首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vector abundance is an important factor governing disease risk and is often employed when modelling disease transmission. The longevity of the aquatic stages of mosquitoes (Diptera: Culicidae) dictates the rate of production of adults and hence the intensity of disease transmission. We examined how temperature influences the survival of larval stages (larvae and pupae) of Anopheles gambiae Giles sensu stricto and subsequent adult production of this most efficient malaria vector. Groups of 30 mosquitoes were reared at constant temperatures (from 10 to 40 degrees C) from the first instar and observed until death or metamorphosis of the last individual. Larvae developed into adults at temperatures ranging from 16 to 34 degrees C. Larval survival was shortest (< 7 days) at 10-12 degrees C and 38-40 degrees C, and longest (> 30 days) at 14-20 degrees C. Within the temperature range at which adults were produced, larval mortality was highest at the upper range 30-32 degrees C, with death (rather than adult emergence) representing over 70% of the terminal events. The optimal survival temperatures were lower than the temperatures at which development was quickest, suggesting a critical relationship between temperature and the life cycle of the insect. These data provide fundamental information about An. gambiae s.s. adult productivity at different temperatures, which may facilitate the construction of process-based models of malaria risk in Africa and the development of early warning systems for epidemics.  相似文献   

2.
It is well known that amongst the sibling species of the Anopheles gambiae complex, A. arabiensis Patton predominates over A. gambiae sensu stricto Giles in hotter, drier parts of Africa. Here it was investigated whether A. arabiensis is better adapted to higher temperatures than A. gambiae s.s. at the microclimatic level. Bioassays were used to assess behavioural avoidance activity of adult mosquitoes in the presence of increasing temperature. Female mosquitoes were introduced into a holding tube from which they could escape into a cage through a one-way funnel. From a starting temperature of 28 degrees C they were exposed to a 2 degrees C rise in temperature every 30 min until all mosquitoes had escaped or been knocked down. As temperature increased, A. arabiensis left the holding tube at higher temperatures than A. gambiae s.s. (A. arabiensis mean activation temperature = 35.7 degrees C, 95% CIs = 35.4-36.1 degrees C; A. gambiae s.s. = 33.0 degrees C, 32.5-33.5 degrees C). To determine the relative ability of both species to survive at extremely high temperatures, batches of insects were exposed to 40 degrees C for different periods. It took considerably longer to kill 50% of A. arabiensis at 40 degrees C than it did A. gambiae s.s. (112 min vs. 67 min). These data show that adult A. arabiensis are better adapted to hotter conditions than A. gambiae s.s., a characteristic that is reflected in their spatial and temporal distribution in Africa.  相似文献   

3.
The effect of nine constant temperatures (15, 17.5, 20, 22.5, 25, 27.5 30, 32.5, and 35 degrees C) on the development of the stone leek leafminer, Liriomyza chinensis (Kato), on Japanese bunching onion, Allium fistulosum L., was studied in the laboratory. Developmental times for immature stages were inversely proportional to temperature between 15 and 30 degrees C but increased at 32.5 degrees C. Total developmental times from egg to adult emergence decreased from 69.6 to 17.1 d for temperatures from 15 to 30 degrees C, with pupae requiring more time for development than the combined egg and larva stages. Both linear and nonlinear (Logan equation VI) models provided a reliable fit of development rates versus temperature for all immature stages. The lower developmental thresholds that were estimated from linear regression equations for the egg, first, second, and third instars, total larva, egg-larval, pupa, and total combined immature stages were 12.1, 10.6, 13.6, 8, 9.6, 11.3, 11.2, and 11.4 degrees C, respectively. The degree-day accumulation was calculated as 312.5 DD for development from egg to adult emergence. By fitting the nonlinear models to the data, the upper and optimal temperatures for egg, larva, pupa, and total immature stages were calculated as 37.8 and 31.7, 34.9 and 30.1, 35.8 and 30.6, and 35.0 and 30.9 degrees C, respectively. These data are useful for predicting population dynamics of L. chinensis under field conditions and determining the maximum proportion of susceptible individuals for facilitating improved timing of application of control measures.  相似文献   

4.
The influence of temperature (16, 22, 28, 37 degrees C) on effects of permethrin was investigated for susceptible and pyrethroid-resistant strains of the mosquitoes Anopheles gambiae and An. stephensi (Diptera: Culicidae). Young unfed female adult mosquitoes were exposed to 0.25% permethrin test papers or to polyester netting treated with permethrin 500mg a.i./m2. The time to 50% knockdown (KT50) declined as temperature increased, i.e. there was a positive temperature coefficient of this effect of the pyrethroid. Resistance ratios (comparing KT50 values) between resistant and susceptible An. stephensi ranged between 2.5 and 4.4 at the different temperatures. Comparative tests of pyrethroid tolerance of different strains would be valid over the 22-28 degrees C range but, when using a discriminating dose to detect resistance, more precise temperature control is desirable. Mortality 24h after exposure to 0.25% permethrin of both susceptible and resistant strains of An. stephensi showed a negative correlation with temperature between 16 and 22 degrees C and a positive correlation at higher temperatures. In An. gambiae, however, the correlation was positive over the whole range. Irritancy of permethrin-treated netting to Anopheles females (measured as time lapse until first flight take-off, and the number of take-offs during 7.5 min exposure) was positively correlated with temperature in all four strains and was much greater for the susceptible than the resistant strains.  相似文献   

5.
Egg and nymphal development were studied under constant temperatures for the newly introduced pest species, Halyomorpha halys (St?l) (Hemiptera: Pentatomidae). Development was assessed at seven constant temperatures (15-35 degrees C). Development to adult was completed at temperatures between 17 and 33 degrees C, with egg hatch also occurring at 15 degrees C. The relationship between temperature and developmental rate was evaluated using three developmental models. Of the models evaluated, the Briere-1 model was the best fit for the empirical data of egg and total development and for providing accurate values for the temperature threshold. Application of the linear degree-day model estimated 537.63 DD are needed for total development (egg to imaginal ecdysis). An additional 147.65 DD are needed for the preoviposition period of the female. Reproductive parameters were evaluated at 25 degrees C and indicate a median number of 28 eggs per egg mass. Oviposition occurred at 4.32-d intervals, and a female can continue to oviposit throughout its lifespan. H. halys is univoltine in New Jersey and Pennsylvania, but if it spreads to warmer climates in the United States, it could have multiple generations per year.  相似文献   

6.
Members of the Anopheles gambiae complex are major malaria vectors in Africa. We tested the hypothesis that the range and relative abundance of the two major vectors in the complex, An. gambiae sensu stricto and An. arabiensis, could be defined by climate. Climate was characterized at mosquito survey sites by extracting data for each location from climate surfaces using a Geographical Information System. Annual precipitation, together with annual and wet season temperature, defined the ranges of both vectors and were used to map suitable climate zones. Using data from West Africa, we found that where the species were sympatric, An. gambiae s.s. predominated in saturated environments, and An. arabiensis was more common in sites subject to desiccation (r2 = 0.875, p < 0.001). We used the nonlinear equation that best described this relationship to map habitat suitability across Africa. This simple model predicted accurately the relative abundance of both vectors in Tanzania (rs = 0.745, p = 0.002), where species composition is highly variable. The combined maps of species'' range and relative abundance showed very good agreement with published maps. This technique represents a new approach to mapping the distribution of malaria vectors over large areas and may facilitate species-specific vector control activities.  相似文献   

7.
The development of the triactinomyxon stage of Myxobolus cerebralis and release of mature spores from Tubifex tubifex were shown to be temperature dependent. In the present work, the effect of temperature over a range of 5-30 degrees C on the development and release of the triactinomyxon stages of M. cerebralis was studied. Infected T. tubifex stopped releasing triactinomyxon spores 4 days after transfer from 15 degrees C to 25 degrees C or 30 degrees C. Transmission electron microscopic examinations of the tubificids held at 25 degrees C and 30 degrees C for 3 days showed that all developmental stages degenerated and transformed to electron-dense clusters between the gut epithelial cells of T. tubifex. In contrast, tubificid worms held at 5 degrees C and 10 degrees C examined at the same time were heavily infected with many early developmental stages of triactinomyxon. At 15 degrees C, the optimal temperature for development, maturing and mature stages of the parasite were evident. Infected T. tubifex transferred from 15 degrees C to 20 degrees C stopped producing triactinomyxon spores after 15 days. However, 15 days at 20 degrees C was not sufficient to destroy all developmental stages of the parasite. When the tubificid worms were returned to 15 degrees C, the one-cell stages and the binucleate-cell stages resumed normal growth. It was also demonstrated that T. tubifex cured of infection by holding at 30 degrees C for 3 weeks and shifted to 15 degrees C could be re-infected with M. cerebralis spores. The waterborne triactinomyxon spores of M. cerebralis did not appear to be as short-lived as previously reported. More than 60% of experimentally produced waterborne triactinomyxon spores survived and maintained their infectivity for rainbow trout for 15 days at water temperatures up to 15 degrees C. In natural aquatic systems, the triactinomyxon spores may survive and keep their infectivity for periods even longer than 15 days.  相似文献   

8.
Among the aquatic developmental stages of the Anopheles gambiae complex (Diptera: Culicidae), both inter- and intra-specific interactions influence the resulting densities of adult mosquito populations. For three members of the complex, An. arabiensis Patton, An. quadriannulatus (Theobald) and An. gambiae Giles sensu stricto, we investigated some aspects of this competition under laboratory conditions. First-instar larvae were consumed by fourth-instar larvae of the same species (cannibalism) and by fourth-instar larvae of other sibling species (predation). Even when larvae were not consumed, the presence of one fourth-instar larva caused a significant reduction in development rate of first-instar larvae. Possible implications of these effects for population dynamics of these malaria vector mosquitoes are discussed.  相似文献   

9.
The development, survival, and reproduction of the black citrus aphid Toxoptera aurantii (Boyer de Fonscolombe) were evaluated at ten constant temperatures (4, 7, 10, 15, 20, 25, 28, 30, 32 and 35 degrees C). Development was limited at 4 and 35 degrees C. Between 7 and 32 degrees C, developmental periods of immature stages varied from 44.2 days at 7 degrees C to 5.3 days at 28 degrees C. Overall immature development required 129.9 degree-days above 3.8 degrees C. The upper temperature thresholds of 32.3, 28.6, 29.3, 27.2, and 28.6 degrees C were determined from a non-linear biophysical model for the development of instars 1-4 and overall immature stages, respectively. Immature survivorship varied from 82.1 to 97.7% within the temperature range of 10-30 degrees C. However, immature survivorship was reduced to 26.3% at 7 degrees C and 33.1% at 32 degrees C. Mean adult longevity was the longest (44.2 days) at 15 degrees C and the shortest (6.2 days) at 32 degrees C. The predicted upper temperature limit for adult survivorship was at 32.3 degrees C. Total nymph production increased from 16.3 nymphs per female at 10 degrees C to 58.7 nymphs per female at 20 degrees C, declining to 6.1 nymphs per female at 32 degrees C. The estimation of lower and upper temperature limits for reproduction was at 8.2 and 32.5 degrees C, respectively. The population reared at 28 degrees C had the highest intrinsic rate of increase (0.394), the shortest population doubling time (1.8 days), and shortest mean generation time (9.5 days) compared with the populations reared at six other temperatures. The population reared at 20 degrees C had the highest net reproductive rate (54.6). The theoretical lower and upper temperature limits for population development, survival and reproduction were estimated at 9.4 and 30.4 degrees C, respectively. The biology of T. aurantii was also compared with three other citrus aphid species.  相似文献   

10.
The development of peritrichous flagella and, consequently, swarming of Vibrio alginolyticus depend on a complex relationship between temperature, salt concentrations and pH. At temperatures above 28 degrees C V. alginolyticus did not develop peritrichous flagella unless certain minimal concentrations of NaCl are present: the higher the temperature, the higher the NaCl concentrations required for peritrichous flagella synthesis. This requirement for NaCl at high temperatures is much more pronounced at pH 9 than at pH 6. High temperatures and low concentrations of NaCl also inhibited swarming of cells already armed with peritrichous flagella. Other cations, such as Li+, K+ and Mg2+. replaced NaCl only at temperatures below 28 degrees C.  相似文献   

11.
Developmental rate and survivorship of small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), life stages were measured across different temperatures (21, 25, 28, 32 and 35 degrees C) and diets, which included natural and artificial pollen, honey, and bee pupae. Temperature affected hatch success, time to hatching, and larval growth. Eggs hatched in 61 h at 21 degrees C but in < 22 h at 35 degrees C. Larvae achieved peak weight in < 8 d at 35 degrees C but needed 17 d at 21 degrees C. Diet had comparatively little effect on larval survivorship or maximum weight, although larvae fed only bee pupae had lower survivorship. Access to soil influenced pupation success. Duration of the life stage spent in the soil, during which pupation occurs, was also affected by temperature: adults emerged after 32.7 d at 21 degrees C but after only 14.8 d at 35 degrees C, albeit with high mortality. Minimum temperature for development was estimated at 13.5 degrees C for eggs, and 10.0 degrees C for larvae and pupae. Temperature influenced adult longevity and oviposition: on a honey and pollen diet average adult lifespan was 92.8 d at 24 degrees C but only 11.6 d at 35 degrees C. Beetles lived longer at 28 degrees C or lower but produced the most eggs per female, regardless of diet, at 32 degrees C. Beetle density influenced fecundity: beetles kept at three pairs per vial laid 6.7 times more eggs per female than those kept as single pairs. Overall, beetles fared best at 28-32 degrees C with mortality of all stages highest at 35 degrees C.  相似文献   

12.
Little is known about the fitness of wild male mosquitoes, the females of which are vectors of malaria. The problem of studying male biology has been exacerbated by difficulties associated with catching them. In southern Mozambique, however, almost the entire adult population of An. funestus and An. gambiae s.l. rest inside houses. They leave in a dusk exodus, which makes them easy to collect. In 8,348 exit collections from a village from 2003 to 2009, 567,195 male An. funestus and 34,591 male An. gambiae s.l. were collected. During the study, numbers of An. funestus increased but numbers of An. gambiae s.l. declined to the point of extinction. Overall numbers of An. gambiae s.l. were positively correlated with temperature, whilst the relationship between temperature and numbers of An. funestus changed from an initially positive one in the first three years of the study to a negative one in the last three years. Marked males were recaptured up to 300 m from the release site, with most recaptures occurring within 150 m. Estimated mean daily survival of male An. funestus was 0.86 (95% C.I. 0.869-0.850). For the years 2003-2007, estimated mean daily survival of male An gambiae s.l. was 0.660 (95% C.I. 0.682-0.638). For either species, there was no relationship between mean weekly temperature and estimated daily survival. These results imply that males of An. funestus live as long as females but have a relatively short flight range. They are discussed in the light of possible release strategies of sterile or genetically modified mosquitoes.  相似文献   

13.
The development period from birth to adult of virginoparae of the turnip aphid, Lipaphis erysimi (Kaltenbach), at 14 constant, 15 alternating and 15 natural temperature regimes were modelled to determine mathematical functions for simulating aphid development under a wide range of natural conditions. The day-degree model, the logistic equation, and the Wang model were used to describe the relationships between temperature and development rate at constant and alternating temperatures. The three models were then used with a Weibull function describing the distribution of development times, to simulate the development of individuals of cohorts at natural temperature regimes. Comparison of the observed with simulated distributions of adult emergence indicates that all three models can simulate the development of L. erysimi equally well when temperature does not go below 6 degrees C (the notional low temperature threshold of the day-degree model) or above 30 degrees C. When accumulation of temperatures below 6 degrees C becomes substantial, only the logistic curve offers accurate simulations; the other two models give falsely longer durations of development. When accumulation of temperatures above 30 degrees C becomes substantial, the logistic curve and the Wang model offer more accurate simulations than the day-degree model, which tends to produce shorter durations of development. Further analysis of the data reveals that development rate of this aphid at a given unfavourable high temperature may vary with time. Methods for accurately simulating the development time of L. erysimi in the field are suggested. The significance of modelling insect development at low and high temperatures by non-linear models is discussed.  相似文献   

14.
Wandering phase Indianmeal moth, Plodia interpunctella (Hübner), larvae were exposed to the label rate of hydroprene (1.9 x 10(-3) mg [AI] /cm2) sprayed on concreted petri dishes. Larvae were exposed for 1, 3, 6, 12, 18, 24, and 30 h and maintained at 16, 20, 24, 28, and 32 degrees C and 57% RH until adult emergence. Larval developmental time and mortality were significantly influenced by temperature and exposure intervals. Maximum developmental time (47.2 +/- 1.3 d) occurred at 16 degrees C, and the minimum developmental time (7.0 +/- 0.5 d) occurred at 32 degrees C. Larval mortality generally increased at all of the five tested temperatures as exposure period increased. The greatest mortality (82.0 +/- 0.1%) occurred when larvae were exposed for 30 h at 28 degrees C, and minimum mortality (0.0 +/- 0.5%) occurred at 16 degrees C when larvae were exposed for 1 h. The relationships between temperature, exposure period, and developmental time were described by polynomial models, based on lack-of-fit tests. Hydroprene has potential to be an effective alternative to conventional insecticides in surface treatments for Indianmeal moth management. Response-surface models derived from this study can be used in simulation models to estimate the potential consequences of hydroprene on Indianmeal moth population dynamics.  相似文献   

15.
The virulence and resistance (R) features of 37 Aeromonas strains from diarrheal cases and 150 from the aquatic environment (isolated during cold and warm season) were tested at different incubation temperatures (4 degrees C, 28 degrees C and 37 degrees C). When incubated at 4 degrees C temperature, the Aeromonasstrains isolated during the cold season expressed the highest number of virulence factors by comparison with the strains isolated during warm season and from diarrhoeal cases, the virulence spectrum increasing simultaneously with the incubation temperature (i.e. 28 degrees C and 37 degrees C) for all strains. Mucinase was the unique virulence factor constantly present in all three categories of strains at all three incubation temperatures. The aquatic as well as clinical strains exhibited similar R levels to ampicillin and colistin, while for the other tested antibiotics, the aquatic strains generally proved higher R levels than clinical strains, excepting cephtazidime. Plasmids of molecular weights ranging between 1904-21226 bp, were isolated in 36.5% of Aeromonas strains, some of them being correlated with specific R patterns. The large virulence spectrum correlated with high R in Aeromonas strains isolated from the aquatic medium is pleading for the significant role of these bacteria in the pathogenic potential of the natural reservoir possibly implicated in human pathology.  相似文献   

16.
Laboratory studies were conducted to assess the effect of temperature on the survival, development, fecundity, and longevity of Helicoverpa armigera (Hübner) at 11 constant temperatures ranging from 12.5 to 40 degrees C, as well as at five alternating temperature regimes (25-10, 30-15, 32.5-17.5, 35-20, and 35-27.5 degrees C) and under a photoperiod of 16:8 (L:D) h. H. armigera reared at constant temperatures did not develop from egg to adult (emergence) outside the temperature range of 17.5-32.5 degrees C. The alternating conditions expanded this range from 10 to 35 degrees C. The lowest developmental thresholds of the immature stages were estimated by a linear model and ranged from 10.17 (pupal stage) to 11.95 degrees C (egg stage) at constant temperature regimes and from 1.1 to 5.5 degrees C, respectively at alternating temperatures. The values of developmental thresholds estimated using the nonlinear (Lactin-2) model were lower than those estimated by the linear model for constant and alternating temperature regimes except for larval and pupal stages at constant temperatures. Mean adult longevity fluctuated from 34.4 d at 15 degrees C to 7.6 d at 35 degrees C. Females reared under all alternating temperature regimes laid more eggs than females reared at any, except the 25 degrees C, constant temperature treatment. The intrinsic rate of increase was highest at 27.5 degrees C, at both the constant and the corresponding alternating temperature regimes (0.147 and 0.139, respectively). Extreme temperatures had a negative effect on life table parameters.  相似文献   

17.
Early detection of Nasonovia ribisnigri (Mosley) (Hemiptera: Aphididae) on lettuce is of primary importance for its effective control. Temperature thresholds for development of this pest were estimated using developmental rates [r(T)] at different constant temperatures (8, 12, 16, 20, 24, 26, and 28 degrees C). Observed developmental rates data and temperature were fitted to two linear (Campbell and Mu?iz and Gil) and a nonlinear (Lactin) models. Lower temperature threshold estimated by the Campbell model was 3.6 degrees C for apterous, 4.1 degrees C for alates, and 3.1 degrees C for both aphid adult morphs together. Similar values of the lower temperature threshold were obtained with the Mu?iz and Gil model, for apterous (4.0 degrees C), alates (4.2 degrees C), and both adult morphs together (3.7 degrees C) of N. ribisnigri. Thermal requirements of N. ribisnigri to complete development were estimated by Campbell and Mu?iz and Gil models for apterous in 125 and 129 DD and for both adult morphs together in 143 and 139 DD, respectively. For complete development from birth to adulthood, the alate morph needed 15-18 DD more than the apterous morph. The lower temperature threshold determined by the Lactin model was 5.3 degrees C for alates, 2.3 degrees C for apterous, and 1.9 degrees C for both adult morphs together. The optimal and upper temperature thresholds were 25.2 and 33.6 degrees C, respectively, for the alate morph, 27 and 35.9 degrees C, respectively, for the apterous morph, and 26.1 and 35.3 degrees C, respectively, for the two adult morphs together. The Campbell model provided the best fit to the observed developmental rates data of N. ribisnigri. This information could be incorporated in forecasting models of this pest.  相似文献   

18.
The effect of oxygen partial pressure (Po(2)) on development and hatching was investigated in aquatic embryos of the myobatrachid frog, Crinia georgiana, in the field and in the laboratory. Eggs from 29 field nests experienced widely variable Po(2) but similar temperatures. Mean Po(2) in different nests ranged between 2.9 and 19.3 kPa (grand mean 12.9 kPa), and mean temperature ranged between 11.9 degrees and 16.8 degrees C (grand mean 13.7 degrees C). There was no detectable effect of Po(2) or temperature on development rate or hatching time in the field, except in one nest at 2.9 kPa where the embryos died, presumably in association with hypoxia. Laboratory eggs were incubated at 15 degrees C at a range of Po(2) between 2 and 25 kPa. Between 5 and 25 kPa, there was almost no effect of Po(2) on development rate to stage 26, but the embryos hatched progressively earlier-at earlier stages and lower gut-free body mass-at lower Po(2). At 2 kPa, development was severely delayed, growth of the embryo slowed, and morphological anomalies appeared. A high tolerance to low Po(2) may be an adaptation to embryonic development in the potentially hypoxic, aquatic environment.  相似文献   

19.
1. Temperatures of different body surface regions and deep body temperature (Tb) of unrestrained adult Mongolia gerbils exposed to ambient temperatures (Ta) of -10-35 degrees C were measured using infrared (i.r.) thermography and a thermocouple. 2. A strong positive linear relationship between the surface temperature and Ta was found. For Ta range -4-35 degrees C, the slope was lowest for the areas around the eyes and dorsal head, and steepest for the body extremities. At -10 degrees C, surface temperatures of the areas around the eyes and dorsal head were significantly lower then predicted. 3. Tb was lowest at Ta of 25 and 30 degrees C, increased at all temperatures above and up to Ta of -4 degrees C below this range, and began decline at -10 degrees C. 4. The thermoneutral zone (TNZ) is probably between 28 and 32 degrees C, and the absolute lower critical temperature (Tabsl) is probably -4 degrees C. 5. The Mongolian gerbil shows little control of surface temperature and in contrast to larger mammals it has not developed any special thermoregulatory surface areas to regulate heat exchange with its environment. At temperatures below -4 degrees C, this species is unable to maintain the surface temperature of body extremities above the freezing point. 6. It is suggested that the Mongolian gerbil uses mainly behavioral and ecological adaptive strategies to attenuate the stressful effects of its habitat.  相似文献   

20.
The mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae), the principal vector of malaria in West Africa, comprises several chromosomal forms (e.g. Bissau, Forest, Mopti, Savanna) associated with climatic zones. Here we show how climate data can be used to map the geographical distribution of these chromosomal forms. The climate at 144 sites surveyed for mosquitoes in West Africa between 1971 and 92 was determined using computerized climate surfaces. Forest and Bissau forms occurred at relatively wet sites: median annual precipitation 1325 mm and 1438 mm, respectively, interquartile ranges (IQR) 1144-1858 mm and 1052-1825 mm), whilst the Mopti form was found at dry sites (annual 938 mm, IQR 713-1047 mm) and the Savanna form at sites intermediate between the wet and dry forms (annual 1067 mm, IQR 916-1279). Logistic regression analyses of the climate variables were carried out on a stratified random sample of half the sites. The resulting models correctly classified over 80% of the sites for presence or absence of each chromosomal form. When these models were tested against excluded sites they were also correct at over 80% of sites. The combined data produced models that were correct at over 86% of sites. Mean annual precipitation, evapotranspiration, minimum temperature and maximum temperature were the most important climate variables correlated with the distribution of these forms of An. gambiae. We used the logistic models to map the distribution of each chromosomal form within the reported range for An. gambiae s.s. in West Africa employing a geographical information system. Our maps indicate that each chromosomal form favours particular climate envelopes in well-defined ecoclimatic zones, although these forms are sympatric at the edges of their ranges. This study demonstrates that climate can be used to map the distribution of chromosomal forms of insects across large areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号