首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hemolysin-determining plasmid pAD1 is a member of a widely disseminated family of highly conjugative elements commonly present in clinical isolates of Enterococcus faecalis. The determinants repA, repB, and repC, as well as adjacent iteron sequences, are believed to play important roles in pAD1 replication and maintenance. The repA gene encodes an initiator protein, whereas repB and repC encode proteins related to stability and copy number. The present study focuses specifically on repA and identifies a replication origin (oriV) within a central region of the repA determinant. A small segment of repA carrying oriV was able to support replication in cis of a plasmid vector otherwise unable to replicate, if an intact RepA was supplied in trans. We demonstrate that under conditions in which RepA is expressed from an artificial promoter, a segment of DNA carrying only repA is sufficient for stable replication in E. faecalis. We also show that RepA binds specifically to oriV DNA at several sites containing inverted repeat sequences (i.e., IR-1) and nonspecifically to single-stranded DNA, and related genetic analyses confirm that these sequences play an important role in replication. Finally, we reveal a relationship between the internal structure of RepA and its ability to recognize oriV. An in-frame deletion within repA resulting in loss of 105 nucleotides, including at least part of oriV, did not eliminate the ability of the altered RepA protein to initiate replication using an intact origin provided in trans. The relationship of RepA to other known initiator proteins is also discussed.  相似文献   

2.
3.
4.
Induced bending of plasmid pLS1 DNA by the plasmid-encoded protein RepA   总被引:8,自引:0,他引:8  
The broad host range streptococcal plasmid pLS1 encodes for a 5.1-kDa repressor protein, RepA. This protein has affinity for DNA (linear or supercoiled) and is translated from the same mRNA as the replication initiator protein RepB. By gel retardation assays, we observed that RepA shows specificity for binding to the plasmid HinfID fragment, which includes the target of the protein. The target of RepA within the plasmid DNA molecule has been located around the plasmid single site ApaLI. This site is included in a region that contains the promoter for the repA and repB genes and is contiguous to the plasmid ori(+). A complex sequence-directed DNA curvature is observed in this region of pLS1. Upon addition of RepA to plasmid linear DNA or to circularly permuted restriction fragments, this intrinsic curvature was greatly enhanced. Thus, a strong RepA-induced bending could be located in the vicinity of the ApaLI site. Visualization of the bent DNA was achieved by electron microscopy of complexes between RepA and plasmid DNA fragments containing the RepA target.  相似文献   

5.
6.
The control of RepFIB replication appears to rely on the interaction between an initiator protein (RepA) and two sets of DNA repeat elements located on either side of the repA gene. Limited N-terminal sequence information obtained from a RepA:beta-galactosidase fusion protein indicates that although the first residue of RepA is methionine, the initiation of translation of RepA occurs from a CTG codon rather than from the predicted GTG codon located further downstream. Overexpressed RepA in trans is capable of repressing a repA:lacZ fusion plasmid in which the expression of the fusion protein is under the control of the repA promoter. The repA promoter has been located functionally by testing a series of repA:lacZ fusion plasmids. Both in vivo genetic tests and in vitro DNA-binding studies indicate that repA autoregulation can be achieved by RepA binding to one or more repeat elements which overlap the repA promoter sequence.  相似文献   

7.
8.
The promiscuous streptococcal plasmid pLS1 encodes for the 5.1 kDa RepA protein, involved in the regulation of the plasmid copy number. Synthesis of RepA was observed both in Bacillus subtilis minicells and in an Escherichia coli expression system. From this system, the protein has been purified and it appears to be a dimer of identical subunits. The amino acid sequence of RepA has been determined. RepA shows the alpha helix-turn-alpha helix motif typical of many DNA-binding proteins and it shares homology with a number of repressors, specially with the TrfB repressor encoded by the broad-host-range plasmid RK2. DNase I footprinting revealed that the RepA target is located in the region of the promoter for the repA and repB genes. Trans-complementation analysis showed that in vivo, RepA behaves as a repressor by regulating the plasmid copy number. We propose that the regulatory role of RepA is by limitation of the synthesis of the initiator protein RepB.  相似文献   

9.
10.
11.
Mini-P1 plasmid replication: the autoregulation-sequestration paradox   总被引:31,自引:0,他引:31  
D K Chattoraj  R J Mason  S H Wickner 《Cell》1988,52(4):551-557
It has been proposed that the initiator protein RepA is rate limiting for mini-P1 plasmid replication, and that the role of the plasmid copy number control locus is to sequester the initiator and thus reduce replication. This proposal appears inconsistent with the observation that RepA is autoregulated, since the protein lost by sequestration should be replenished. A resolution of this autoregulation-sequestration paradox is possible if the sequestered RepA, unavailable for replication, is still available for promoter repression. We demonstrate that RepA binds to the control locus and to the promoter region simultaneously, causing the intervening DNA to loop. DNA looping could provide the requisite mechanism by which RepA bound to the control locus might exert repression.  相似文献   

12.
13.
Boundaries of the pSC101 minimal replicon are conditional.   总被引:5,自引:3,他引:2       下载免费PDF全文
The DNA segment essential for plasmid replication commonly is referred to as the core or minimal replicon. We report here that host and plasmid genes and sites external to the core replicon of plasmid pSC101 determine the boundaries and competence of the replicon and also the efficiency of partitioning. Missense mutations in the plasmid-encoded RepA protein or mutation of the Escherichia coli topoisomerase I gene enable autonomous replication of a 310-bp pSC101 DNA fragment that contains only the actual replication origin plus binding sites for RepA and the host-encoded DnaA protein. However, in the absence of a repA or topA mutation, the DNA-bending protein integration host factor (IHF) and either of two cis-acting elements are required. One of these, the partitioning (par) locus, is known to promote negative DNA supercoiling; our data suggest that the effects of the other element, the inverted repeat (IR) sequences that overlap the repA promoter, are mediated through the IR's ability to bind RepA. The concentrations of RepA and DnaA, which interact with each other and with plasmid DNA in the origin region (T. T. Stenzel, T. MacAllister, and D. Bastia, Genes Dev. 5:1453-1463, 1991), also affect both replication and partitioning. Our results, which indicate that the sequence requirements for replication of pSC101 are conditional rather than absolute, compel reassessment of the definition of a core replicon. Additionally, they provide further evidence that the origin region RepA-DnaA-DNA complex initiating replication of pSC101 also mediates the partitioning of pSC101 plasmids at cell division.  相似文献   

14.
Y Terawaki  Z Hong  Y Itoh    Y Kamio 《Journal of bacteriology》1988,170(3):1261-1267
RepA protein, essential for replication of plasmid Rts1, was found to bind in vivo immediately upstream of the repA promoter in studies with mini-Rts1 derivatives with deletions in the upstream region of repA. We constructed another series of repA mutants that would encode RepA derivatives containing oligopeptide substitutions in place of the carboxyl-terminal six amino acids. These modified RepA proteins could not activate ori (Rts1) at all and showed various degrees of incompatibility, or no incompatibility, toward a mini-Rts1 plasmid. These results suggest that the carboxyl-terminal six (or fewer) amino acids of RepA are important for exerting replication and incompatibility functions. One of the RepA derivatives, which showed an evident incompatibility without initiating replication, was examined for its ability to repress the repA gene.  相似文献   

15.
RepA protein is the DNA replication initiator of the Pseudomonas plasmid pPS10. RepA dimers bind to an inversely repeated operator sequence in repA promoter, thus repressing its own synthesis, whereas monomers bind to four directly repeated sequences (iterons) to initiate DNA replication. We had proposed previously that RepA is composed of two winged-helix (WH) domains, a structural unit also present in eukaryotic and archaeal initiators. To bind to the whole iteron sequence through both domains, RepA should couple monomerization to a conformational change in the N-terminal WH, which includes a leucine zipper-like sequence motif. We show for the first time that, by itself, binding to iteron DNA in vitro dissociates RepA dimers into monomers and alters RepA conformation, suggesting an allosteric effect. Furthermore, we also show that similar changes in RepA are promoted by mutations that substitute two Leu residues of the putative leucine zipper by Ala, destabilizing the hydrophobic core of the first WH. We propose that this mutant (RepA-2L2A) resembles a transient folding intermediate in the pathway leading to active monomers. These findings, together with the known activation of other Rep-type proteins by chaperones, are relevant to understand the molecular basis of plasmid DNA replication initiation.  相似文献   

16.
The RepA protein of plasmid R1 is rate-limiting for initiation of R1 replication. Its synthesis is mainly regulated by interactions of the antisense RNA, CopA, with the leader region of the RepA mRNA, CopT. This work describes the characterization of several mutants with sequence alterations in the intergenic region between the copA gene and the repA reading frame. The analysis showed that most of the mutations led both to a decrease in stability of maintenance of mini-R1 derivatives and to lowered repA expression assayed in translational repA-lacZ fusion constructs. Destruction of the copA gene and replacement of the upstream region by the tac promoter in the latter constructs indicated that these mutations per se alter the expression of repA. In addition, we show that particular mutations in this region can directly affect CopA-mediated control, either by changing the kinetics of interaction of CopA RNA with the RepA mRNA and/or by modifying the activity of the copA promoter. These data indicate the importance of the region analysed in the process that controls R1 replication.  相似文献   

17.
RepA is the DNA replication initiator protein of the Pseudomonas plasmid pPS10. RepA has a dual function: as a dimer, it binds to an inversely-repeated sequence acting as a repressor of its own synthesis; as a monomer, RepA binds to four directly-repeated sequences to constitute a specialized nucleoprotein complex responsible for the initiation of DNA replication. We have previously shown that a Leucine Zipper-like motif (LZ) at the N-terminus of RepA is responsible for protein dimerization. In this paper we characterize the existence in RepA of two protein globular domains C-terminal to the LZ. We propose that dissociation of RepA dimers into monomers results in a conformational change from a compact arrangement of both domains, competent for binding to the operator, to an extended species that is suited for iteron binding. This model establishes the structural basis for the activation of DNA replication initiators in plasmids from Gram-negative bacteria.  相似文献   

18.
RepA, a plasmid-encoded gene product required for pSC101 replication in Escherichia coli, is shown here to inhibit the replication of pSC101 in vivo when overproduced 4- to 20-fold in trans. Unlike plasmids whose replication is prevented by mutations in the repA gene, plasmids prevented from replicating by overproduction of the RepA protein were lost rapidly from the cell population instead of being partitioned evenly between daughter cells. Removal of the partition (par) locus increased the inhibitory effect of excess RepA on replication, while host and plasmid mutations that compensate for the absence of par, or overproduction of the E. coli DnaA protein, diminished it. A repA mutation (repA46) that elevates pSC101 copy number almost entirely eliminated the inhibitory effect of RepA at high concentration and stimulated replication when the protein was moderately overproduced. As the RepA protein can exist in both monomer and dimer forms, we suggest that overproduction promotes RepA dimerization, reducing the formation of replication initiation complexes that require the RepA monomer and DnaA; we propose that the repA46 mutation alters the ability of the mutant protein to dimerize. Our discovery that an elevated intracellular concentration of RepA specifically impedes plasmid partitioning implies that the RepA-containing complexes initiating pSC101 DNA replication participate also in the distribution of plasmids at cell division.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号