首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parasite local adaptation in a geographic mosaic   总被引:2,自引:0,他引:2  
A central prediction of the geographic mosaic theory of coevolution is that coevolving interspecific interactions will show varying degrees of local maladaptation. According to the theory, much of this local maladaptation is driven by selection mosaics and spatially intermingled coevolutionary hot and cold spots, rather than a simple balance between gene flow and selection. Here I develop a genetic model of host-parasite coevolution that is sufficiently general to incorporate selection mosaics, coevolutionary hot and cold spots, and a diverse array of genetic systems of infection/resistance. Results from this model show that the selection mosaics experienced by the interacting species are an important determinant of the sign and magnitude of local maladaptation. In some cases, this effect may be stronger than a previously described effect of relative rates of parasite and host gene flow. These results provide the first theoretical evidence that selection mosaics and coevolutionary hot and cold spots per se determine the magnitude and sign of local maladaptation. At the same time, however, these results demonstrate that coevolution in a geographic mosaic can lead to virtually any pattern of local adaptation or local maladaptation. Consequently, empirical studies that describe only patterns of local adaptation or maladaptation do not provide evidence either for or against the theory.  相似文献   

2.
Dupas S  Carton Y  Poiriè M 《Heredity》2003,90(1):84-89
Variations observed in parasite virulence and host resistance may be the outcome of coevolutionary processes. Recent theoretical developments have led to a 'geographic mosaic theory' of coevolution according to which there are some localities where reciprocal selection occurs (hot spots) and others where it is strongly reduced (cold spots). Studies of host-parasitoid systems back this up, revealing a geographical variation of traits subjected to antagonistic selection governed by variations in the strength of the ecological interactions. A more detailed analysis of the genetic basis of these geographic variations in a model system -- the interaction between Drosophila melanogaster and its specific parasitoid Leptopilina boulardi -- suggests that cold spots and hot spots are also driven by the amount of genetic variation available for the trait considered. Our approach, based on isolating reference strains, has been found to predict the result of sympatric interactions and it will be helpful in identifying the selective forces responsible for the coevolution. In this model, host resistance to a standardised reference strain is a weak predictor of the outcome of interactions in the field, and the main parameter accounting for the geographic variations is the number of host species available, with less parasitoid virulence towards D. melanogaster being found in areas displaying a more diversified host community.  相似文献   

3.
Species interactions commonly coevolve as complex geographic mosaics of populations shaped by differences in local selection and gene flow. We use a haploid matching-alleles model for coevolution to evaluate how a pair of species coevolves when fitness interactions are reciprocal in some locations ("hot spots") but not in others ("cold spots"). Our analyses consider mutualistic and antagonistic interspecific interactions and a variety of gene flow patterns between hot and cold spots. We found that hot and cold spots together with gene flow influence coevolutionary dynamics in four important ways. First, hot spots need not be ubiquitous to have a global influence on evolution, although rare hot spots will not have a disproportionate impact unless selection is relatively strong there. Second, asymmetries in gene flow can influence local adaptation, sometimes creating stable equilibria at which species experience minimal fitness in hot spots and maximal fitness in cold spots, or vice versa. Third, asymmetries in gene flow are no more important than asymmetries in population regulation for determining the maintenance of local polymorphisms through coevolution. Fourth, intraspecific allele frequency differences among hot and cold spot populations evolve under some, but not all, conditions. That is, selection mosaics are indeed capable of producing spatially variable coevolutionary outcomes across the landscapes over which species interact. Altogether, our analyses indicate that coevolutionary trajectories can be strongly shaped by the geographic distribution of coevolutionary hot and cold spots, and by the pattern of gene flow among populations.  相似文献   

4.
Coevolutionary clines across selection mosaics   总被引:6,自引:0,他引:6  
Abstract. Much of the dynamics of coevolution may be driven by the interplay between geographic variation in reciprocal selection (selection mosaics) and the homogenizing action of gene flow. We develop a genetic model of geographically structured coevolution in which gene flow links coevolving communities that may differ in both the direction and magnitude of reciprocal selection. The results show that geographically structured coevolution may lead to allele-frequency clines within both interacting species when fitnesses are spatially uniform or spatially heterogeneous. Furthermore, the results show that the behavior and shape of clines differ dramatically among different types of coevolutionary interaction. Antagonistic interactions produce dynamic clines that change shape rapidly through time, producing shifting patterns of local adaptation and maladaptation. Unlike antagonistic interactions, mutualisms generate stable equilibrium patterns that lead to fixed spatial patterns of adaptation. Interactions that vary between mutualism and antagonism produce both equilibrium and dynamic clines. Furthermore, the results demonstrate that these interactions may allow mutualisms to persist throughout the geographic range of an interaction, despite pockets of locally antagonistic selection. In all cases, the coevolved spatial patterns of allele frequencies are sensitive to the relative contributions of gene flow, selection, and overall habitat size, indicating that the appropriate scale for studies of geographically structured coevolution depends on the relative contributions of each of these factors.  相似文献   

5.
Polygenic traits and parasite local adaptation   总被引:1,自引:0,他引:1  
The extent to which parasites are locally adapted to their hosts has important implications for human health and agriculture. A recently developed conceptual framework--the geographic mosaic theory of coevolution--predicts that local maladaptation should be common and largely determined by the interplay between gene flow and spatially variable reciprocal selection. Previous investigation of this theory has predominately focused on genetic systems of infection and resistance characterized by few genes of major effect and particular forms of epistasis. Here we extend existing theory by analyzing mathematical models of host-parasite interactions in which host resistance to parasites is mediated by quantitative traits with an additive polygenic basis. In contrast to previous theoretical studies predicated upon major gene mechanisms, we find that parasite local maladaptation is quite uncommon and restricted to one specific functional form of host resistance. Furthermore, our results show that local maladaptation should be rare or absent in studies that measure local adaptation using reciprocal transplant designs conducted in natural environments. Our results thus narrow the scope over which the predictions of the geographic mosaic theory are likely to hold and provide novel and readily testable predictions about when and where local maladaptation is expected.  相似文献   

6.
Consideration of complex geographic patterns of reciprocal adaptation has provided insight into new features of the coevolutionary process. In this paper, we provide ecological, historical, and geographical evidence for coevolution under complex temporal and spatial scenarios that include intermittent selection, species turnover across localities, and a range of trait match/mismatch across populations. Our study focuses on a plant host–parasitic plant interaction endemic to arid and semiarid regions of Chile. The long spines of Chilean cacti have been suggested to evolve under parasite-mediated selection as a first line of defense against the mistletoe Tristerix aphyllus. The mistletoe, in turn, has evolved an extremely long morphological structure that emerges from the seed endosperm (radicle) to reach the host cuticle. When spine length was traced along cactus phylogenies, a significant association between spine length and parasitism was detected, indicating that defensive traits evolved in high correspondence with the presence or absence of parasitism in two cactus lineages. Assessment of spine-radicle matching across populations revealed a potential for coevolution in 50% of interaction pairs. Interestingly, hot spots for coevolution did not distribute at random across sites. On the contrary, interaction pairs showing high matching values occur mostly in the northern distribution of the interaction, suggesting a geographical structure for coevolution in this system. Only three sampled interaction pairs were so mismatched that reciprocal selection could not occur given current trait distributions. Overall, different lines of evidence indicate that arms-race coevolution is an ongoing phenomenon that occurs in the global system of interconnected populations.  相似文献   

7.
Quantitative traits frequently mediate coevolutionary interactions between predator and prey or parasite and host. Previous efforts to understand and predict the coevolutionary dynamics of these interactions have generally assumed that standing genetic variation is fixed or absent altogether. We develop a genetically explicit model of coevolution that bridges the gap between these approaches by allowing genetic variation itself to evolve. Analysis of this model shows that the evolution of genetic variance has important consequences for the dynamics and outcome of coevolution. Of particular importance is our demonstration that coevolutionary cycles can emerge in the absence of stabilizing selection, an outcome not possible in previous models of coevolution mediated by quantitative traits. Whether coevolutionary cycles evolve depends upon the strength of selection, the number of loci, and the rate of mutation in each of the interacting species. Our results also generate novel predictions for the expected sign and magnitude of linkage disequilibria in each species.  相似文献   

8.
In spatially structured populations, host–parasite coevolutionary potential depends on the distribution of genetic variation within and among populations. Inoculation experiments using the plant, Silene latifolia, and its fungal pathogen, Microbotryum violaceum, revealed little overall differentiation in infectivity/resistance, latency or spore production among host or pathogen populations. Within populations, fungal strains had similar means, but varied in performance across plant populations. Variation in resistance among seed families indicates the potential for parasite‐mediated selection, whereas there was little evidence for local pathogen genotype × plant genotype interactions assumed by most theoretical coevolution models. Lower spore production on sympatric than allopatric hosts confirmed local fungal maladaptation already observed for infectivity. Correlations between infectivity and latency or spore production suggest a common mechanism for variation in these traits. Our results suggest low variation available to this pathogen for tracking its coevolving host. This may be caused by random drift, breeding system or migration characteristic of metapopulation dynamics.  相似文献   

9.
Coevolution and maladaptation   总被引:3,自引:1,他引:2  
Many of the most commonly cited examples of exquisite adaptationare of coevolved symbioses. As we learn more about the coevolutionaryprocess, however, it is becoming increasingly evident that coevolutionmay also keep populations moderately maladapted much of thetime. As a result, coevolving populations may only rarely occupyadaptive peaks, because the selective landscape is under continualchange through reciprocal selection on the species themselves.These shifting patterns of coadaptation are further shaped bythe geographic structure of most species. Selection mosaicsacross landscapes and coevolutionary hotspots can favor differentevolutionary trajectories in different populations. The combinedaction of gene flow, random genetic drift, and local extinctionof populations may then continually remold these local patterns,creating a geographic mosaic in the degrees of maladaptationfound within local interactions. Recent mathematical modelsof the geographic mosaic of coevolution suggest that complexmosaics of maladaptation are a likely consequence of spatiallystructured species interactions. These models indicate thatthe spatial structure of maladaptation may depend upon the typeof coevolutionary interaction, the underlying selection mosaic,and patterns of gene flow across landscapes. By maintaininglocal polymorphisms and driving the divergence of populations,coevolution may produce spatial patterns of maladaptation thatare a source of ongoing innovation and diversification in speciesinteractions.  相似文献   

10.
The level of defense against great spotted cuckoo (Clamator glandarius) parasitism in different European populations of magpie (Pica pica) depends on selection pressures due to parasitism and gene flow between populations, which suggests the existence of coevolutionary hot spots within a European metapopulation. A mosaic of coevolution is theoretically possible at small geographical scales and with strong gene flow, because, among other reasons, plots may differ in productivity (i.e., reproductive success of hosts in the absence of parasitism) and defensive genotypes theoretically should be more common in plots of high productivity. Here, we tested this prediction by exploring the relationship between parasitism rate, level of defense against parasitism (estimated as both rejection rate and the frequency of the 457bp microsatellite allele associated with foreign egg rejection in magpies), and some variables related to the productivity (average laying date, clutch size, and number of hatchlings per nest) of magpies breeding in different subpopulations. We found that both estimates of defensive ability (egg rejection rate and frequency of the 457bp allele) covaried significantly with between-plot differences in probability of parasitism, laying date, and number of hatchlings per nest. Moreover, the parasitism rate was larger in more productive plots. These results confirm the existence of a mosaic of coevolution at a very local geographical scale, and the association between laying date and number of hatchlings with variables related to defensive ability and the selection pressure arising from parasitism supports the prediction of coevolutionary gradients in relation to host productivity.  相似文献   

11.
1. Hybridization between species is a common phenomenon in plants and animals. If parasite prevalence differs for hybrids and parental species (i.e. taxa) there may be considerable consequences for relative hybrid fitness. Some studies have investigated hybrid complexes for infection, and complex-specific differences in parasite prevalence have been detected. 2. Based on the results of a field study on a hybridizing Daphnia population from a single lake, it has been hypothesized that permanently over- or under-infected hybrids do not exist. The observed field-patterns can only be temporal because taxa, in addition to single genotypes, might be the subject of parasite driven host frequency-dependent selection. Thus, parasites will track any common taxon within a hybrid complex. 3. In the present study, hybridizing Daphnia populations from 43 lakes were screened for parasite infections to obtain indirect evidence for coevolutionary cycles. It was hypothesized that, due to time lags between the evolution of resistance in host populations and the evolution of the parasite towards tracking of a common host taxon, the same Daphnia taxon will be over-infected in some lakes, while being under-infected in others. 4. Two of the four parasite species were specialists: their prevalence differed among coexisting Daphnia taxa. The varying infection patterns detected across spatially segregated hybridizing Daphnia populations are consistent with theoretical predictions for coevolutionary cycles. Thus the infection patterns, as observed under natural conditions, are temporal and unstable. 5. Additionally, the spatial distribution of the four parasite species was analysed with respect to habitat differences. The results show that the presence of a particular parasite on a host taxon was determined not only by the host-specificity of the parasite, but also by host-habitat relations.  相似文献   

12.
Theory indicates that spatial scale and habitat configuration are fundamental for coevolutionary dynamics and how diversity is maintained in host–pathogen interactions. Yet, we lack empirical data to translate the theory to natural host–parasite systems. In this study, we conduct a multiscale cross‐inoculation study using the specialist wild plant pathogen Podosphaera plantaginis on its host plant Plantago lanceolata. We apply the same sampling scheme to a region with highly fragmented (Åland) and continuous (Saaremaa) host populations. Although theory predicts higher parasite virulence in continuous regions, we did not detect differences in traits conferring virulence among the regions. Patterns of adaptation were highly scale dependent. We detected parasite maladaptation among regions, and among populations separated by intermediate distances (6.0–40.0 km) within the fragmented region. In contrast, parasite performance did not vary significantly according to host origin in the continuous landscape. For both regions, differentiation among populations was much larger for genetic variation than for phenotypic variation, indicating balancing selection maintaining phenotypic variation within populations. Our findings illustrate the critical role of spatial scale and habitat configuration in driving host–parasite coevolution. The absence of more aggressive strains in the continuous landscape, in contrast to theoretical predictions, has major implications for long‐term decision making in conservation, agriculture, and public health.  相似文献   

13.
The majority of species interact with at least several others. We develop simple genetic models of coevolution between three species where interactions are mediated by quantitative traits. We assume that one of the species has two quantitative traits, each of which governs its interaction with one of the other two species. We use this model to explore how genetic correlations between the two traits in the multivariate species shape the evolutionary dynamics and outcomes of three species interactions. Our results suggest that genetic correlations are most important when at least one of the interactions is between a predator and prey or parasite and host. In these cases, genetic correlations between traits lead to a wide variety of novel coevolutionary outcomes and dynamics. In particular, genetic correlations can affect the existence and stability of coevolutionary equilibrium points, and they can lead to recurrent or permanent maladaptation. When the three species interact only as competitors or mutualists, however, genetic correlations have no effect on the outcome of coevolution. In all cases, our results reveal the surprising conclusion that both positive and negative genetic correlations between traits have qualitatively identical effects on coevolutionary dynamics.  相似文献   

14.
Genetically specific interactions between hosts and parasites can lead to coevolutionary fluctuations in their genotype frequencies over time. Such fluctuating selection dynamics are, however, expected to occur only under specific circumstances (e.g., high fitness costs of infection to the hosts). The outcomes of host–parasite interactions are typically affected by environmental/ecological factors, which could modify coevolutionary dynamics. For instance, individual hosts are often infected with more than one parasite species and interactions between them can alter host and parasite performance. We examined the potential effects of coinfections by genetically specific (i.e., coevolving) and nonspecific (i.e., generalist) parasite species on fluctuating selection dynamics using numerical simulations. We modeled coevolution (a) when hosts are exposed to a single parasite species that must genetically match the host to infect, (b) when hosts are also exposed to a generalist parasite that increases fitness costs to the hosts, and (c) when coinfecting parasites compete for the shared host resources. Our results show that coinfections can enhance fluctuating selection dynamics when they increase fitness costs to the hosts. Under resource competition, coinfections can either enhance or suppress fluctuating selection dynamics, depending on the characteristics (i.e., fecundity, fitness costs induced to the hosts) of the interacting parasites.  相似文献   

15.
Coevolution between hosts and their parasites is expected to follow a range of possible dynamics, the two extreme cases being called trench warfare (or Red Queen) and arms races. Long‐term stable polymorphism at the host and parasite coevolving loci is characteristic of trench warfare, and is expected to promote molecular signatures of balancing selection, while the recurrent allele fixation in arms races should generate selective sweeps. We compare these two scenarios using a finite size haploid gene‐for‐gene model that includes both mutation and genetic drift. We first show that trench warfare do not necessarily display larger numbers of coevolutionary cycles per unit of time than arms races. We subsequently perform coalescent simulations under these dynamics to generate sequences at both host and parasite loci. Genomic footprints of recurrent selective sweeps are often found, whereas trench warfare yield signatures of balancing selection only in parasite sequences, and only in a limited parameter space. Our results suggest that deterministic models of coevolution with infinite population sizes do not predict reliably the observed genomic signatures, and it may be best to study parasite rather than host populations to find genomic signatures of coevolution, such as selective sweeps or balancing selection.  相似文献   

16.
Tellier A  Brown JK 《Genetics》2007,177(3):1777-1790
Numerous loci in host organisms are involved in parasite recognition, such as major histocompatibility complex (MHC) genes in vertebrates or genes involved in gene-for-gene (GFG) relationships in plants. Diversity is commonly observed at such loci and at corresponding loci encoding antigenic molecules in parasites. Multilocus theoretical models of host-parasite coevolution predict that polymorphism is more likely than in single-locus interactions because recurrent coevolutionary cycles are sustained by indirect frequency-dependent selection as rare genotypes have a selective advantage. These cycles are stabilized by direct frequency-dependent selection, resulting from repeated reinfection of the same host by a parasite, a feature of most diseases. Here, it is shown that for realistically small costs of resistance and virulence, polycyclic disease and high autoinfection rates, stable polymorphism of all possible genotypes is obtained in parasite populations. Two types of epistatic interactions between loci tend to increase the parameter space in which stable polymorphism can occur with all possible host and parasite genotypes. In the parasite, the marginal cost of each additional virulence allele should increase, while in the host, the marginal cost of each additional resistance allele should decrease. It is therefore predicted that GFG polymorphism will be stable (and hence detectable) when there is partial complementation of avirulence genes in the parasite and of resistance genes in the host.  相似文献   

17.
Abiotic environmental heterogeneity can promote the evolution of diverse resource specialists, which in turn may increase the degree of host–parasite specialization. We coevolved Pseudomonas fluorescens and lytic phage ?2 in spatially structured populations, each consisting of two interconnected subpopulations evolving in the same or different nutrient media (homogeneous and heterogeneous environments, respectively). Counter to the normal expectation, host–parasite specialization was significantly lower in heterogeneous compared with homogeneous environments. This result could not be explained by dispersal homogenizing populations, as this would have resulted in the heterogeneous treatments having levels of specialization equal to or greater than that of the homogeneous environments. We argue that selection for costly generalists is greatest when the coevolving species are exposed to diverse environmental conditions and that this can provide an explanation for our results. A simple coevolutionary model of this process suggests that this can be a general mechanism by which environmental heterogeneity can reduce rather than increase host–parasite specialization.  相似文献   

18.
Strong selection on parasites, as well as on hosts, is crucial for fueling coevolutionary dynamics. Selection will be especially strong if parasites that encounter resistant hosts are destroyed and diluted from the local environment. We tested whether spores of the bacterial parasite Pasteuria ramosa were passed through the gut (the route of infection) of their host, Daphnia magna, and whether passaged spores remained viable for a “second chance” at infecting a new host. In particular, we tested if this viability (estimated via infectivity) depended on host genotype, whether or not the genotype was susceptible, and on initial parasite dose. Our results show that Pasteuria spores generally remain viable after passage through both susceptible and resistant Daphnia. Furthermore, these spores remained infectious even after being frozen for several weeks. If parasites can get a second chance at infecting hosts in the wild, selection for infection success in the first instance will be reduced. This could also weaken reciprocal selection on hosts and slow the coevolutionary process.  相似文献   

19.
Three different isolated populations of the slave‐making ant Rossomyrmex minuchae, sympatric with its obligate host Proformica longiseta, are known from the high mountains of southern Spain. To test the prediction that the slave‐maker and its host represent a coevolutionary geographical mosaic, we studied the variation in the cuticular hydrocarbons (CHCs) as the trait most likely to show the selection mosaic, plus trait remixing by the gene flow in the populations of each species by means of microsatellites. We found within populations, host and parasite had more similar CHC profiles than between the populations or between parasites and allopatric hosts. The differences between the CHC profiles of the host and parasite, which may be responsible for the level of tolerance towards the parasite, varied between the populations suggesting the existence of a selection mosaic of coevolution. Furthermore, P. longiseta showed higher gene flow than R. minuchae, which would allow local variation in the coevolution of the host and parasite while allowing some trait remixing.  相似文献   

20.
Climatological variation and ecological perturbation have been pervasive drivers of faunal assembly, structure and diversification for parasites and pathogens through recurrent events of geographical and host colonization at varying spatial and temporal scales of Earth history. Episodic shifts in climate and environmental settings, in conjunction with ecological mechanisms and host switching, are often critical determinants of parasite diversification, a view counter to more than a century of coevolutionary thinking about the nature of complex host–parasite assemblages. Parasites are resource specialists with restricted host ranges, yet shifts onto relatively unrelated hosts are common during phylogenetic diversification of parasite lineages and directly observable in real time. The emerging Stockholm Paradigm resolves this paradox: Ecological Fitting (EF)—phenotypic flexibility and phylogenetic conservatism in traits related to resource use, most notably host preference—provides many opportunities for rapid host switching in changing environments, without the evolution of novel host-utilization capabilities. Host shifts via EF fuel the expansion phase of the Oscillation Hypothesis of host range and speciation and, more generally, the generation of novel combinations of interacting species within the Geographic Mosaic Theory of Coevolution. In synergy, an environmental dynamic of Taxon Pulses establishes an episodic context for host and geographical colonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号