首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nociceptive C-fibers of the dorsal root ganglion express several sodium channel isoforms that associate with one or more regulatory beta-subunits (beta1-beta4). To determine the effects of individual and combinations of the beta-subunit isoforms, we co-expressed Nav1.8 in combination with these beta-subunits in Xenopus oocytes. Whole-cell inward sodium currents were recorded using the two-microelectrode voltage clamp method. Our studies revealed that the co-expression beta1 alone or in combination with other beta-subunits enhanced current amplitudes, accelerated current decay kinetics, and negatively shifted the steady-state curves. In contrast, beta2 alone and in combination with beta1 altered steady-state inactivation of Nav1.8 to more depolarized potentials. Co-expression of beta3 shifted steady-state inactivation to more depolarized potentials; however, combined beta1beta3 expression caused no shift in channel availability. The results in this study suggest that the functional behavior of Nav1.8 will vary depending on the type of beta-subunit that expressed under normal and disease states.  相似文献   

2.
The single channel gating properties of human CaV2.1 (P/Q-type) calcium channels and their modulation by the auxiliary beta1b, beta2e, beta3a, and beta4a subunits were investigated with cell-attached patch-clamp recordings on HEK293 cells stably expressing human CaV2.1 channels. These calcium channels showed a complex modal gating, which is described in this and the following paper (Fellin, T., S. Luvisetto, M. Spagnolo, and D. Pietrobon. 2004. J. Gen. Physiol. 124:463-474). Here, we report the characterization of two modes of gating of human CaV2.1 channels, the slow mode and the fast mode. A channel in the two gating modes differs in mean closed times and latency to first opening (both longer in the slow mode), in voltage dependence of the open probability (larger depolarizations are necessary to open the channel in the slow mode), in kinetics of inactivation (slower in the slow mode), and voltage dependence of steady-state inactivation (occurring at less negative voltages in the slow mode). CaV2.1 channels containing any of the four beta subtypes can gate in either the slow or the fast mode, with only minor differences in the rate constants of the transitions between closed and open states within each mode. In both modes, CaV2.1 channels display different rates of inactivation and different steady-state inactivation depending on the beta subtype. The type of beta subunit also modulates the relative occurrence of the slow and the fast gating mode of CaV2.1 channels; beta3a promotes the fast mode, whereas beta4a promotes the slow mode. The prevailing mode of gating of CaV2.1 channels lacking a beta subunit is a gating mode in which the channel shows shorter mean open times, longer mean closed times, longer first latency, a much larger fraction of nulls, and activates at more positive voltages than in either the fast or slow mode.  相似文献   

3.
One of the outstanding developments in clinical neurology has been the identification of ion channel mutations as the origin of a wide variety of inherited disorders like migraine, epilepsy, and ataxia. The study of several channelopathies has provided crucial insights into the molecular mechanisms, pathogenesis, and therapeutic approaches to complex neurological diseases. This review addresses the mutations underlying familial hemiplegic migraine (FHM) with particular interest in Cav2.1 (i.e., P/Q-type) voltage-activated Ca2+ channel FHM type-1 mutations (FHM1). Transgenic mice harboring the human pathogenic FHM1 mutation R192Q or S218L (KI) have been used as models to study neurotransmission at several central and peripheral synapses. FHM1 KI mice are a powerful tool to explore presynaptic regulation associated with expression of Cav2.1 channels. FHM1 Cav2.1 channels activate at more hyperpolarizing potentials and show an increased open probability. These biophysical alterations may lead to a gain-of-function on synaptic transmission depending upon factors such as action potential waveform and/or Cav2.1 splice variants and auxiliary subunits. Analysis of FHM knock-in mouse models has demonstrated a deficient regulation of the cortical excitation/inhibition (E/I) balance. The resulting excessive increases in cortical excitation may be the mechanisms that underlie abnormal sensory processing together with an increase in the susceptibility to cortical spreading depression (CSD). Increasing evidence from FHM KI animal studies support the idea that CSD, the underlying mechanism of aura, can activate trigeminal nociception, and thus trigger the headache mechanisms.  相似文献   

4.
Our interest was drawn to the I-II loop of Cav3 channels for two reasons: one, transfer of the I-II loop from a high voltage-activated channel (Cav2.2) to a low voltage-activated channel (Cav3.1) unexpectedly produced an ultra-low voltage activated channel; and two, sequence variants of the I-II loop found in childhood absence epilepsy patients altered channel gating and increased surface expression of Cav3.2 channels. To determine the roles of this loop we have studied the structure of the loop and the biophysical consequences of altering its structure. Deletions localized the gating brake to the first 62 amino acids after IS6 in all three Cav3 channels, establishing the evolutionary conservation of this region and its function. Circular dichroism was performed on a purified fragment of the I-II loop from Cav3.2 to reveal a high α-helical content. De novo computer modeling predicted the gating brake formed a helix-loop-helix structure. This model was tested by replacing the helical regions with poly-proline-glycine (PGPGPG), which introduces kinks and flexibility. These mutations had profound effects on channel gating, shifting both steady-state activation and inactivation curves, as well as accelerating channel kinetics. Mutations designed to preserve the helical structure (poly-alanine, which forms α-helices) had more modest effects. Taken together, we conclude the second helix of the gating brake establishes important contacts with the gating machinery, thereby stabilizing a closed state of T-channels, and that this interaction is disrupted by depolarization, allowing the S6 segments to spread open and Ca (2+) ions to flow through.  相似文献   

5.
Missense mutations in the pore-forming human alpha(1A) subunit of neuronal P/Q-type Ca(2+) channels are associated with familial hemiplegic migraine. We studied the functional consequences on P/Q-type Ca(2+) channel function of three recently identified mutations, R583Q, D715E, and V1457L after introduction into rabbit alpha(1A) and expression in Xenopus laevis oocytes. The potential for half-maximal channel activation of Ba(2+) inward currents was shifted by > 9 mV to more negative potentials in all three mutants. The potential for half-maximal channel inactivation was shifted by > 7 mV in the same direction in R583Q and D715E. Biexponential current inactivation during 3-s test pulses was significantly faster in D715E and slower in V1457L than in wild type. Mutations R583Q and V1457L delayed the time course of recovery from channel inactivation. The decrease of peak current through R583Q (30.2%) and D715E (30. 1%) but not V1457L (18.7%) was more pronounced during 1-Hz trains of 15 100-ms pulses than in wild type (18.2%). Our data demonstrate that the mutations R583Q, D715E, and V1457L, like the previously reported mutations T666M, V714A, and I1819L, affect P/Q-type Ca(2+) channel gating. We therefore propose that altered channel gating represents a common pathophysiological mechanism in familial hemiplegic migraine.  相似文献   

6.
The inwardly rectifying potassium channel Kir6.2 is the pore-forming subunit of the ATP-sensitive potassium (K(ATP)) channel, which controls insulin secretion by coupling glucose metabolism to membrane potential in beta-cells. Loss of channel function because of mutations in Kir6.2 or its associated regulatory subunit, sulfonylurea receptor 1, causes congenital hyperinsulinism (CHI), a neonatal disease characterized by persistent insulin secretion despite severe hypoglycemia. Here, we report a novel K(ATP) channel gating defect caused by CHI-associated Kir6.2 mutations at arginine 301 (to cysteine, glycine, histidine, or proline). These mutations in addition to reducing channel expression at the cell surface also cause rapid, spontaneous current decay, a gating defect we refer to as inactivation. Based on the crystal structures of Kir3.1 and KirBac1.1, Arg-301 interacts with several residues in the neighboring Kir6.2 subunit. Mutation of a subset of these residues also induces channel inactivation, suggesting that the disease mutations may cause inactivation by disrupting subunit-subunit interactions. To evaluate the effect of channel inactivation on beta-cell function, we expressed an alternative inactivation mutant R301A, which has equivalent surface expression efficiency as wild type channels, in the insulin-secreting cell line INS-1. Mutant expression resulted in more depolarized membrane potential and elevated insulin secretion at basal glucose concentration (3 mm) compared with cells expressing wild type channels, demonstrating that the inactivation gating defect itself is sufficient to cause loss of channel function and hyperinsulinism. Our studies suggest the importance of Kir6.2 subunit-subunit interactions in K(ATP) channel gating and function and reveal a novel gating defect underlying CHI.  相似文献   

7.
Mutation S218L in the Ca(V)2.1 alpha(1) subunit of P/Q-type Ca(2+) channels produces a severe clinical phenotype in which typical attacks of familial hemiplegic migraine (FHM) triggered by minor head trauma are followed, after a lucid interval, by deep (even fatal) coma and long lasting severe cerebral edema. We investigated the functional consequences of this mutation on human Ca(V)2.1 channels expressed in human embryonic kidney 293 cells and in neurons from Ca(V)2.1 alpha(1)(-/-) mice by combining single channel and whole cell patch clamp recordings. Mutation S218L produced a shift to lower voltages of the single channel activation curve and a consequent increase of both single channel and whole cell Ba(2+) influx in both neurons and human embryonic kidney 293 cells. Compared with the other FHM-1 mutants, the S218L shows one of the largest gains of function, especially for small depolarizations, which are insufficient to open the wild-type channel. S218L channels open at voltages close to the resting potential of many neurons. Moreover, the S218L mutation has unique effects on the kinetics of inactivation of the channel because it introduces a large component of current that inactivates very slowly, and it increases the rate of recovery from inactivation. During long depolarizations at voltages that are attained during cortical spreading depression, the extent of inactivation of the S218L channel is considerably smaller than that of the wild-type channel. We discuss how the unique combination of a particularly slow inactivation during cortical spreading depression and a particularly low threshold of channel activation might lead to delayed severe cerebral edema and coma after minor head trauma.  相似文献   

8.
We have investigated the molecular mechanisms whereby the I-II loop controls voltage-dependent inactivation in P/Q calcium channels. We demonstrate that the I-II loop is localized in a central position to control calcium channel activity through the interaction with several cytoplasmic sequences; including the III-IV loop. Several experiments reveal the crucial role of the interaction between the I-II loop and the III-IV loop in channel inactivation. First, point mutations of two amino acid residues of the I-II loop of Ca(v)2.1 (Arg-387 or Glu-388) facilitate voltage-dependent inactivation. Second, overexpression of the III-IV loop, or injection of a peptide derived from this loop, produces a similar inactivation behavior than the mutated channels. Third, the III-IV peptide has no effect on channels mutated in the I-II loop. Thus, both point mutations and overexpression of the III-IV loop appear to act similarly on inactivation, by competing off the native interaction between the I-II and the III-IV loops of Ca(v)2.1. As they are known to affect inactivation, we also analyzed the effects of beta subunits on these interactions. In experiments in which the beta(4) subunit is co-expressed, the III-IV peptide is no longer able to regulate channel inactivation. We conclude that (i) the contribution of the I-II loop to inactivation is partly mediated by an interaction with the III-IV loop and (ii) the beta subunits partially control inactivation by modifying this interaction. These data provide novel insights into the mechanisms whereby the beta subunit, the I-II loop, and the III-IV loop altogether can contribute to regulate inactivation in high voltage-activated calcium channels.  相似文献   

9.
We have investigated the functional consequences of three P/Q-type Ca(2+) channel alpha1A (Ca(v)2.1alpha(1)) subunit mutations associated with different forms of ataxia (episodic ataxia type 2 (EA-2), R1279Stop, AY1593/1594D; progressive ataxia (PA), G293R). Mutations were introduced into human alpha1A cDNA and heterologously expressed in Xenopus oocytes or tsA-201 cells (with alpha(2)delta and beta1a) for electrophysiological and biochemical analysis. G293R reduced current density in both expression systems without changing single channel conductance. R1279Stop and AY1593/1594D protein were expressed in tsA-201 cells but failed to yield inward barium currents (I(Ba)). However, AY1593/1594D mediated I(Ba) when expressed in oocytes. G293R and AY1593/1594D shifted the current-voltage relationship to more positive potentials and enhanced inactivation during depolarizing pulses (3 s) and pulse trains (100 ms, 1 Hz). Mutation AY1593/1594D also slowed recovery from inactivation. Single channel recordings revealed a change in fast channel gating for G293R evident as a decrease in the mean open time. Our data support the hypothesis that a pronounced loss of P/Q-type Ca(2+) channel function underlies the pathophysiology of EA-2 and PA. In contrast to other EA-2 mutations, AY1593/1594D and G293R form at least partially functional channels.  相似文献   

10.
Voltage-gated sodium channels consist of a pore-forming alpha subunit associated with beta1 subunits and, for brain sodium channels, beta2 subunits. Although much is known about the structure and function of the alpha subunit, there is little information on the functional role of the 16 extracellular loops. To search for potential functional activities of these extracellular segments, chimeras were studied in which an individual extracellular loop of the rat heart (rH1) alpha subunit was substituted for the corresponding segment of the rat brain type IIA (rIIA) alpha subunit. In comparison with rH1, wild-type rIIA alpha subunits are characterized by more positive voltage-dependent activation and inactivation, a more prominent slow gating mode, and a more substantial shift to the fast gating mode upon coexpression of beta1 subunits in Xenopus oocytes. When alpha subunits were expressed alone, chimeras with substitutions from rH1 in five extracellular loops (IIS5-SS1, IISS2-S6, IIIS1-S2, IIISS2-S6, and IVS3-S4) had negatively shifted activation, and chimeras with substitutions in three of these (IISS2-S6, IIIS1-S2, and IVS3-S4) also had negatively shifted steady-state inactivation. rIIA alpha subunit chimeras with substitutions from rH1 in five extracellular loops (IS5-SS1, ISS2-S6, IISS2-S6, IIIS1-S2, and IVS3-S4) favored the fast gating mode. Like wild-type rIIA alpha subunits, all of the chimeric rIIA alpha subunits except chimera IVSS2-S6 were shifted almost entirely to the fast gating mode when coexpressed with beta1 subunits. In contrast, substitution of extracellular loop IVSS2-S6 substantially reduced the effectiveness of beta1 subunits in shifting rIIA alpha subunits to the fast gating mode. Our results show that multiple extracellular loops influence voltage-dependent activation and inactivation and gating mode of sodium channels, whereas segment IVSS2-S6 plays a dominant role in modulation of gating by beta1 subunits. Evidently, several extracellular loops are important determinants of sodium channel gating and modulation.  相似文献   

11.
The type IIA voltage-gated sodium Na(+) channel from rat brain is composed of a large, pore-forming alpha subunit and the auxiliary subunits beta1 and beta2. When expressed in Xenopus oocytes, the beta1 subunit modulates the gating properties of the type IIA alpha subunit, resulting in acceleration of both inactivation and recovery from inactivation and in a negative shift in the voltage dependence of fast inactivation. The beta1 subunit is composed of an extracellular domain with a single immunoglobulin-like fold, a single transmembrane segment, and a small intracellular domain. A series of chimeras with exchanges of domains between the Na(+) channel beta1 and beta2 subunits and between beta1 and the structurally related protein myelin P0 were constructed and analyzed by two-microelectrode voltage clamp in Xenopus oocytes. Only chimeras containing the beta1 extracellular domain were capable of beta1-like modulation of Na(+) channel gating. Neither the transmembrane segment nor the intracellular domain was required for modulation, although mutation of Glu(158) within the transmembrane domain altered the voltage dependence of steady-state inactivation. A truncated beta1 subunit was engineered in which the beta1 extracellular domain was fused to a recognition sequence for attachment of a glycosylphosphatidylinositol membrane anchor. The beta1(ec)-glycosylphosphatidylinositol protein fully reproduced modulation of Na(+) channel inactivation and recovery from inactivation by wild-type beta1. Our findings demonstrate that extracellular domain of the beta1 subunit is both necessary and sufficient for the modulation of Na(+) channel gating.  相似文献   

12.
The single channel gating properties of human CaV2.1 (P/Q-type) calcium channels were investigated with cell-attached patch-clamp recordings on HEK293 cells stably expressing these calcium channels. Human CaV2.1 channels showed a complex modal gating, which is described in this and the preceding paper (Luvisetto, S., T. Fellin, M. Spagnolo, B. Hivert, P.F. Brust, M.M. Harpold, K.A. Stauderman, M.E. Williams, and D. Pietrobon. 2004. J. Gen. Physiol. 124:445-461). Here, we report the characterization of the so-called b gating mode. A CaV2.1 channel in the b gating mode shows a bell-shaped voltage dependence of the open probability, and a characteristic low open probability at high positive voltages, that decreases with increasing voltage, as a consequence of both shorter mean open time and longer mean closed time. Reversible transitions of single human CaV2.1 channels between the b gating mode and the mode of gating in which the channel shows the usual voltage dependence of the open probability (nb gating mode) were much more frequent (time scale of seconds) than those between the slow and fast gating modes (time scale of minutes; Luvisetto et al., 2004), and occurred independently of whether the channel was in the fast or slow mode. We show that the b gating mode produces reversible uncoupling of inactivation in human CaV2.1 channels. In fact, a CaV2.1 channel in the b gating mode does not inactivate during long pulses at high positive voltages, where the same channel in both fast-nb and slow-nb gating modes inactivates relatively rapidly. Moreover, a CaV2.1 channel in the b gating mode shows a larger availability to open than in the nb gating modes. Regulation of the complex modal gating of human CaV2.1 channels could be a potent and versatile mechanism for the modulation of synaptic strength and plasticity as well as of neuronal excitability and other postsynaptic Ca2+-dependent processes.  相似文献   

13.
Acetylcholine receptor (AChR) channels with proline (P) mutations in the putative pore-forming domain (at the 12' position of the M2 segment) were examined at the single-channel level. For all subunits (alpha, beta, epsilon, and delta), a 12'P mutation increased the open channel lifetime >5-fold. To facilitate the estimation of binding and gating rate constants, subunits with 12'P mutations were co-expressed with alpha subunits having a binding site mutation that slows channel opening (alphaD200N). In these AChRs, a 12'P mutation in epsilon or beta slowed the closing rate constant approximately 6-fold but had no effect on either the channel opening rate constant or the equilibrium dissociation constant for ACh (Kd). In contrast, a 12'P mutation in delta slowed the channel closing rate constant only approximately 2-fold and significantly increased both the channel opening rate constant and the Kd. Pairwise expression of 12'P subunits indicates that mutations in epsilon and beta act nearly independently, but one in delta reduces the effect of a homologous mutation in epsilon or beta. The results suggest that a 12'P mutation in epsilon and beta has mainly local effects, whereas one in delta has both local and distributed effects that influence both agonist binding and channel gating.  相似文献   

14.
The effects of changes in intracellular and extracellular free ionized [Mg2+] on inactivation of ICa and IBa in isolated ventricular myocytes of the frog were investigated using the whole-cell configuration of the patch-clamp technique. Intracellular [Mg2+] was varied by internal perfusion with solutions having different calculated free [Mg2+]. Increasing [Mg2+]i from 0.3 mM to 3.0 mM caused a 16% reduction in peak ICa amplitude and a 36% reduction in peak IBa amplitude, shifted the current-voltage relationship and the inactivation curve approximately 10 mV to the left, decreased relief from inactivation, and caused a dramatic increase in the rate of inactivation of IBa. The shifts in the current-voltage and inactivation curves were attributed to screening of internal surface charge by Mg2+. The increased rate of inactivation of IBa was due to an increase in both the steady-state level of inactivation as well as an increase in the rate of inactivation, as measured by two-pulse inactivation protocols. Increasing external [Mg2+] decreased IBa amplitude and shifted the current-voltage and inactivation curves to the right, but, in contrast to the effect of internal Mg2+, had little effect on the inactivation kinetics or the steady-state inactivation of IBa at potentials positive to 0 mV. These observations suggest that the Ca channel can be blocked quite rapidly by external Mg2+, whereas the block by [Mg2+]i is time and voltage dependent. We propose that inactivation of Ca channels can occur by both calcium-dependent and purely voltage-dependent mechanisms, and that a component of voltage-dependent inactivation can be modulated by changes in cytoplasmic Mg2+.  相似文献   

15.
Associated with the opening and closing of the sodium channels of nerve membrane is a small component of capacitative current, the gating current. After termination of a depolarizing step the gating current and sodium current decay with similar time courses. Both currents decay more rapidly at relatively negative membrane voltages than at positive ones. The gating current that flows during a depolarizing step is diminished by a pre-pulse that inactivates the sodium permeability. A pre-pulse has no effect after inactivation has been destroyed by internal perfusion with the proteolytic enzyme pronase. Gating charge (considered as positive charge) moves outward during a positive voltage step, with voltage dependent kinetics. The time constant of the outward gating current is a maximum at about minus 10 mV, and has a smaller value at voltages either more positive or negative than this value.  相似文献   

16.
Rat brain (rBIIA) sodium channel fast inactivation kinetics and the time course of recovery of the immobilized gating charge were compared for wild type (WT) and the pore mutant D384N heterologously expressed in Xenopus oocytes with or without the accessory beta1-subunit. In the absence of the beta1-subunit, WT and D384N showed characteristic bimodal inactivation kinetics, but with the fast gating mode significantly more pronounced in D384N. Both, for WT and D384N, coexpression of the beta1-subunit further shifted the time course of inactivation to the fast gating mode. However, the recovery of the immobilized gating charge (Qg) of D384N was clearly faster than in WT, irrespective of the presence of the beta1-subunit. This was also reflected by the kinetics of the slow Ig OFF tail. On the other hand, the voltage dependence of the Qg-recovery was not changed by the mutation. These data suggest a direct interaction between the selectivity filter and the immobilized voltage sensor S4D4 of rBIIA sodium channels.  相似文献   

17.
Calcium channel beta subunits are essential regulatory elements of the gating properties of high voltage-activated calcium channels. Co-expression with beta(3) subunits typically accelerates inactivation, whereas co-expression with beta(4) subunits results in a slowly inactivating phenotype. Here, we have examined the molecular basis of the differential effect of these two subunits on the inactivation characteristics of Ca(v)2.2 + alpha(2)-delta(1) N-type calcium channels by creating a series of 22 chimeric beta subunits that are based on various combinations of variable and conserved regions of the parent beta subunit isoforms. Our data show that replacement of the N terminus region of beta(4) with a corresponding 14-amino acid stretch of beta(3) sequence accelerates the inactivation kinetics to levels seen with wild type beta(3). A similar kinetic speeding is observed by a concomitant substitution of the second conserved and variable regions, but not when these regions are substituted individually, suggesting that 1) the second variable and conserved regions cooperatively regulate N-type calcium channel inactivation and 2) that there are two redundant mechanisms that allow the beta(3) subunit to accelerate N-type channel inactivation. In contrast with previous reports in Ca(v)2.1 calcium channels, deletion of the C-terminal region of Ca(v)2.2 did not alter the regulation of the channel by wild type and chimeric beta subunits. Hence, the molecular underpinnings of beta subunit regulation of voltage-gated calcium channels appear to vary with calcium channel subtype.  相似文献   

18.
Familial hemiplegic migraine type 1 (FHM1) arises from missense mutations in the gene encoding alpha1A, the pore-forming subunit of P/Q-type calcium channels. The nature of the channel disorder is fundamental to the disease, yet is not well understood. We studied how the most prevalent FHM1 mutation, a threonine to methionine substitution at position 666 (TM), affects both ionic current and gating current associated with channel activation, a previously unexplored feature of P/Q channels. Whole-cell currents were measured in HEK293 cells expressing channels containing either wild-type (WT) or TM alpha1A. Calcium currents were significantly smaller in cells expressing TM channels, consistent with previous reports. In contrast, surface expression of TM channels, measured by immunostaining against an extracellular epitope, was not decreased, and Western blots demonstrated that TM alpha1A subunits were expressed as full-length proteins. WT and TM gating currents were isolated by replacing Ca2+ with the nonpermeant cation La3+. The gating currents generated by the mutant channels were one-third that of WT, a deficiency sufficient to account for the observed attenuation in calcium current; the remaining gating current was no different in kinetics or voltage dependence. Thus, the decreased calcium influx seen with TM channels can be attributed to a reduced number of channels available to undergo the voltage-dependent conformational changes needed for channel opening, not to fewer channel proteins expressed on the cell surface. This identification of an intrinsic defect in FHM1 mutant channels helps explain their impact on neurotransmission when they occupy type-specific slots for P/Q channels at central nerve terminals.  相似文献   

19.
Little is known about the structure of the C terminus of the human cardiac voltage-gated sodium channel alpha subunit (SCN5A), but disease-linked mutations within this 244-amino acid intracellular region of the channel have marked effects on channel inactivation. Here we report a structural analysis of the C-terminal tail of the cardiac Na(+) channel that sheds new light on mechanisms that control its inactivation gating. Homology modeling of the SCN5A C terminus predicts predominant alpha-helical structure (six helices) in the proximal half of this intracellular tail but little structure in the distal half. Circular dichroism of isolated and purified C terminus supports this prediction. Whole cell and single channel patch clamp recordings of wild type and mutant alpha subunits co-expressed with the hbeta(1) subunit in HEK 293 cells indicate that truncation of the distal, nonstructured, C terminus (L1921stop mutant) reduces current density but does not affect channel gating (n = 6). In contrast, truncation of the sixth helix containing a concentration of positively charged residues along with the distal C terminus (S1885stop mutant) also reduces current density but, in addition, has profound and selective effects on inactivation (no effect on activation). Channel availability is shifted (-11 +/- 0.6 mV), and there is a 10-fold increase in the percentage of channels that burst (fail to inactivate) during prolonged depolarization (0.025% S1885stop (n = 7) versus 0.0028% wild type (n = 9), p < 0.005). These results suggest that the charged structured region of the SCN5A C terminus plays a major role in channel inactivation, stabilizing the inactivated state.  相似文献   

20.
The sodium channel beta1 subunit affects sodium channel gating and surface density, but little is known about the factors that regulate beta1 expression or its participation in the fine control of cellular excitability. In this study we examined whether graded expression of the beta1 subunit contributes to the gradient in sodium current inactivation, which is tightly controlled and directly related to a social behavior, the electric organ discharge (EOD), in a weakly electric fish Sternopygus macrurus. We found the mRNA and protein levels of beta1 in the electric organ both correlate with EOD frequency. We identified a novel mRNA splice form of this gene and found the splicing preference for this novel splice form also correlates with EOD frequency. Androgen implants lowered EOD frequency and decreased the beta1 mRNA level but did not affect splicing. Coexpression of each splice form in Xenopus oocytes with either the human muscle sodium channel gene, hNav1.4, or a Sternopygus ortholog, smNav1.4b, sped the rate of inactivation of the sodium current and shifted the steady-state inactivation toward less negative membrane potentials. The translational product of the novel mRNA splice form lacks a previously identified important tyrosine residue but still functions normally. The properties of the fish alpha and coexpressed beta1 subunits in the oocyte replicate those of the electric organ's endogenous sodium current. These data highlight the role of ion channel beta subunits in regulating cellular excitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号