首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent crystal structures of G protein-coupled receptors (GPCRs) show the remarkable structural diversity of extracellular loop 2 (ECL2), implying its potential role in ligand binding and ligand-induced receptor conformational selectivity. Here we have applied molecular modeling and mutagenesis studies to the TM4/ECL2 junction (residues Pro(174(4.59))-Met(180(4.66))) of the human gonadotropin-releasing hormone (GnRH) receptor, which uniquely has one functional type of receptor but two endogenous ligands in humans. We suggest that the above residues assume an α-helical extension of TM4 in which the side chains of Gln(174(4.60)) and Phe(178(4.64)) face toward the central ligand binding pocket to make H-bond and aromatic contacts with pGlu(1) and Trp(3) of both GnRH I and GnRH II, respectively. The interaction between the side chains of Phe(178(4.64)) of the receptor and Trp(3) of the GnRHs was supported by reciprocal mutations of the interacting residues. Interestingly, alanine mutations of Leu(175(4.61)), Ile(177(4.63)), and Met(180(4.66)) decreased mutant receptor affinity for GnRH I but, in contrast, increased affinity for GnRH II. This suggests that these residues make intramolecular or intermolecular contacts with residues of transmembrane (TM) domain 3, TM5, or the phospholipid bilayer, which couple the ligand structure to specific receptor conformational switches. The marked decrease in signaling efficacy of I177A and F178A also indicates that IIe(177(4.63)) and Phe(178(4.64)) are important in stabilizing receptor-active conformations. These findings suggest that the TM4/ECL2 junction is crucial for peptide ligand binding and, consequently, for ligand-induced receptor conformational selection.  相似文献   

2.
CXCR1, a classic GPCR that binds IL-8, plays a key role in neutrophil activation and migration by activating phospholipase C (PLC)β through Gα(15) and Gα(i) which generates diacylglycerol and inositol phosphates (IPs). In this study, two conserved amino acid residues of CXCR1 on the transmembrane domain (TM) 3 and TM6, Leu128(3.43) (L128) and Val247(6.40) (V247), respectively, were selectively substituted with other amino acids to investigate the role of these conserved residues in CXCR1 activation. Although two selective mutants on Leu128, Leu128Ala (L128A) and Leu128Arg (L128R), demonstrated high binding affinity to IL-8, they were not capable of coupling to G proteins and consequently lost the functional response of the receptors. By contrast, among the four mutants at residue Val247 (TM6.40), replacing Val247 with Ala (V247A) and Asn (V247N) led to constitutive activation of mutant receptors when cotransfected with Gα(15). The V247N mutant also constitutively activated the Gα(i) protein. These results indicate that L128 on TM3.43 is involved in G protein coupling and receptor activation but is unimportant for ligand binding. On the other hand, V247 on TM6.40 plays a critical role in maintaining the receptor in the inactive state, and the substitution of V247 impaired the receptor constraint and stabilized an active conformation. Functionally, there was an increase in chemotaxis in response to IL-8 in cells expressing V247A and V247N. Our findings indicate that Leu128(3.43) and Val247(6.40) are critical for G protein coupling and activation of signaling effectors, providing a valuable insight into the mechanism of CXCR1 activation.  相似文献   

3.
The C-terminal region of the third intracellular loop of the AT(1) angiotensin receptor (AT(1)-R) is an important determinant of G protein coupling. The roles of individual residues in agonist-induced activation of G(q/11)-dependent phosphoinositide hydrolysis were determined by mutational analysis of the amino acids in this region. Functional studies on mutant receptors transiently expressed in COS-7 cells showed that alanine substitutions of the amino acids in positions 232-240 of the third loop had no major effect on signal generation. However, deletion mutations that removed Ile(238) or affected its position relative to transmembrane helix VI significantly impaired angiotensin II-induced inositol phosphate responses. Substitution of Ile(238) with an acidic residue abolished the ability of the receptor to mediate inositol phosphate production, whereas its replacement with basic or polar residues reduced the amplitude of inositol phosphate responses. Substitutions of Phe(239) with polar residues had relatively minor effects on inositol phosphate signal generation, but its replacement by aspartic acid reduced, and by positively charged residues (Lys, Arg) significantly increased, angiotensin II-induced inositol phosphate responses. The internalization kinetics of the Ile(238) and Phe(239) mutant receptors were impaired in parallel with the reduction in their signaling responses. These findings have identified Ile(238) and Phe(239) as the critical residues in the C-terminal region of the third intracellular loop of the AT(1)-R for receptor activation. They also suggest that an apolar amino acid corresponding to Ile(238) of the AT(1)-R is a general requirement for activation of other G protein-coupled receptors by their agonist ligands.  相似文献   

4.
The structural changes involved in ligand-dependent activation of G protein-coupled receptors are not well understood at present. To address this issue, we developed an in situ disulfide cross-linking strategy using the rat M(3) muscarinic receptor, a prototypical G(q)-coupled receptor, as a model system. It is known that a tyrosine residue (Tyr(254)) located at the C terminus of transmembrane domain (TM) V and several primarily hydrophobic amino acids present within the cytoplasmic portion of TM VI play key roles in determining the G protein coupling selectivity of the M(3) receptor subtype. To examine whether M3 receptor activation involves changes in the relative orientations of these functionally critical residues, pairs of cysteine residues were substituted into a modified version of the M(3) receptor that contained a factor Xa cleavage site within the third intracellular loop and lacked most endogenous cysteine residues. All analyzed mutant receptors contained a Y254C point mutation and a second cysteine substitution within the segment Lys(484)-Ser(493) at the intracellular end of TM VI. Following their transient expression in COS-7 cells, mutant receptors present in their native membrane environment (in situ) were subjected to mild oxidizing conditions, either in the absence or in the presence of the muscarinic agonist, carbachol. The successful formation of disulfide cross-links was monitored by studying changes in the electrophoretic mobility of oxidized, factor Xa-treated receptors on SDS gels. The observed cross-linking patterns indicated that M(3) receptor activation leads to structural changes that allow the cytoplasmic ends of TM V and TM VI to move closer to each other and that also appear to involve a major change in secondary structure at the cytoplasmic end of TM VI. This is the first study employing an in situ disulfide cross-linking strategy to examine agonist-dependent dynamic structural changes in a G protein-coupled receptor.  相似文献   

5.
GnRH regulates the reproductive system through cognate G protein-coupled receptors in vertebrates. Certain GnRH analogs that are antagonists at mammalian receptors behave as agonists at Xenopus laevis and chicken receptors. This phenomenon provides the opportunity to elucidate interactions and the mechanism underlying receptor activation. A D-Lys(iPr) in position 6 of the mammalian GnRH receptor antagonist is required for this agonist activity (inositol phosphate production) in the chicken and X. laevis GnRH receptors. Chimeric receptors, in which extracellular loop domains of the human GnRH receptor were substituted with the equivalent domains of the X. laevis GnRH receptor, identified extracellular loop 2 as the determinant for agonist activity of one of the mammalian antagonists: antagonist 135-18. Site-directed mutagenesis of nine nonconserved residues in the C-terminal domain of extracellular loop 2 of the human GnRH receptor showed that a minimum of two mutations (Val(5.24(197))Ala and Trp(5.32(205))His) is needed in this region for agonist activity of antagonist 135-18. Agonist activity of antagonist 135-18 was markedly decreased by low pH (<7.0) compared with GnRH agonists. These findings indicate that D-Lys(iPr)(6) forms a charge-supported hydrogen bond with His(5.32(205)) to stabilize the receptor in the active conformation. This discovery highlights the importance of EL-2 in ligand binding and receptor activation in G protein-coupled receptors.  相似文献   

6.
In seven-transmembrane (7TM), G protein-coupled receptors, highly conserved residues function as microswitches, which alternate between different conformations and interaction partners in an extended allosteric interface between the transmembrane segments performing the large scale conformational changes upon receptor activation. Computational analysis using x-ray structures of the β2-adrenergic receptor demonstrated that PheVI:09 (6.44), which in the inactive state is locked between the backbone and two hydrophobic residues in transmembrane (TM)-III, upon activation slides ∼2 Å toward TM-V into a tight pocket generated by five hydrophobic residues protruding from TM-III and TM-V. Of these, the residue in position III:16 (3.40) (often an Ile or Val) appears to function as a barrier or gate for the transition between inactive and active conformation. Mutational analysis showed that PheVI:09 is essential for the constitutive and/or agonist-induced signaling of the ghrelin receptor, GPR119, the β2-adrenergic receptor, and the neurokinin-1 receptor. Substitution of the residues constituting the hydrophobic pocket between TM-III and TM-V in the ghrelin receptor in four of five positions impaired receptor signaling. In GPR39, representing the 12% of 7TM receptors lacking an aromatic residue at position VI:09, unchanged agonist-induced signaling was observed upon Ala substitution of LeuVI:09 despite reduced cell surface expression of the mutant receptor. It is concluded that PheVI:09 constitutes an aromatic microswitch that stabilizes the active, outward tilted conformation of TM-VI relative to TM-III by sliding into a tight hydrophobic pocket between TM-III and TM-V and that the hydrophobic residue in position III:16 constitutes a gate for this transition.  相似文献   

7.
The first and third extracellular loops (ECL) of G protein-coupled receptors (GPCRs) have been implicated in ligand binding and receptor function. This study describes the results of an alanine/leucine scan of ECLs 1 and 3 and loop-associated transmembrane (TM) domains of the secretin-like GPCR calcitonin receptor-like receptor which associates with receptor activity modifying protein 1 to form the CGRP receptor. Leu195Ala, Val198Ala and Ala199Leu at the top of TM2 all reduced αCGRP-mediated cAMP production and internalization; Leu195Ala and Ala199Leu also reduced αCGRP binding. These residues form a hydrophobic cluster within an area defined as the “minor groove” of rhodopsin-like GPCRs. Within ECL1, Ala203Leu and Ala206Leu influenced the ability of αCGRP to stimulate adenylate cyclase. In TM3, His219Ala, Leu220Ala and Leu222Ala have influences on αCGRP binding and cAMP production; they are likely to indirectly influence the binding site for αCGRP as well as having an involvement in signal transduction. On the exofacial surfaces of TMs 6 and 7, a number of residues were identified that reduced cell surface receptor expression, most noticeably Leu351Ala and Glu357Ala in TM6. The residues may contribute to the RAMP1 binding interface. Ile360Ala impaired αCGRP-mediated cAMP production. Ile360 is predicted to be located close to ECL2 and may facilitate receptor activation. Identification of several crucial functional loci gives further insight into the activation mechanism of this complex receptor system and may aid rational drug design.  相似文献   

8.
Whereas numerous mutations of the human lutropin receptor (hLHR) and human TSH receptor (hTSHR) have been shown to cause constitutive activation of these receptors, it has been suggested that either the hFSHR as a whole, or the i3/TM VI region of the hFSHR, is less susceptible to mutation-induced constitutive activation. However, as shown herein, substitution of a highly conserved leucine residue in transmembrane III (TM III) of the hFSHR (Leu 111.18) with arginine causes a 5-fold increase in basal cAMP in transfected cells, consistent with a strong constitutive activation of the hFSHR. Interestingly, this mutant is unresponsive to further hormonal stimulation. Substitutions of hFSHR(L460) with lysine, alanine, or aspartate show that only arginine causes constitutive activation. However, all result in decreased FSH responsiveness, suggesting a role for L460 in FSH-stimulated cAMP production by the hFSHR. Because Leu 111.18 is highly conserved in rhodopsin-like G protein-coupled receptors (GPCRs), we tested the effects of substitution of the comparable leucine in the human beta2-adrenergic receptor (hbeta2-AR). Substitution of L124 in the hbeta2-AR with arginine, lysine, or alanine resulted in constitutive activation as evidenced by increased basal levels of cAMP that could be attenuated by an inverse agonist. In all cases, isoproterenol-stimulated cAMP was unaffected. Taken altogether, our data support a model whereby Leu 111.18 may play a general role in GPCRs by stabilizing them in an inactive state. Constitutive activation may arise by both a disruption of Leu 111.18 as well as the introduction of a specific residue that serves to stabilize the active state of the receptor.  相似文献   

9.
Protein transmenembrane (TM) segments participating in helix-helix packing commonly contain small residue patterns (termed GG4 or "small-xxx-small" motifs) at i and i + 4 positions. Within many TM segments - such as the glycophorin A (GpA) sequence L75IxxGVxxGVxxT87- the G17y-xxx-Gly83 motif often occurs in combination with large, usually beta3-branched aliphatic residues at adjacent positions, typified here by Val30 and Val84 residues. To explore the importance of local P-branched character on GpA dimerization, we made systematic replacements to all 16 combinations of single or double Ile, Leu, and AIa residues at GpA TM Val/Val positions 80 and 84. Using the TOXCAT system to assay self-oligomerization in the Escherichia coli inner membrane--we observed that (i) combinations of Val and lie residues maintained, or improved dimerization levels; (ii) single Ala or Leu mutant combinations with Val or Ile maintained near-wild type dimerization affinities; and (iii) in the absence of beta-branching, i.e., Leu/Leu, Ala/Ala and Ala/Leu combinations, GpA dimerization was significantly diminished. An apparent capacity of lle-containing mutants to increase GpA dimerization versus WT likely arises from improved van der Waals packing (vs. Val) within the locus of helix contact, consistent with correlations we noted in lipid accessibility measurements. Examination of several synthetic peptides with sequences corresponding to selected GpA mutants (VV VI, IV II, and LL) confirmed their dimerization on sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). The overall results reinforce the importance of a beta-branch-containing "ridge" residue to complement a "small-xxx-small groove" in promotion of TM-TM interactions.  相似文献   

10.
Publication of the rhodopsin X-ray structure has facilitated the development of homology models of other G protein-coupled receptors. However, possible shifts of transmembrane (TM) alpha helices, expected variations in helical distortions, and differences in loop size necessitate experimental verification of these comparative models. To refine a rhodopsin-based homology model of the mu-opioid receptor (MOR), we experimentally determined structural-distance constraints from intrinsic and engineered metal-binding sites in the rat MOR. Investigating the relatively high intrinsic affinity of MOR for Zn(2+) (IC(50) approximately 30microM), we observed that mutation of His(319) (TM7) abolished Zn(2+) inhibition of ligand binding, while mutation of Asp(216) (extracellular loop 2) decreased the effect of Zn(2+), suggesting these residues participate in the intrinsic Zn(2+)-binding center of MOR. To verify the relative orientation of TM5 and TM6 and to examine whether a rhodopsin-like alpha aneurism is present in TM5, we engineered Zn(2+)-binding centers by mutating residues of TM5 and TM6 to Cys or His, making use of the native His(297) in TM6 as an additional Zn(2+)-coordination site. Inhibition of opioid ligand binding by Zn(2+) suggests that residues Ile(234) and Phe(237) in TM5 face the binding-site crevice and form a metal-binding center with His(297) and Val(300) in TM6. This observation is inconsistent with a rhodopsin-like structure, which would locate Ile(234) on the lipid-exposed side of TM5, too distant from other residues making up the Zn(2+)-binding site. Subsequent distance geometry refinement of the MOR model indicates that the rhodopsin-like alpha aneurism is likely absent in TM2 but present in TM5.  相似文献   

11.
A model of the helical part of the human MT2 melatonin (hMT2) receptor, a member of the G protein-coupled receptors superfamily has been generated, based on the structure of bovine rhodopsin. Modeling has been combined with site-directed mutagenesis to investigate the role of the specific amino acid residues within the transmembrane domains (TM) numbers V, VI and VII of hMT2 receptor in the interaction with 2-iodomelatonin. Saturation binding assays with 2-iodomelatonin demonstrated that the substitution V204A (TMV) resulted in total loss of binding while the mutation V205A had no effect. The replacement of F209 with alanine led to a significant decrease in the Bmax value of receptor binding while mutations V205A and F209A also within TM V did not significantly change binding properties of the hMT2 receptor. In the case of TM VI, the substitution G271T caused substantial decrease in 2-iodomelatonin binding to the hMT2 receptor. The change L272A (TM VI) as well as mutation Y298A within TM VII completely abolished ligand binding to the receptor. These data suggest that several new amino acid residues within TM V, VI and VII are involved in ligand-MT2 receptor interaction.  相似文献   

12.
5-HT(3) receptors are members of the Cys loop family of ligand-gated ion channels. We used the substituted cysteine accessibility method to identify amino acid residues in the channel forming domain, M2 that face the water-accessible surface and to locate their position in the ion conduction pathway. Cysteine was substituted for each residue, one at a time, in the M2 segment (Asp(274)-Asp(298)). 5-Hydroxytryptamine EC(50) values for functional mutants did not vary from wild type (1.4 +/- 0.2 microm) by more than 10-fold, and five mutants were nonfunctional. Covalent modification of the mutant receptors with sulfydryl reagents revealed 11 residues to be water-accessible, with a pattern consistent with an alpha-helix except at Leu(285) and Leu(293). The data suggest that charge selectivity begins at a more cytoplasmic level than Val(291). Modification at some positions (Val(291), Leu(293), Ile(294), Leu(287), and Ser(280)) resulted in channels that were locked open. Reaction rates with accessible cysteines were voltage-dependent at some residues, suggesting that access occurs via the ion channel. Overall the data observed are similar but not identical to that reported for other members of the family and confirms the high degree of structural and functional homology between receptors in the Cys loop receptor family.  相似文献   

13.
The intrinsic structural determinants for export trafficking of G protein‐coupled receptors (GPCRs) have been mainly identified in the termini of the receptors. In this report, we determined the role of the first intracellular loop (ICL1) in the transport from the endoplasmic reticulum (ER) to the cell surface of GPCRs. The α2B‐adrenergic receptor (AR) mutant lacking the ICL1 is unable to traffic to the cell surface and to initiate signaling measured as ERK1/2 activation. Mutagenesis studies identify a single Leu48 residue in the ICL1 modulates α2B‐AR export from the ER. The ER export function of the Leu48 residue can be substituted by Phe, but not Ile, Val, Tyr and Trp, and is unlikely involved in correct folding or dimerization of α2B‐AR in the ER. Importantly, the isolated Leu residue is remarkably conserved in the center of the ICL1s among the family A GPCRs and is also required for the export to the cell surface of β2‐AR, α1B‐AR and angiotensin II type 1 receptor. These data indicate a crucial role for a single Leu residue within the ICL1 in ER export of GPCRs.  相似文献   

14.
The negatively charged side chain of an Asp residue in transmembrane domain 2 is likely to play an important role in receptor signalling since it is highly conserved in the whole family of G protein-coupled receptors, except in mammalian gonadotropin-releasing hormone (GnRH) receptors. In this paper we show that the conserved Asp(90) of the catfish GnRH receptor can be substituted by a neutral Asn(90) without abolishing receptor signalling if another negatively charged Glu(93) is introduced in a proximal region of the receptor interior, thereby mimicking the Glu(90)-Lys(121) salt bridge of mammalian GnRH receptors.  相似文献   

15.
Structural microdomains of G protein-coupled receptors (GPCRs) consist of spatially related side chains that mediate discrete functions. The conserved helix 2/helix 7 microdomain was identified because the gonadotropin-releasing hormone (GnRH) receptor appears to have interchanged the Asp(2.50) and Asn(7.49) residues which are conserved in transmembrane helices 2 and 7 of rhodopsin-like GPCRs. We now demonstrate that different side chains of this microdomain contribute specifically to receptor expression, heterotrimeric G protein-, and small G protein-mediated signaling. An Asn residue is required in position 2.50(87) for expression of the GnRH receptor at the cell surface, most likely through an interaction with the conserved Asn(1.50(53)) residue, which we also find is required for receptor expression. Most GPCRs require an Asp side chain at either the helix 2 or helix 7 locus of the microdomain for coupling to heterotrimeric G proteins, but the GnRH receptor has transferred the requirement for an acidic residue from helix 2 to 7. However, the presence of Asp at the helix 7 locus precludes small G protein-dependent coupling to phospholipase D. These results implicate specific components of the helix 2/helix 7 microdomain in receptor expression and in determining the ability of the receptor to adopt distinct activated conformations that are optimal for interaction with heterotrimeric and small G proteins.  相似文献   

16.
Wess J  Blin N  Mutschler E  Blüml K 《Life sciences》1995,56(11-12):915-922
Muscarinic acetylcholine receptors (m1-m5) were studied by a combined molecular genetic/pharmacologic approach to elucidate the molecular characteristics of the ligand binding site and of the receptor domains involved in G protein coupling. Site-directed mutagenesis studies of the rat m3 muscarinic receptor suggest that the acetylcholine binding domain is formed by a series of hydrophilic amino acids located in the "upper" half of transmembrane domains (TM) III, V, VI, and VII. Moreover, we showed that mutational modification of a TM VI Asn residue (Asn507 in the rat m3 receptor sequence) which is characteristic for the muscarinic receptor family has little effect on high-affinity acetylcholine binding and receptor activation, but results in dramatic reductions in binding affinities for certain subclasses of muscarinic antagonists. The N-terminal portion of the third intracellular loop (i3) of muscarinic and other G protein-coupled receptors has been shown to play a central role in determining the G protein coupling profile of a given receptor subtype. Insertion mutagenesis studies with the rat m3 muscarinic receptor suggest that this region forms an amphiphilic alpha-helix and that the hydrophobic side of this helix represents an important G protein recognition surface. Further mutational analysis of this receptor segment showed that Tyr254 located at the N-terminus of the i3 loop of the m3 muscarinic receptor plays a key role in muscarinic receptor-induced Gq activation. The studies described here, complemented by biochemical and biophysical approaches, should eventually lead to a detailed structural model of the ligand-receptor-G protein complex.  相似文献   

17.
The dog GnRH receptor was cloned to facilitate the identification and characterization of selective nonpeptide GnRH antagonists. The dog receptor is 92% identical to the human GnRH receptor. Despite such high conservation, the quinolone-based nonpeptide GnRH antagonists were clearly differentiated by each receptor species. By contrast, peptide antagonist binding and functional activity were not differentiated by the two receptors. The basis of the differences was investigated by preparing chimeric receptors followed by site-directed mutagenesis. Remarkably, a single substitution of Phe313 to Leu313 in the dog receptor explained the major differences in binding affinities and functional activities. The single amino acid replacement of Phe313 of the human receptor with Leu313 resulted in a 160-fold decrease of binding affinity of the nonpeptide antagonist compound 1. Conversely, the replacement of Leu313 of the dog receptor with Phe313 resulted in a 360-fold increase of affinity for this compound. These results show that Phe313 of the GnRH receptor is critical for the binding of this structural class of GnRH antagonists and that the dog receptor can be "humanized" by substituting Leu for Phe. This study provides the first identification of a critical residue in the binding pocket occupied by nonpeptide GnRH antagonists and reinforces cautious extrapolation of ligand activity across highly conserved receptors.  相似文献   

18.
Of 12 naturally occurring, activating mutations in the seven-transmembrane (7TM) domain of the human Ca2+ receptor (CaR) identified previously in subjects with autosomal dominant hypocalcemia (ADH), five appear at the junction of TM helices 6 and 7 between residue Ile819 and Glu837. After identifying a sixth activating mutation in this region, V836L, in an ADH patient, we studied the remaining residues in this region to determine whether they are potential sites for activating mutations. Alanine-scanning mutagenesis revealed five additional residues in this region that when substituted by alanine led to CaR activation. We also found that, whereas E837A did not activate the receptor, E837D and E837K mutations did. Thus, region Ile819-Glu837 of the 7TM domain represents a "hot spot" for naturally occurring, activating mutations of the receptor, and most of the residues in this region apparently maintain the 7TM domain in its inactive configuration. Unique among the residues in this region, Pro823, which is highly conserved in family 3 of the G protein-coupled receptors, when mutated to either alanine or glycine, despite good expression severely impaired CaR activation by Ca2+. Both the P823A mutation and NPS 2143, a negative allosteric modulator that acts on the 7TM through a critical interaction with Glu837, blocked activation of the CaR by various ADH mutations. These results suggest that the 7TM domain region Ile819-Glu837 plays a key role in CaR activation by Ca2+. The implications of our finding that NPS 2143 corrects the molecular defect of ADH mutations for treatment of this disease are also discussed.  相似文献   

19.
The structural determinants for the export trafficking of G protein-coupled receptors are poorly defined. In this report, we determined the role of carboxyl termini (CTs) of alpha2B-adrenergic receptor (AR) and angiotensin II type 1A receptor (AT1R) in their transport from the endoplasmic reticulum (ER) to the cell surface. The alpha2B-AR and AT1R mutants lacking the CTs were completely unable to transport to the cell surface and were trapped in the ER. Alanine-scanning mutagenesis revealed that residues Phe436 and Ile433-Leu444 in the CT were required for alpha2B-AR export. Insertion or deletion between Phe436 and Ile443-Leu444 as well as Ile443-Leu444 mutation to FF severely disrupted alpha2B-AR transport, indicating there is a defined spatial requirement, which is essential for their function as a single motif regulating receptor transport from the ER. Furthermore, the carboxyl-terminally truncated as well as Phe436 and Ile443-Leu444 mutants were unable to bind ligand and the alpha2B-AR CT conferred its transport properties to the AT1R mutant without the CT in a Phe436-Ile443-Leu444-dependent manner. These data suggest that the Phe436 and Ile443-Leu444 may be involved in both proper folding and export from the ER of the receptor. Similarly, residues Phe309 and Leu316-Leu317 in the CT were identified as essential for AT1R export. The sequence F(X)6LL (where X can be any residue, and L is leucine or isoleucine) is highly conserved in the membrane-proximal CTs of many G protein-coupled receptors and may function as a common motif mediating receptor transport from the ER to the cell surface.  相似文献   

20.
The mammalian GnRH receptor is an atypical G protein-coupled receptor which lacks the C-terminal cytoplasmic tail that is present in all other seven-transmembrane domain receptors. The mouse and rat GnRH receptors contain 327 amino acids, whereas human, sheep, and bovine receptors have an additional residue in the second extracellular loop at position 191. Another notable species difference is that human receptors undergo agonist-induced internalization much more rapidly than the mouse receptor. In this report, the role of the additional amino acid (Lys191) in GnRH receptor function was studied in transiently expressed mutant and wild-type human and mouse GnRH receptors. Deletion of Lys191 from the human GnRH receptor caused a 4-fold increase in receptor expression in COS-1 and HEK 293 cells and a modest increase in binding affinity. The magnitude of the agonist-induced inositol phosphate response mediated by the deltaK191 human receptor was similar to that of the wild-type receptor, but the EC50 was decreased by about 5-fold. In addition, the rate of internalization of the deltaK191 human receptor was significantly reduced and was similar to that of the mouse receptor. In contrast to these effects of deletion of Lys191, its replacement by Arg, Glu, Gln, or Ala caused no significant change in receptor expression or function. These findings demonstrate that a specific residue in the extracellular region of the human GnRH receptor is a significant determinant of receptor expression, agonist-induced activation, and internalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号