher and longer than those given other complexes because of its slower clearance rate. VO(IPA)2 binds with the membrane of erythrocytes, probably owing to its high hydrophobicity in addition to its binding with serum albumin. The longer residence of vanadyl species shows the higher normoglyceric effects of VO(IPA)2 among three complexes with the VO(N2O2) coordination mode. On the basis of these results, VO(IPA)2 is indicated to be a preferred agent to treat insulin-dependent diabetes mellitus in experimental animals.  相似文献   

12.
As a contribution to the development of novel vanadyl complexes with potential insulin-mimetic activity, three new oxovanadium(IV) complexes with the formula VO(L)(2), where L are 3-amino-quinoxaline-2-carbonitrile N(1),N(4)-dioxide derivatives, have been synthesized. Complexes have been characterized by elemental and thermal analyses, fast atom bombardment mass spectroscopy (FAB-MS), conductivity measurements and electronic, Fourier transform infrared (FTIR) and electron paramagnetic resonance (EPR) spectroscopies. The in vitro insulin-mimetic activity of the vanadyl complexes has been estimated by lipolysis inhibition tests, in which the inhibition of the release of free fatty acid from isolated rat adipocytes treated with epinephrine was determined. All the complexes showed inhibitory effects on free fatty acid release. [V(IV)O(3-amino-6(7)-bromoquinoxaline-2-carbonitrile N(1),N(4)-dioxide)(2)] exhibited higher in vitro insulin-mimetic activity than the very active bis(6-methylpicolinato)oxovanadium(IV), VO(6mpa)(2). This new vanadyl complex is expected to exhibit a higher blood glucose lowering activity than VO(6mpa)(2) in diabetic animals.  相似文献   

13.
The insulinomimetic effect of vanadium is the most remarkable and important among its several biological actions. Vanadyl ion (+4 oxidation state of vanadium) and its complexes have been found to normalize the blood glucose levels of both type 1 and 2 diabetic animals. We have developed insulinomimetic vanadyl complexes having different coordination modes, emphasizing the possible usefulness of vanadyl-picolinate [VO(pa)(2)] and its related complexes with the VO(N(2)O(2)) coordination mode. In order to apply these complexes clinically in the future, the relationship between the chemical structure, insulinomimetic action, organ distribution of vanadium, and blood disposition of vanadyl species must be closely investigated. In the present investigation, we studied the blood disposition of the vanadyl-picolinate complexes in healthy rats, and tried to understand comprehensively the relationship between the structures, insulinomimetic activity, and metallokinetic parameters of the complexes, which had been recently prepared and specifically synthesized for the present study, by using an in vivo blood circulation monitoring -- electron spin resonance (BCM-ESR) method for analyzing ESR signals due to paramagnetic metal ions and complexes in the blood in real time. Metallokinetic parameters were estimated based on the blood clearance curves in terms of a two-compartment pharmacokinetic model, and vanadyl species were indicated to be distributed in peripheral tissues and gradually eliminated from the circulating blood, depending on their chemical structures. Vanadyl concentrations in the blood of rats given bis(5-iodopicolinato)oxovanadium(IV) [VO(5ipa)(2)] and bis(3-methylpicolinato)oxovanadium(IV) [VO(3mpa)(2)] with electron-withdrawing and donating groups, respectively, remained significantly higher and longer, due to their slower clearance rates from the blood, than in rats given other complexes, suggesting that the high exposure and long residence of vanadyl species bring about the high normoglyceric effect in diabetic animals. We then examined the relationship between insulinomimetic activity and metallokinetic parameters in the family of VO(pa)(2) for further development of insulinomimetic vanadyl complexes. IC(50), the 50% inhibitory concentration of the complexes on the free fatty acid release from isolated rat adipocytes treated with epinephrine, was found to be sufficiently correlated with metallokinetic parameters such as area under the concentration curve, mean residence time, total clearance, and distribution volume at steady-state. Furthermore, the in vivo antidiabetic activity of the complexes was enhanced with increasing exposure and residence of vanadyl species in the blood of animals. On the basis of these results, we concluded that in vitro insulinomimetic activity, metallokinetic character, and in vivo antidiabetic action of vanadyl-picolinate complexes are closely related to their chemical structures.  相似文献   

14.
A wide variety of vanadium-containing complexes have been tested, both in vivo and in vitro, as possible therapeutic agents for the oral treatment of type 2 diabetes mellitus. None so far has surpassed bis(maltolato)oxovanadium(IV) (BMOV) for glucose- and lipid-lowering in an orally available formulation. Ligand choice is clearly an important factor in pharmacological efficacy of vanadium compounds as insulin enhancing agents. In this study, we kept the ligand and dose the same, varying instead the metal ion bound to the maltolato ligand in a series of binary complexes of neutral charge. A requirement for vanadyl ion as the metal ion of choice was apparent; no other metal ion tested served as a suitable substitute. Amongst [MoO(2)](2+), Co(II), Cu(II), Cr(III), and Zn(II), only [MoO(2)](2+) and Co(II) showed any hypoglycemic activity at the ED(50) dose for bis(maltolato)oxovanadium(IV), 0.6 mmolkg(-1) by oral gavage in streptozotocin (STZ)-diabetic rats within 72 h of administration of compound.  相似文献   

15.
Since the glucose-lowering effects of vanadium could be related to increased muscle glycogen synthesis, we examined the in vivo effects of vanadium and insulin treatment on glycogen synthase (GS) activation in Zucker fatty rats. The GS fractional activity (GSFA), protein phosphatase-1 (PP1), and glycogen synthase kinase-3 (GSK-3) activity were determined in fatty and lean rats following treatment with bis(maltolato)oxovanadium(IV) (BMOV) for 3 weeks (0.2 mmol/kg/day) administered in drinking water. Skeletal muscle was freeze-clamped before or following an insulin injection (5 U/kg i.v.). In both lean and fatty rats, muscle GSFA was significantly increased at 15 min following insulin stimulation. Vanadium treatment resulted in decreased insulin levels and improved insulin sensitivity in the fatty rats. Interestingly, this treatment stimulated muscle GSFA by 2-fold (p < 0.05) and increased insulin-stimulated PP1 activity by 77% (p < 0.05) in the fatty rats as compared to untreated rats. Insulin resistance, vanadium and insulin in vivo treatment did not affect muscle GSK-3 activity in either fatty or lean rats. Therefore, an impaired insulin sensitivity in the Zucker fatty rats was improved following vanadium treatment, resulting in an enhanced muscle glucose metabolism through increased GS and insulin-stimulated PP1 activity.  相似文献   

16.
Cytotoxic and antitumor activities of the biligand vanadyl derivative of L-malic acid, (bis-(L-malato)oxovanadium(IV) (VO(mal)2), the inorganic vanadium(IV) compound, vanadyl sulfate (VOSO4), the oxovanadium monocomplex with L-malic acid (VO(mal)), and the vanadyl biscomplex with acetylacetonate (VO(acac)2) were investigated using several tumor cell lines: mouse fibrosarcoma (L929), rat pheochromocytoma (PC12), human liver carcinoma (HepG2), mouse embryonic fibroblasts (NIH/3T3), and also normal human skin fibroblasts. The results showed that VO(mal)2 effectively inhibited growth of cancer cell cultures without any toxic effect on normal human skin fibroblasts. The cytotoxic anticancer effect of vanadium complexes depended on concentration of the compounds studied, incubation time, types of cell cultures, and nature of ligands surrounding the central group of the complex (VO2+). These studies provide evidence that VO(mal)2 may be considered as a potential anticancer agent due to its low toxicity for non-tumor cells and significant anticancer activity.  相似文献   

17.
Today, vanadium compounds are frequently included in nutritional supplements and are also being developed for therapeutic use in diabetes mellitus. Previously, tissue uptake of vanadium from bis(maltolato)oxovanadium(IV) (BMOV) was shown to be increased compared to its uptake from vanadyl sulfate (VS). Our primary objective was to test the hypothesis that complexation increases vanadium uptake and that this effect is independent of oxidation state. A secondary objective was to compare the effects of vanadium complexation and oxidation state on tissue iron, copper, and zinc. Wistar rats were fed either ammonium metavanadate (AMV), VS, or BMOV (1.2 mM each in the drinking water). Tissue uptake of V following 12 wk of BMOV or AMV was higher than that from VS (p<0.05). BMOV led to decreased tissue Zn and increased bone Fe content. The same three compounds were compared in a cellular model of absorption (Caco-2 cells). Vanadium uptake from VS was higher than that from BMOV or AMV at 10 min, but from BMOV (250 μM only, 60 min), uptake was far greater than from AMV or VS. These results show that neither complexation nor oxidation state alone are adequate predictors of relative absorption, tissue accumulation, or trace element interactions.  相似文献   

18.
Bis(alpha-furancarboxylato)oxovanadium(IV)--a new orally active antidiabetic vanadyl complex has been synthesized, characterized, and tested for bioactivity as insulin-enhancing agents. The complex was administered intragastrically to both normal and STZ-diabetic rats for 4 weeks. The results show that the complex at a dose of 10.0 and 20.0 mg V kg(-1), could significantly lower the blood glucose level rats and ameliorated impaired glucose tolerance in STZ-diabetic, but not in normal rats. It was suggested that the complex exerted an antidiabetic effect in STZ-diabetic rats, which maybe was related to increasing the sensitivity to insulin.  相似文献   

19.
A little over one hundred years ago, a vanadium-containing compound was assessed clinically for use in treatment of human diabetic patients. The results were somewhat ambiguous, but nonetheless, intriguing. In 2000, the first Phase I clinical trial of a designed vanadium-based pharmaceutical agent (bis(ethylmaltolato)oxovanadium(IV), BEOV), was completed by Medeval Ltd., Manchester, UK. Results here, too, were promising, but not without some difficult remaining questions. In this review, we look back at the many questions asked and answered regarding vanadium’s glucose-enhancing potential, its biodistribution and biomolecular transformation, and its mechanism(s) of action, and consider some of the newest developments in the field, including novel delivery methods for vanadium in diabetes treatment.  相似文献   

20.
Vanadium compounds exhibit effective hypoglycemic activity in both type I and type II diabetes mellitus. However, there was one argument that the hypoglycemic action of vanadium compounds could be attributable to the suppression of feeding—one common toxic aspect of vanadium compounds. To clarify this question, we investigated in this work the effect of a vanadyl complex, BSOV (bis((5-hydroxy-4-oxo-4H-pyran-2-yl)methyl-2-hydroxy-benzoatato) oxovanadium (IV)), on diabetic obese (db/db) mice at a low dose (0.05 mmol/kg/day) when BSOV did not inhibit feeding. The experimental results showed that this dose of BSOV effectively normalized the blood glucose level in diabetic mice without affecting the body weight growth. Western blotting assays on the white adipose tissue of db/db mice further indicated that BSOV treatment significantly improved expression of peroxisome proliferator-activated receptor γ (PPARγ) and activated AMP-activated protein kinase (AMPK). In addition, vanadium treatment caused a significant suppression of phosphorylation of c-Jun N-terminal protein kinase (JNK), which plays a key role in insulin-resistance in type II diabetes. This is the first evidence that the mechanism of insulin enhancement action involves interaction of vanadium compounds with JNK. Overall, the present work indicated that vanadium compounds exhibit antidiabetic effects irrelevant to food intake suppression but by modulating the signal transductions of diabetes and other metabolic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号