首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P12 is a Kazal-type trypsin inhibitor that has been purified from mouse seminal vesicle secretion. We observed a slight impact of P12 on sperm capacitation, and demonstrated the removal of plasma membrane overlaying the acrosome region by immunoaggregation of P12 on mouse sperm. Further, we compared the immunoreactivity of P12 antibody to ten P12 variants, including six single-site mutated mutants (R19L, Y21V, D22G, R43G, K44S, and R45T), two multisite mutated mutants (R43G/K44S/R45T and L50H/R52G/K53A), and two deletion mutants (Nd10 and Cd8) in which 10 and 8 residues were deleted from the N- and C-terminals, respectively. We found that the N-terminal region, 43RKR45, and the C-terminal region, but not R19, Y21, and D22, are involved in the three epitopes that reside on one side and are three-dimensionally distant from R19, Y21, and D22 on the P12 molecule. Based on the epitope topology, we elucidated the structural basis by which P12 antibody immunoaggregated P12 on sperm head.  相似文献   

2.
The complete amino acid sequence of coagulogen purified from the hemocytes of the horseshoe crab Carcinoscorpius rotundicauda was determined by characterization of the NH2-terminal sequence and the peptides generated after digestion of the protein with lysyl endopeptidase, Staphylococcal aureus protease V8 and trypsin. Upon sequencing the peptides by the automated Edman method, the following sequence was obtained: A D T N A P L C L C D E P G I L G R N Q L V T P E V K E K I E K A V E A V A E E S G V S G R G F S L F S H H P V F R E C G K Y E C R T V R P E H T R C Y N F P P F V H F T S E C P V S T R D C E P V F G Y T V A G E F R V I V Q A P R A G F R Q C V W Q H K C R Y G S N N C G F S G R C T Q Q R S V V R L V T Y N L E K D G F L C E S F R T C C G C P C R N Y Carcinoscorpius coagulogen consists of a single polypeptide chain with a total of 175 amino acid residues and a calculated molecular weight of 19,675. The secondary structure calculated by the method of Chou and Fasman reveals the presence of an alpha-helix region in the peptide C segment (residue Nos. 19 to 46), which is released during the proteolytic conversion of coagulogen to coagulin gel. The beta-sheet structure and the 16 half-cystines found in the molecule appear to yield a compact protein stable to acid and heat. The amino acid sequences of coagulogen of four species of limulus have been compared and the interspecies evolutionary differences are discussed.  相似文献   

3.
Site-directed mutagenesis was utilized to identify binding sites for NAD(P)H and dicumarol in rat liver NAD(P)H:quinone oxidoreductase (NQOR, EC 1.6.99.2). The mutant cDNA clones were generated by a procedure based on the polymerase chain reaction and were expressed in Escherichia coli. The mutant enzymes were purified to apparent homogeneity as judged by SDS-polyacrylamide gel electrophoresis and were found to contain 2 FADs/enzyme molecule identical with that of the wild-type NQOR. Purified mutant enzymes Y128D, G150F, G150V, S151F, and Y155D showed dramatic decreases in activities in the reduction of dichlorophenolindophenol in comparison with the activities of the wild-type enzyme, whereas the activities of F124L, T127V, T127E, Y128V, Y128F, S151A, and Y155V were similar to those of NQOR. Enzyme kinetic analysis revealed that the Km values of T127E, Y128D, G150F, G150V, S151F, and Y155D were, respectively, 4-, 2-, 13-, 5-, 26-, and 19-fold higher than the Km of NQOR for NADPH, and were, respectively, 2-, 3-, 7-, 3-, 20-, and 11-fold higher than that of NQOR for NADH. The kcat values of Y128D, G150F, and G150V were also much lower than those of NQOR, but the kcat values of other mutants were similar to those of the wild-type enzyme. The Km values of the mutants for dichlorophenolindophenol were the same or slightly higher than that of NQOR. The apparent inhibition constants (Ki) for dicumarol on Y128V and F124L were elevated 12 and 8 times, respectively. Similar, but smaller, changes on Ki for 4-hydroxycoumarin were also observed. This study demonstrated that residues Gly150, Ser151, and Tyr155 in the glycine-rich region of NQOR are essential for NADPH and NADH binding and Tyr128 is important for dicumarol binding. Based on the results of the study, it is proposed that the glycine-rich region of the enzyme, along with other residues around the region, forms a beta sheet-turn-alpha helix structure important for the binding of the pyrophosphate group of NADPH and NADH.  相似文献   

4.
In this work, we computationally identified the most detrimental missense mutations of KIT receptor causing gastrointestinal stromal tumors and analyzed the drug resistance of these missense mutations. Out of 31 missense mutations, 19 variants were commonly found less stable, deleterious and damaging by I-Mutant 2.0, SIFT and PolyPhen programs, respectively. Subsequently, we performed modeling of these 19 variants to understand their change in conformations with respect to native KIT receptor by computing their RMSD. Further, the native and 19 mutants were docked with the drug ‘Imatinib’ to explain the drug resistance of these detrimental missense mutations. Among the 19 mutants, we found by docking studies that 12 mutants, namely, F584C, F584L, V654A, L656P, T670I, R804W, D816F, D816V, D816Y, N822K, Y823D and E839K had less binding affinity with Imatinib than the native type. Finally, we analyzed that the loss of binding affinity of these 12 mutants, was due to altered flexibility in their binding amino acids with Imatinib as compared with native type by normal mode analysis. In our work, we found the novel data that the majority of the drug-binding amino acids in those 12 mutants had encountered loss of flexibility, which could be the theoretical basis for the cause of drug insensitivity.  相似文献   

5.
This paper presents the complete amino acid sequence of the low molecular weight acid phosphatase from bovine liver. This isoenzyme of the acid phosphatase family is located in the cytosol, is not inhibited by L-(+)-tartrate and fluoride ions, but is inhibited by sulfhydryl reagents. The enzyme consists of 157 amino acid residues, has an acetylated NH2 terminus, and has arginine as the COOH-terminal residue. All 8 half-cystine residues are in the free thiol form. The molecular weight calculated from the sequence is 17,953. The sequence was determined by characterizing the peptides purified by reverse-phase high performance liquid chromatography from tryptic, thermolytic, peptic, Staphylococcus aureus protease, and chymotryptic digests of the carboxymethylated protein. No sequence homologies were found with the two known acylphosphatase isoenzymes or the metalloproteins porcine uteroferrin and purple acid phosphatase from bovine spleen (both of which have acid phosphatase activity). Two half-cystines at or near the active site were identified through the reaction of the enzyme with [14C] iodoacetate in the presence or in the absence of a competitive inhibitor (i.e. inorganic phosphate). Ac-A E Q V T K S V L F V C L G N I C R S P I A E A V F R K L V T D Q N I S D N W V I D S G A V S D W N V G R S P N P R A V S C L R N H G I N T A H K A R Q V T K E D F V T F D Y I L C M D E S N L R D L N R K S N Q V K N C R A K I E L L G S Y D P Q K Q L I I E D P Y Y G N D A D F E T V Y Q Q C V R C C R A F L E K V R-OH.  相似文献   

6.
The primary structure of a 61-amino-acid residue peptide from the pancreas of the European eel (Anguilla anguilla) has been established as E E K S G(5)L Y R K P(10)S C G E M(15)S A M H A(20)C P M N F(25)A P V C G(30)T D G N T(35)Y P N E C(40)S L C F Q(45)R Q N T K(50)T D I L I(55)T K D D R(60)C. There was no indication of microheterogeneity. This peptide shows structural similarity to pancreatic secretory trypsin inhibitors from several mammalian species and to a cholecystokinin-releasing peptide isolated from rat pancreatic juice. A comparison of the amino acid sequences of the peptides has identified a domain in the central region of the molecules that has been strongly conserved during evolution. In contrast, the amino acid sequence in the region corresponding to the reactive centre of the mammalian trypsin inhibitors is very poorly conserved in the eel peptide. The P1-P1' reactive site lysine-isoleucine (or arginine-isoleucine) bond in the mammalian trypsin inhibitors is replaced by a methionine-asparagine bond. This region does, however, show limited homology to the reactive centre of human alpha 1-protease inhibitor suggesting that the eel peptide may function as an inhibitor of other proteolytic enzymes in the pancreas.  相似文献   

7.
In view of the pivotal role of glutamate carboxypeptidase II (GCPII) in carcinogenesis, its expression as prostate specific membrane antigen (PSMA) and folate hydrolase (FOLH1) may be influenced by its haplotypes, contributing to the etiology of prostate and breast cancer. To test this hypothesis, breast and prostate cancer cases and controls were subjected to whole gene screening of GCPII and correlated with plasma folate levels and PSMA expression. The impact of variants on a 3-dimensional structure of GCPII was explored by in silico studies. Six novel variations i.e. V108A, P160S, Y176H, D191V, G206R and G245S; and two known variations i.e. R190W and H475Y were identified in GCPII. All-wild haplotype and a haplotype harbouring D191V showed association with breast cancer risk while haplotypes harbouring V108A and P160S reduced the risk. Haplotypes with V108A and G245S variants showed increased risk for prostate cancer due to high PSMA expression while P160S conferred protection against prostate cancer. In silico studies suggests that P160S and R190W variants result in relaxed substrate binding facilitating either rapid catalysis or exchange of substrates and products in the active site which was substantiated by high plasma folate levels associated with these variants. On the contrary, D191V was associated with very low plasma folate levels despite having a high PSMA expression. This is the first comprehensive study examining variations in GCPII in relation to breast and prostate cancer risk. Changes in the plasma folate levels and changes in PSMA expression are associated with breast and prostate cancer risk respectively.  相似文献   

8.
The recombinant phage antibody system pCANTAB 5E has been used to display functionally active leech-derived tryptase inhibitor (LDTI) on the tip of the filamentous M13 phage. A limited combinatorial library of 5.2 x 10(4) mutants was created with a synthetic LDTI gene, using a degenerated oligonucleotide and the pCANTAB 5E phagemid. The mutations were restricted to the P1-P4' positions of the reactive site. Fusion phages and appropriate host strains containing the phagemids were selected after binding to thrombin and DNA sequencing. The variants LDTI-2T (K8R, I9V, S10, K11W, P12A), LDTI-5T (K8R, I9V, S10, K11S, P12L) and LDTI-10T (K8R, I9L, S10, K11D, P12I) were produced with a Saccharomyces cerevisiae expression system. The new inhibitors, LDTI-2T and -5T, prolong the blood clotting time, inhibit thrombin (Ki 302 nM and 28 nM) and trypsin (Ki 6.4 nM and 2.1 nM) but not factor Xa, plasma kallikrein or neutrophil elastase. The variant LDTI-10T binds to thrombin but does not inhibit it. The relevant reactive site sequences of the thrombin inhibiting variants showed a strong preference for arginine in position P1 (K8R) and for valine in P1' (I9V). The data indicate further that LDTI-5T might be a model candidate for generation of active-site directed thrombin inhibitors and that LDTI in general may be useful to generate specific inhibitors suitable for a better understanding of enzyme-inhibitor interactions.  相似文献   

9.
Atrichia with papular lesions (APL) and hereditary vitamin D-resistant rickets have a similar congenital hair loss disorder caused by mutations in hairless (HR) and vitamin D receptor (VDR) genes, respectively. HR is a VDR corepressor, and it has been hypothesized that VDR.HR suppress gene expression during specific phases of the hair cycle. In this study, we examined the corepressor activity of HR mutants (E583V, C622G, N970S, V1056M, D1012N, V1136D, and Q1176X) previously described as the molecular cause of APL as well as HR variants (P69S, C397Y, A576V, E591G, R620Q, T1022A) due to non-synonymous polymorphisms in the HR gene. We found that the corepressor activities of all but one of the pathogenic HR mutants were completely abolished. HR mutant E583V exhibited normal corepressor activity, suggesting that it may not be pathogenic. In co-immunoprecipitation assays, all of the pathogenic HR mutants bound VDR but exhibited reduced binding to histone deacetylase 1 (HDAC1), suggesting that the impaired corepressor activity is due in part to defective interactions with HDACs. The HR variants exhibited two classes of corepressor activity, those with normal activity (C397Y, E591G, R620Q) and those with partially reduced activity (P69S, A576V, T1022A). All of the variants interacted with VDR and HDAC1 with the exception of P69S, which was degraded. When coexpressed with VDR, all of the HR pathogenic mutants and variants increased the level of VDR protein, demonstrating that this function of HR was not impaired by these mutations. This study of HR mutations provides evidence for the molecular basis of APL.  相似文献   

10.
We report the thermal stability of wild type (WT) and 14 different variants of human copper/zinc superoxide dismutase (SOD1) associated with familial amyotrophic lateral sclerosis (FALS). Multiple endothermic unfolding transitions were observed by differential scanning calorimetry for partially metallated SOD1 enzymes isolated from a baculovirus system. We correlated the metal ion contents of SOD1 variants with the occurrence of distinct melting transitions. Altered thermal stability upon reduction of copper with dithionite identified transitions resulting from the unfolding of copper-containing SOD1 species. We demonstrated that copper or zinc binding to a subset of "WT-like" FALS mutants (A4V, L38V, G41S, G72S, D76Y, D90A, G93A, and E133Delta) conferred a similar degree of incremental stabilization as did metal ion binding to WT SOD1. However, these mutants were all destabilized by approximately 1-6 degrees C compared with the corresponding WT SOD1 species. Most of the "metal binding region" FALS mutants (H46R, G85R, D124V, D125H, and S134N) exhibited transitions that probably resulted from unfolding of metal-free species at approximately 4-12 degrees C below the observed melting of the least stable WT species. We conclude that decreased conformational stability shared by all of these mutant SOD1s may contribute to SOD1 toxicity in FALS.  相似文献   

11.
The three isozymic subunits of phosphofructo-1-kinase present in rabbit brain and designated A, B and C were phosphorylated in vitro by cyclic AMP-dependent protein kinase with 32P-labeled ATP. Limited digestion of the labeled enzymes with trypsin or with Staphylococcus aureus V8 proteinase led to the solubilization of radiolabeled peptides derived from the three isozymic subunits. Limited digestion by V8 proteinase was accompanied by a slight reduction in the apparent sizes of the subunits, indicating that the phosphorylated sites are located near either the amino or carboxyl termini of the protein. V8 proteinase digestion led to no change in the maximal activity of the enzyme but did abolish sensitivity to ATP inhibition. The phosphopeptides of the tryptic and the V8 digests were purified by chromatography and their amino acid sequences were determined and compared to the previously established sequence from rabbit muscle isozyme A. PFK-A E H I S R K R S G E A T V PFK-B H V T R R S L S M A K G F PFK-C V S A S P R G S Y R K F L In each instance, the phosphorylated serine, underlined in the above sequences, was found to be one or two residues toward the C-terminus of one or more basic residues. No other similarities in structure were noted.  相似文献   

12.
The autosomal dominant disorder, variegate porphyria (VP), results from mutations in the protoporphyrinogen oxidase (PPOX) gene. We have investigated the effects of 22 disease-associated missense mutations in this gene on enzyme activity. Mutants were generated in the expression plasmid pHPPOX by site-directed mutagenesis. They were screened for PPOX activity by complementation of the Escherischia coli strain SAS38X which lacks PPOX activity. Ten mutants (G40E, L85P, G232R, de1281H, V282D, L295P, V335G, S350P, L444P, G453V) had no detectable PPOX activity. PPOX activity of the remaining 12 mutants (L15F, R38P, L73P, V84G, D143V, R152C, L154P, V158M, R168H, A172V, V290L, G453R) ranged from less than 1% to 9.2% of wild-type activity. Our findings show that all 22 mutations substantially impair or abolish PPOX activity in a prokaryotic expression system and add to the evidence that they cause VP.  相似文献   

13.
Genetic variations in POR, encoding NADPH-cytochrome P450 oxidoreductase (CYPOR), can diminish the function of numerous cytochromes P450, and also have the potential to block degradation of heme by heme oxygenase-1 (HO-1). Purified full-length human CYPOR, HO-1, and biliverdin reductase were reconstituted in lipid vesicles and assayed for NADPH-dependent conversion of heme to bilirubin. Naturally-occurring human CYPOR variants queried were: WT, A115V, Y181D, P228L, M263V, A287P, R457H, Y459H, and V492E. All CYPOR variants exhibited decreased bilirubin production relative to WT, with a lower apparent affinity of the CYPOR–HO-1 complex than WT. Addition of FMN or FAD partially restored the activities of Y181D, Y459H, and V492E. When mixed with WT CYPOR, only the Y181D CYPOR variant inhibited heme degradation by sequestering HO-1, whereas Y459H and V492E were unable to inhibit HO-1 activity suggesting that CYPOR variants might have differential binding affinities with redox partners. Titrating the CYPOR–HO-1 complex revealed that the optimal CYPOR:HO-1 ratio for activity was 1:2, lending evidence in support of productive HO-1 oligomerization, with higher ratios of CYPOR:HO-1 showing decreased activity. In conclusion, human POR mutations, shown to impact P450 activities, also result in varying degrees of diminished HO-1 activity, which may further complicate CYPOR deficiency.  相似文献   

14.
The amino acid sequences of three variants of the Kunitz-type trypsin inhibitors, Tia, Tib, and Tic, obtained from some cultivars of soybean were determined by conventional methods. All three inhibitors consisted of 181 amino acid residues. The differences in the amino acid sequences are as follows: Tia E12 G55 Y62 H71 S74 M114 L120 P137 L176; Tib S F N R V I T V; Tic E. The amino acid sequences of Pro(60)-Ser(61) and Asp(154)-Asp(155)-Gly(156)-His(157) of Tia reported previously (Koide & Ikenaka (1973) Eur. J. Biochem. 32, 417-431) were amended to Ser(60)-Pro(61) and His(154)-Asp-Asp-Gly(157), respectively.  相似文献   

15.
The development of effective protease therapeutics requires that the proteases be more resistant to naturally occurring inhibitors while maintaining catalytic activity. A key step in developing inhibitor resistance is the identification of key residues in protease-inhibitor interaction. Given that majority of the protease therapeutics currently in use are trypsin-fold, trypsin itself serves as an ideal model for studying protease-inhibitor interaction. To test the importance of several trypsin-inhibitor interactions on the prime-side binding interface, we created four trypsin single variants Y39A, Y39F, K60A, and K60V and report biochemical sensitivity against bovine pancreatic trypsin inhibitor (BPTI) and M84R ecotin. All variants retained catalytic activity against small, commercially available peptide substrates [kcat/KM = (1.2 ± 0.3) × 107 M−1 s−1. Compared with wild-type, the K60A and K60V variants showed increased sensitivity to BPTI but less sensitivity to ecotin. The Y39A variant was less sensitive to BPTI and ecotin while the Y39F variant was more sensitive to both. The relative binding free energies between BPTI complexes with WT, Y39F, and Y39A were calculated based on 3.5 µs combined explicit solvent molecular dynamics simulations. The BPTI:Y39F complex resulted in the lowest binding energy, while BPTI:Y39A resulted in the highest. Simulations of Y39F revealed increased conformational rearrangement of F39, which allowed formation of a new hydrogen bond between BPTI R17 and H40 of the variant. All together, these data suggest that positions 39 and 60 are key for inhibitor binding to trypsin, and likely more trypsin-fold proteases.  相似文献   

16.
Population-based sequence analysis revealed the presence of a variant of human immunodeficiency virus type 1 (HIV-1) containing an insertion of amino acid Ile in the protease gene at codon 19 (19I) and amino acid substitutions in the protease at codons 21 (E21D) and 22 (A22V) along with multiple mutations associated with drug resistance, M46I/P63L/A71V/I84V/I93L, in a patient who had failed protease inhibitor (PI) therapy. Longitudinal analysis revealed that the P63L/A71V/I93L changes were present prior to PI therapy. Polymorphisms in the Gag sequence were only seen in the p1/p6 cleavage site at the P1' position (Leu to Pro) and the P5' position (Pro to Leu). To characterize the role of these mutations in drug susceptibility and replication capacity, a chimeric HIV-1 strain containing the 19I/E21D/A22V mutations with the M46I/P63L/A71V/I84V/I93L and p1/p6 mutations was constructed. The chimera displayed high-level resistance to multiple PIs, but not to lopinavir, and grew to 30% of that of the wild type. To determine the relative contribution of each mutation to the phenotypic characteristic of the virus, a series of mutants was constructed using site-directed mutagenesis. A high level of resistance was only seen in mutants containing the 19I/A22V and p1/p6 mutations. The E21D mutation enhanced viral replication. These results suggest that the combination of the 19I/E21D/A22V mutations may emerge and lead to high-level resistance to multiple PIs. The combination of the 19I/A22V mutations may be associated with PI resistance; however, the drug resistance may be caused by the presence of a unique set of mutations in the p1/p6 mutations. The E21D mutation contributes to replication fitness rather than drug resistance.  相似文献   

17.
The MUTYH DNA glycosylase specifically removes adenine misincorporated by replicative polymerases opposite the oxidized purine 8-oxo-7,8-dihydroguanine (8-oxoG). A defective protein activity results in the accumulation of G > T transversions because of unrepaired 8-oxoG:A mismatches. In humans, MUTYH germline mutations are associated with a recessive form of familial adenomatous polyposis and colorectal cancer predisposition (MUTYH-associated polyposis, MAP). Here we studied the repair capacity of the MUTYH variants R171W, E466del, 137insIW, Y165C and G382D, identified in MAP patients. Following expression and purification of human proteins from a bacterial system, we investigated MUTYH incision capacity on an 8-oxoG:A substrate by standard glycosylase assays. For the first time, we employed the surface plasmon resonance (SPR) technology for real-time recording of the association/dissociation of wild-type and MUTYH variants from an 8-oxoG:A DNA substrate. When compared to the wild-type protein, R171W, E466del and Y165C variants showed a severe reduction in the binding affinity towards the substrate, while 137insIW and G382D mutants manifested only a slight decrease mainly due to a slower rate of association. This reduced binding was always associated with impairment of glycosylase activity, with adenine removal being totally abrogated in R171W, E466del and Y165C and only partially reduced in 137insIW and G382D. Our findings demonstrate that SPR analysis is suitable to identify defective enzymatic behaviour even when mutant proteins display minor alterations in substrate recognition.  相似文献   

18.
19.
The mechanisms responsible for interindividual variation in response to statin therapy remain uncertain. It has been shown that hepatic cholesterol synthesis is associated with ATP binding cassette transporter G5 and G8 (ABCG5/8) activities. To test the hypothesis that genetic variation in ABCG5/8 might influence the plasma lipid response to statin therapy, we examined five nonsynonymous polymorphisms at the ABCG5/8 loci (Q604E, D19H, Y54C, T400K, and A632V) in 338 hypercholesterolemic patients treated with 10 mg atorvastatin. In carriers of the D19H variant, means of posttreatment values and adjusted percent reductions in LDL cholesterol (LDLC) were significantly lower (P = 0.028) and greater (P = 0.036) (112 mg/dl, 39.7%) than those of noncarriers (119 mg/dl, 36.2%), respectively, while no significant difference was observed in percent reductions in total cholesterol. Stepwise multiple regression analysis revealed significant and independent associations with absolute or percent reduction between D19H genotype and posttreatment LDL cholesterol levels. The other polymorphisms were not significantly associated with treatment effects. These results suggest that, in patients with hypercholesterolemia, the ABCG8 D19H variant is associated with greater LDLC-lowering response to atorvastatin therapy.  相似文献   

20.
Pope MA  Chmiel NH  David SS 《DNA Repair》2005,4(3):315-325
Escherichia coli MutY and its eukaryotic homologues play an important role in preventing mutations by removing adenine from 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG):A mismatches. It has recently been demonstrated that inherited biallelic mutations in the genes encoding the human homologue of MutY (hMYH) are correlated with a genetic predisposition for multiple colorectal adenomas and carcinomas. The two most common hMYH variants found in patients with colorectal cancer are Y165C and G382D. In this study, we examined the equivalent variants in the murine MutY homologue (mMYH), Y150C and G365D. The Y150C mMYH enzyme showed a large decrease in the rate of adenine removal from both OG:A- and G:A-containing substrates, while G365D mMYH showed a decrease in the ability to catalyze adenine removal only with a G:A-containing substrate. Both mMYH variants exhibit a significantly decreased affinity for duplexes containing noncleavable 2'-deoxyadenosine analogues. In addition, the human apurinic/apyrimidinic endonuclease (Ape1) stimulated product formation by wild-type and G365D mMYH with an OG:A substrate under conditions of multiple-turnover ([E]<[S]). In contrast, the presence of Ape1 nearly completely inhibited adenine removal by Y150C mMYH from the OG:A mismatch substrate. The more deleterious effect of Ape1 on the glycosylase activity of Y150C relative to G365D mMYH correlated with the more compromised binding affinity of Y150C to substrate analogue duplexes. These results suggest that the equivalent hMYH variants may be significantly compromised in substrate targeting in vivo due to a decrease in binding to substrate DNA; moreover, competition with other DNA binding proteins may further reduce the effective adenine glycosylase activity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号