首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
As with other complex cellular functions, intracellular membrane transport involves the coordinated engagement of a series of organelles and machineries; however, the molecular basis of this coordination is unknown. Here we describe a Golgi-based signalling system that is activated by traffic and is involved in monitoring and balancing trafficking rates into and out of the Golgi complex. We provide evidence that the traffic signal is due to protein chaperones that leave the endoplasmic reticulum and reach the Golgi complex where they bind to the KDEL receptor. This initiates a signalling reaction that includes the activation of a Golgi pool of Src kinases and a phosphorylation cascade that in turn activates intra-Golgi trafficking, thereby maintaining the dynamic equilibrium of the Golgi complex. The concepts emerging from this study should help to understand the control circuits that coordinate high-order cellular functions.  相似文献   

2.
Membrane trafficking involves large fluxes of cargo and membrane across separate compartments. These fluxes must be regulated by control systems to maintain homoeostasis. While control systems for other key functions such as protein folding or the cell cycle are well known, the mechanisms that control secretory transport are poorly understood. We have previously described a signalling circuit operating at the Golgi complex that regulates intra-Golgi trafficking and is initiated by the KDEL receptor (KDEL-R), a protein previously known to mediate protein recycling from the Golgi to the endoplasmic reticulum (ER). Here, we investigated the KDEL-R signalling mechanism. We show that the KDEL-R is predicted to fold like a G-protein-coupled receptor (GPCR), and that it binds and activates the heterotrimeric signalling G-protein Gα(q/11) which, in turn, regulates transport through the Golgi complex. These findings reveal an unexpected GPCR-like mode of action of the KDEL-R and shed light on a core molecular control mechanism of intra-Golgi traffic.  相似文献   

3.
4.
Summary Localization of heat shock proteins (Hsp) in endomembranes and determination of whether they are integral or peripheral membrane proteins will aid in understanding the physiological function of the heat shock response. Radiolabeled endomembranes (endoplasmic reticulum, Golgi, and plasma membrane), obtained by sucrose gradient centrifugation of heat-shocked soybean (Glycine max L.) root tissue were solubilized and the polypeptides separated by two-dimensional IEF-SDS-PAGE. Autoradiography revealed three groups of Hsp. A diverse group fo 25 low mol wt Hsp (18 to 24 kDa) with isoelectric point (pI) between 5 and 7; an intermediate mol wt group (30 to 47 kDa) with pI of 5.5 to 6.0; and a group of two high mol wt Hsp (75 to 80 kDa) with pI 4.8 to 5.2. The plasma membrane fraction lacked the Hsp pair of 47 kDa detected in the endoplasmic reticulum and Golgi fractions but possessed a unique Hsp of 30 kDa, pI 5.5.Comparison of soluble and microsome fractions revealed a difference in the pattern of the low mol wt Hsp class. The soluble fraction contained Hsp of 16–20 kDa with pI between 5 and 7.8 while the microsome fraction was characterized by Hsp of 18–24 kDa with pI between 5.8 and 6.5.The microsomal Hsp were not released by 1 M KCl. Treatment of the microsome fraction with Triton X-100 selectively released several Hsp, and Na2CO3 treatment removed additional Hsp from the membrane fraction.Abbreviations Hsp heat-shock protein(s) - GA Golgi apparatus - PM plasma membrane - 2 D two-dimensional  相似文献   

5.
Recent findings indicate that in addition to its location in the peripheral plasma membrane, H-Ras is found in endomembranes like the endoplasmic reticulum and the Golgi complex. In these locations H-Ras is functional and can efficiently engage downstream effectors, but little is known about how its activation is regulated in these environments. Here we show that the RasGRF family exchange factors, both endogenous and ectopically expressed, are present in the endoplasmic reticulum but not in the Golgi complex. With the aid of H-Ras constructs specifically tethered to the plasma membrane, endoplasmic reticulum, and Golgi complex, we demonstrate that RasGRF1 and RasGRF2 can activate plasma membrane and reticular, but not Golgi-associated, H-Ras. We also show that RasGRF DH domain is required for the activation of H-Ras in the endoplasmic reticulum but not in the plasma membrane. Furthermore, we demonstrate that RasGRF mediation favors the activation of reticular H-Ras by lysophosphatidic acid treatment whereas plasma membrane H-Ras is made more responsive to stimulation by ionomycin. Overall, our results provide the initial insights into the regulation of H-Ras activation in the endoplasmic reticulum.  相似文献   

6.
Subcellular organelles such as mitochondria, endoplasmic reticulum (ER) and the Golgi complex are involved in the progression of the cell death programme. We report here that soon after ligation of Fas (CD95/Apo1) in type II cells, elements of the Golgi complex intermix with mitochondria. This mixing follows centrifugal dispersal of secretory membranes and reflects a global alteration of membrane traffic. Activation of apical caspases is instrumental for promoting the dispersal of secretory organelles, since caspase inhibition blocks the outward movement of Golgi-related endomembranes and reduces their mixing with mitochondria. Caspase inhibition also blocks the FasL-induced secretion of intracellular proteases from lysosomal compartments, outlining a novel aspect of death receptor signalling via apical caspases. Thus, our work unveils that Fas ligand-mediated apoptosis induces scrambling of mitochondrial and secretory organelles via a global alteration of membrane traffic that is modulated by apical caspases.  相似文献   

7.
Specific binding of insulin to highly purified preparations of rough endoplasmic reticulum, Golgi apparatus, and plasma membrane of mouse liver was determined. 125I-labeled insulin bound maximally to the plasma membrane in radio-receptor assays. Golgi apparatus fractions exhibited binding 10--20% that of plasma membrane and rough endoplasmic reticulum exhibited only 1--2% of plasma membrane binding. Binding was proportional to membrane concentration and dose vs. response curves were very similar for the different fractions. Scatchard analysis of the insulin binding data for the plasma membrane and Golgi apparatus fractions showed curvilinear plots yielding similar apparent binding affinities (0.9 and 3.0-10(8) M-1, respectively). Purity of the isolated endomembranes was analyzed by morphometry and (Na+ + K+ + Mg2+)-ATPase and these preparations displayed less than 1% contamination by plasma membrane. These findings provide important confirmation of the presence of insulin receptors in Golgi apparatus membranes comparable to those located on the plasma membrane. Finally, the present study did not allow us to verify the existence of insulin receptors in the endoplasmic reticulum.  相似文献   

8.
Specific binding of insulin to highly purified preparations of rough endoplasmic reticulum, Golgi apparatus, and plasma membrane of mouse liver was determined. 125I-labeled insulin bound maximally to the plasma membrane in radio-receptor assays. Golgi apparatus fractions exhibited binding 10–20% that of plasma membrane and rough endoplasmic reticulum exhibited only 1–2% of plasma membrane binding. Binding was proportional to membrane concentration and dose vs. response curves were very similar for the different fractions. Scatchard analysis of the insulin binding data for the plasma membrane and Golgi apparatus fractions showed curvilinear plots yielding similar apparent binding affinities (0.9 and 3.0 · 108 M?1, respectively). Purity of the isolated endomembranes was analyzed by morphometry and (Na+ + K+ + Mg2+)-ATPase and these preparations displayed less than 1% contamination by plasma membrane. These findings provide important confirmation of the presence of insulin receptors in Golgi apparatus membranes comparable to those located on the plasma membrane. Finally, the present study did not allow us to verify the existence of insulin receptors in the endoplasmic reticulum.  相似文献   

9.
10.
A spectrin-based cytoskeleton is associated with endomembranes, including the Golgi complex and cytoplasmic vesicles, but its role remains poorly understood. Using new generated antibodies to specific peptide sequences of the human βIII spectrin, we here show its distribution in the Golgi complex, where it is enriched in the trans-Golgi and trans-Golgi network. The use of a drug-inducible enzymatic assay that depletes the Golgi-associated pool of PI4P as well as the expression of PH domains of Golgi proteins that specifically recognize this phosphoinositide both displaced βIII spectrin from the Golgi. However, the interference with actin dynamics using actin toxins did not affect the localization of βIII spectrin to Golgi membranes. Depletion of βIII spectrin using siRNA technology and the microinjection of anti-βIII spectrin antibodies into the cytoplasm lead to the fragmentation of the Golgi. At ultrastructural level, Golgi fragments showed swollen distal Golgi cisternae and vesicular structures. Using a variety of protein transport assays, we show that the endoplasmic reticulum-to-Golgi and post-Golgi protein transports were impaired in βIII spectrin-depleted cells. However, the internalization of the Shiga toxin subunit B to the endoplasmic reticulum was unaffected. We state that βIII spectrin constitutes a major skeletal component of distal Golgi compartments, where it is necessary to maintain its structural integrity and secretory activity, and unlike actin, PI4P appears to be highly relevant for the association of βIII spectrin the Golgi complex.  相似文献   

11.
Dicumarol (3,3'-methylenebis[4-hydroxycoumarin]) is an inhibitor of brefeldin-A-dependent ADP-ribosylation that antagonises brefeldin-A-dependent Golgi tubulation and redistribution to the endoplasmic reticulum. We have investigated whether dicumarol can directly affect the morphology of the Golgi apparatus. Here we show that dicumarol induces the breakdown of the tubular reticular networks that interconnect adjacent Golgi stacks and that contain either soluble or membrane-associated cargo proteins. This results in the formation of 65-120-nm vesicles that are sometimes invaginated. In contrast, smaller vesicles (45-65 nm in diameter, a size consistent with that of coat-protein-I-dependent vesicles) that excluded cargo proteins from their lumen are not affected by dicumarol. All other endomembranes are largely unaffected by dicumarol, including Golgi stacks, the ER, multivesicular bodies and the trans-Golgi network. In permeabilized cells, dicumarol activity depends on the function of CtBP3/BARS protein and pre-ADP-ribosylation of cytosol inhibits the breakdown of Golgi tubules by dicumarol. In functional experiments, dicumarol markedly slows down intra-Golgi traffic of VSV-G transport from the endoplasmic reticulum to the medial Golgi, and inhibits the diffusional mobility of both galactosyl transferase and VSV-G tagged with green fluorescent protein. However, it does not affect: transport from the trans-Golgi network to the cell surface; Golgi-to-endoplasmic reticulum traffic of ERGIC58; coat-protein-I-dependent Golgi vesiculation by AlF4 or ADP-ribosylation factor; or ADP-ribosylation factor and beta-coat protein binding to Golgi membranes. Thus the ADP-ribosylation inhibitor dicumarol induces the selective breakdown of the tubular components of the Golgi complex and inhibition of intra-Golgi transport. This suggests that lateral diffusion between adjacent stacks has a role in protein transport through the Golgi complex.  相似文献   

12.
Phosphatidylinositol-3,4,5-trisphosphate (PtdInsP(3)) regulates diverse cellular functions, including cell proliferation and apoptosis, and has roles in the progression of diabetes and cancer. However, little is known about its production. Here, we describe fluorescent indicators for PtdInsP(3) that allow a spatio-temporal examination of PtdInsP(3) production in single living cells. After ligand stimulation, PtdInsP(3) levels increased to a larger extent at the endomembranes (that is, the endoplasmic reticulum and the Golgi) than at the plasma membrane. This increase was found to originate from in situ production at the endomembranes, a process stimulated directly by receptor tyrosine kinases endocytosed from the plasma membrane to the endomembranes. The demonstration of PtdInsP(3) production through receptor endocytosis addresses a long-standing question about how signalling pathways downstream of PtdInsP(3) are activated at intracellular compartments remote from the plasma membrane.  相似文献   

13.
Ras proteins are distributed in different types of plasma membrane microdomains and endomembranes. However, how microlocalization affects the signals generated by Ras and its subsequent biological outputs is largely unknown. We have approached this question by selectively targeting RasV12 to different cellular sublocalizations. We show here that compartmentalization dictates Ras utilization of effectors and the intensity of its signals. Activated Ras can evoke enhanced proliferation and transformation from most of its platforms, with the exception of the Golgi complex. Furthermore, signals that promote survival emanate primarily from the endoplasmic reticulum pool. In addition, we have investigated the need for the different pools of endogenous Ras in the conveyance of upstream mitogenic and transforming signals. Using targeted RasN17 inhibitory mutants and in physiological contexts such as H-Ras/N-Ras double knockout fibroblasts, we demonstrate that Ras functions at lipid rafts and at the Golgi complex are fully dispensable for proliferation and transformation.  相似文献   

14.
Excess cellular cholesterol induces apoptosis in macrophages, an event likely to promote progression of atherosclerosis. The cellular mechanism of cholesterol-induced apoptosis is unknown but had previously been thought to involve the plasma membrane. Here we report that the unfolded protein response (UPR) in the endoplasmic reticulum is activated in cholesterol-loaded macrophages, resulting in expression of the cell death effector CHOP. Cholesterol loading depletes endoplasmic reticulum calcium stores, an event known to induce the UPR. Furthermore, endoplasmic reticulum calcium depletion, the UPR, caspase-3 activation and apoptosis are markedly inhibited by selective inhibition of cholesterol trafficking to the endoplasmic reticulum, and Chop-/- macrophages are protected from cholesterol-induced apoptosis. We propose that cholesterol trafficking to endoplasmic reticulum membranes, resulting in activation of the CHOP arm of the UPR, is the key signalling step in cholesterol-induced apoptosis in macrophages.  相似文献   

15.
Most proteins that are secreted or expressed on a cell surface are synthesized on membrane polysomes and enter the endoplasmic reticulum (ER) as unfolded polypeptide chains. A complex series of interactions with resident enzymes and molecular chaperones ensure that these proteins are folded and assembled to achieve their correct tertiary structures before being transported to the Golgi and along the secretory pathway. However, the mechanism by which properly folded molecules are sorted from incompletely or improperly folded proteins and from the resident proteins that guide this process remains unclear.  相似文献   

16.
Proteins modified by glycosylphosphatidylinositol membrane anchors have become popular for investigating the role of membrane lipid microdomains in cellular sorting processes. To this end, trypanosomatids offer the advantage that they express these molecules in high abundance. The parasitic protozoan Trypanosoma brucei is covered by a dense and nearly homogeneous coat composed of a glycosylphosphatidylinositol-anchored protein, the variant surface glycoprotein, which is essential for survival of the parasite in the mammalian blood. Therefore, T. brucei must possess mechanisms to selectively and efficiently deliver variant surface glycoprotein to the cell surface. In this study, we have quantified the steady-state distribution of variant surface glycoprotein by differential biotinylation, by fluorescence microscopy and by immunoelectron microscopy on high-pressure frozen and freeze-substituted samples. These three techniques provide very similar estimates of the fraction of variant surface glycoprotein located on the cell surface, on average 89.4%. The intracellular variant surface glycoprotein (10.6%) is predominantly located in the endosomal compartment (75%), while 25% are associated with the endoplasmic reticulum, Golgi apparatus and lysosomes. The density of variant surface glycoprotein in the plasma membrane including the membrane of the flagellar pocket, the only site for endo- and exocytosis in this organism, is 48-52 times higher than the density in endoplasmic reticulum membranes. The relative densities of the Golgi complex and of the endosomes are 2.7 and 10.8, respectively, compared to the endoplasmic reticulum. This data set provides the basis for an analysis of the dynamics of sorting. Depending on the intracellular itinerary of newly formed variant surface glycoprotein, the high surface density is achieved in two (endoplasmic reticulum --> Golgi complex --> cell surface) or three enrichment steps (endoplasmic reticulum --> Golgi complex --> endosomes --> cell surface), suggesting sorting between several membrane compartments.  相似文献   

17.
18.
Subcellular distribution and biosynthesis of rat liver gangliosides   总被引:6,自引:0,他引:6  
Gangliosides have generally been assumed to be localized primarily in the plasma membrane. Analysis of gangliosides from isolated subcellular membrane fractions of rat liver indicated that 76% of the total ganglioside sialic acid was present in the plasma membrane. Mitochondria and endoplasmic reticulum fractions, while containing only low levels of gangliosides on a protein basis, each contained approx. 10% of total ganglioside sialic acid. Gangliosides also were present in the Golgi apparatus and nuclear membrane fractions, and soluble gangliosides were in the supernatant. Individual gangliosides were non-homogeneously distributed and each membrane fraction was characterized by a unique ganglioside composition. Plasma membrane contained only 14 and 28% of the total GD1a and GD3, respectively, but 80-90% of the GM1, GD1b, GT1b and GQ1b. Endoplasmic reticulum, when corrected for plasma membrane contamination, contained only trace amounts of GM1, GD1b, GT1b and GQ1b, but 11 and 5% of the total GD1a and GD3, respectively. The ganglioside composition of highly purified endoplasmic reticulum was similar. Ganglioside biosynthetic enzymes were concentrated in the Golgi apparatus. However, low levels of these enzymes were present in the highly purified endoplasmic reticulum fractions. Pulse-chase experiments with [3H]galactose revealed that total gangliosides were labeled first in the Golgi apparatus, mitochondria and supernatant within 10 min. Labeled gangliosides were next observed at 30 min in the endoplasmic reticulum, plasma membrane and nuclear membrane fractions. Analysis of the individual gangliosides also revealed that GM3, GM1, GD1a and GD1b were labeled first in the Golgi apparatus at 10 min. These studies indicate that gangliosides synthesized in the Golgi apparatus may be transported not only to the plasma membrane, but to the endoplasmic reticulum and to other internal endomembranes as well.  相似文献   

19.
Lipids have an established role as structural components of membranes or as signalling molecules, but their role as molecular actors in protein secretion is less clear. The complex sphingolipid glucosylceramide (GlcCer) is enriched in the plasma membrane and lipid microdomains of plant cells, but compared to animal and yeast cells, little is known about the role of GlcCer in plant physiology. We have investigated the influence of GlcCer biosynthesis by glucosylceramide synthase (GCS) on the efficiency of protein transport through the plant secretory pathway and on the maintenance of normal Golgi structure. We determined that GlcCer is synthesized at the beginning of the plant secretory pathway [mainly endoplasmic reticulum (ER)] and that d ,l ‐threo‐1‐phenyl‐2‐decanoyl amino‐3‐morpholino‐propanol (PDMP) is a potent inhibitor of plant GCS activity in vitro and in vivo. By an in vivo confocal microscopy approach in tobacco leaves infiltrated with PDMP, we showed that the decrease in GlcCer biosynthesis disturbed the transport of soluble and membrane secretory proteins to the cell surface, as these proteins were partly retained intracellularly in the ER and/or Golgi. Electron microscopic observations of Arabidopsis thaliana root cells after high‐pressure freezing and freeze substitution evidenced strong morphological changes in the Golgi bodies, pointing to a link between decreased protein secretion and perturbations of Golgi structure following inhibition of GlcCer biosynthesis in plant cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号