首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribulose 1,5-bisphosphate in the chloroplast has been suggested to regulate the activity of the ribulose bisphosphate carboxylase/oxygenase. To generate high levels of ribulose bisphosphate, isolated and intact spinach chloroplasts were illuminated in the absence of CO2. Under these conditions, chloroplasts generate internally up to 300 nanomoles ribulose 1,5-bisphosphate per milligram chlorophyll if O2 is also absent. This is equivalent to 12 millimolar ribulose bisphosphate, while the enzyme, ribulose bisphosphate carboxylase, offers up to 3.0 millimolar binding sites for the bisphosphate in the chloroplast stroma. During illumination, the ribulose bisphosphate carboxylase is deactivated, due mostly to the absence of CO2 required for activation. The rate of deactivation of the ribulose bisphosphate carboxylase was not affected by the chloroplast ribulose bisphosphate levels. Upon addition of CO2, the carboxylase in the chloroplast was completely reactivated. Of interest, addition of 3-phosphoglycerate stopped deactivation of the carboxylase in the chloroplast while ribulose bisphosphate accumulated. With intact chloroplasts in light, no correlation between deactivation of the carboxylase and ribulose bisphosphate levels could be shown.  相似文献   

2.
The response of ribulose 1,5-bisphosphate levels and CO(2) fixation rates in isolated, intact spinach chloroplasts to pyrophosphate, triose phosphates, dl-glyceraldehyde, O(2), catalase, and irradiance during photosynthesis has been studied. Within 1 minute in the light, a rapid accumulation of ribulose bisphosphate was measured in most preparations of intact chloroplasts, and this subsequently dropped as CO(2) fixation increased. Pyrophosphate, triose phosphates, and catalase increased CO(2) fixation and also the levels of ribulose bisphosphate. CO(2) fixation was inhibited by dl-glyceraldehyde and O(2) with corresponding decreases in ribulose bisphosphate. When the rate of photosynthesis decreased at limiting irradiances (low light), the level of ribulose bisphosphate in the chloroplast did not always decrease, suggesting that ribulose bisphosphate was not limiting CO(2) fixation under these conditions. When triose phosphates (fructose bisphosphate plus aldolase) were added to suspensions of chloroplasts at low irradiances, ribulose bisphosphate increased while CO(2) fixation decreased. These observations provide considerable evidence that high ribulose bisphosphate levels clearly are not solely sufficient to permit rapid rates of CO(2) fixation, but that factors other than ribulose bisphosphate concentration are overriding the control of photosynthesis.Isolated chloroplasts are capable of using carbon reserves to produce considerable ribulose bisphosphate. Upon illumination in the absence of CO(2) and O(2), intact chloroplasts produced up to 13 millimolar ribulose bisphosphate.  相似文献   

3.
Isolated wheat chloroplasts were pre-incubated in the dark inthe presence of various concentrations of inorganic phosphatewith or without carbon dioxide, oxaloacetate, glycerate, and3-phosphoglycerate. The effect of subsequent illumination onphotosynthetic oxygen evolution, ribulose bisphosphate carboxylaseactivity, ATP content, and ribulose bisphosphate content wasinvestigated. Inorganic phosphate had little effect on ribulosebisphosphate carboxylase activity in darkness or during theinitial phase of illumination, but it prevented the declinein activity that occurred during later stages of illumination,when photoreduction of CO2 was decreasing in rate. Additionof inorganic phosphate to chloroplasts illuminated without phosphaterestored the ribulose bisphosphate carboxylase activity, increasedthe ATP, and decreased the ribulose bisphosphate in the organelles.The responses to CO2, oxaloacetate, glycerate, and 3-phosphoglyceratesuggest that the decreased activity of ribulose bisphosphatecarboxylase during photosynthesis results from ATP consumption. Purified ribulose bisphosphate carboxylase was activated byinorganic phosphate, but this activation did not occur in thepresence of ATP. ATP inhibited ribulose bisphosphate carboxylasewhen it was present in combination with various photosyntheticmetabolites. Inactivation of ribulose bisphosphate carboxylase in chloroplasts,illuminated in the absence of inorganic phosphate, is not dueto lack of activation by inorganic phosphate or ATP. It mayresult from decreased stromal pH. Key words: Ribulose bisphosphate carboxylase, Chloroplasts, Wheat, Phosphate, ATP  相似文献   

4.
Further evidence for time-dependent interconversions between active and inactive states of ribulose 1,5-bisphosphate carboxylase is presented. It was found that ribulose bisphosphate oxygenase and ribulose bisphosphate carboxylase could be totally inactivated by excluding CO2 and Mg2+ during dialysis of the enzyme at 4 degrees C. When initially inactive enzyme was assayed, the rate of reaction continually increased with time, and the rate was inversely related to the ribulose bisphosphare concentration. The initial rate of fully activated enzyme showed normal Michaelis-Menten kinetics with respect to ribulose bisphosphate (Km = 10muM). Activation was shown to depend on both CO2 and Mg2+ concentrations, with equilibrium constants for activation of about 100muM and 1 mM respectively. In contrast with activation, catalysis appeared to be independent of Mg2+ concentration, but dependent on CO2 concentration, with a Km(CO2) of about 10muM. By studying activation and de-activation of ribulose bisphosphate carboxylase as a function of CO2 and Mg2+ concentrations, the values of the kinetic constants for these actions have been determined. We propose a model for activation and catalysis of ribulose bisphosphate carboxylase: (see book) where E represents free inactive enzyme; complex in parentheses, activated enzyme; R, ribulose bisphosphate; M, Mg2+; C, CO2; P, the product. We propose that ribulose bisphosphate can bind to both the active and inactive forms of the enzyme, and slow inter-conversion between the two states occurs.  相似文献   

5.
N-(omega-Hydroxyalkyl)glycolamidobisphosphoric esters (P-O-CH2-CO-NH-(CH2)n -O-P), which are analogues of the aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13) substrate fructose 1,6-bisphosphate, were synthesized and used for probing its active site. These phosphate compounds competitively inhibited aldolase activity. The Ki value was lowest when the maximum distance between the phosphorus atoms of the bisphosphate was brought close to that of fructose 1,6-bisphosphate. The inhibitor constants, Ki, were compared to those of alkanediol monoglycolate bisphosphoric esters and alkanediol bisphosphate compounds, which were reported previously by Ogata et al. The values of Ki for the bisphosphate compounds containing an amide group, the amide bisphosphate compounds, were smaller than those for the bisphosphate compounds containing an ester group, the ester bisphosphate compounds, and those for alkanediol bisphosphates were the largest for the same distance between phosphorus atoms in these bisphosphates. The difference spectra of aldolase caused by binding of a saturating concentration of N-(omega-hydroxypropyl)glycolamidobisphosphoric ester resembled that of butanediol monoglycolate bisphosphoric ester. However, the effects of the amide bisphosphate compounds on the absorption spectrum of aldolase were smaller than those of the ester bisphosphate compounds for the same distance between phosphorus atoms in these bisphosphate compounds. These results suggest that the synthesized phosphate compounds bind to aldolase at the active site and the -CO-NH- group of the compounds might be held more tightly than the -CO-O- group by hydrogen bonds, presumably with the amino acid residues in the active site, such as Lys-146 or -229 and Asp-33 or Glu-187. On the other hand, the -CO-O- group might be more effective in changing the environment of the Trp-147 residue in the active site of this enzyme.  相似文献   

6.
D L Aub  J W Putney 《Life sciences》1984,34(14):1347-1355
Rat parotid acinar cells were used to investigate the time course of formation and breakdown of inositol phosphates in response to receptor-active agents. In cells preincubated with [3H]inositol and in the presence of 10 mM LiCl (which blocks hydrolysis of inositol phosphate), methacholine (10(-4)M) caused a substantial increase in cellular content of [3H]inositol phosphate, [3H]inositol bisphosphate and [3H]inositol trisphosphate. Subsequent addition of atropine (10(-4) M) caused breakdown of [3H]inositol trisphosphate and [3H]inositol bisphosphate and little change in accumulated [3H]inositol phosphate. The data could be fit to a model whereby inositol trisphosphate and inositol bisphosphate are formed from phosphodiesteratic breakdown of phosphatidylinositol bisphosphate and phosphatidylinositol phosphate respectively, and inositol phosphate is formed from hydrolysis of inositol bisphosphate rather than from phosphatidyl-inositol. Consistent with this model was the finding that [3H]inositol trisphosphate and [3H]inositol bisphosphate levels were substantially increased in 5 sec while an increase in [3H]inositol phosphate was barely detectable at 60 sec. These results indicate that in the parotid gland the phosphoinositide cycle is activated primarily by phosphodiesteratic breakdown of the polyphosphoinositides rather than phosphatidyl-inositol. Also, the results show that formation of inositol trisphosphate is probably sufficiently rapid for it to act as a second messenger signalling internal Ca2+ release in this tissue.  相似文献   

7.
Abstract

The activation of Ca2+-mobilising receptors on hepatocytes and many other cells leads to a prompt reduction in the cellular content of inositol phospholipids. The primary event which underlies these changes is, most probably, a phospholipase C-catalysed attack upon phosphatidylinositol 4,5 bisphosphate. The receptor-mediated breakdown of this lipid in stimulated cells is: (i) not mediated by an increase in cytosol [Ca2+] and (ii) closely coupled to receptor occupation. Phosphatidylinositol 4,5 bisphosphate degradation may be studied by measuring the appearance of the water-soluble product, inositol trisphosphate (and its metabolites: inositol bisphosphate and inositol monophosphate), in stimulated cells. Recent evidence indicates that inositol trisphosphate and the lipid soluble product of phosphatidylinositol 4,5 bisphosphate breakdown, 1,2 diacylglycerol, may act as ‘second messengers’ which mediate the effects of many extracellular signals in stimulated cells.  相似文献   

8.
Ribulose bisphosphate carboxylase from Lemna minor resembles the structure reported for the enzyme from other plants. When grown in the light, the enzyme appears to undergo little or no degradation, as measured by a double-isotope method. This situation is similar to that reported for wheat and barley, but is unlike that reported for maize, where the enzyme degrades at the same rate as total protein. Prolonged periods of darkness usually induce leaf senescence, characterized by the rapid degradation of chlorophyll and protein, with ribulose bisphosphate carboxylase undergoing preferential degradation. In L. minor there is selective protein degradation in the dark, but chlorophyll and ribulose bisphosphate carboxylase are stable when fronds are kept in the darkness for up to 8 days. It appears that Lemna is not programmed to senesce, or at least that darkness does not induce senescence in Lemna. Although there is no evidence for in vivo degradation or modification of ribulose bisphosphate carboxylase during prolonged periods of darkness, extracts from fronds which have been kept in the dark for periods in excess of 24 hours convert ribulose bisphosphate carboxylase to a more acidic form. The properties of the dark-induced system which acts on ribulose bisphosphate carboxylase, suggest that it may be a mixed function oxidase. The proposition that the selectivity of protein degradation is genetically determined, so that the rate at which a protein is degraded is determined by its charge or size, was tested for fronds grown in the light or maintained in the dark. There was no significant correlation between protein degradation and either charge or size, in light or dark.  相似文献   

9.
The inorganic pyrophosphate-requiring 6-phosphofructokinase of Entamoeba histolytica has been further investigated. The molecular weight of the enzyme is approximately 83,000 and its isoelectric point occurs at pH 5.8 to 6.0. The divalent cation requirement for reaction was explored. In the direction of fructose 6-phosphate formation half-maximal rate required 500 muM magnesium ion; in the direction of fructose bisphosphate formation 8 muM magnesium ion sufficed. ATP, PPi, polyphosphate, acetyl phosphate, or carbamyl phosphate cannot replace PPi as phosphate donor for the conversion of fructose 6-phosphate to fructose bisphosphate. In the direction of fructose 6-phosphate formation arsenate can replace orthophosphate. Isotope exchange studies indicate that little or no exchange occurs between Pi and PPi or between fructose 6-phosphate and fructose bisphosphate in the absence of a third substrate. These findings appear to rule out phosphoenzyme formation and a ping-pong reaction mechanism. PPi, Pi, and fructose bisphosphate are competitive inhibitors of fructose bisphosphate, PPi, and fructose 6-phosphate, respectively. This argues against an ordered mechanism and suggests a random mechanism. Fructose 6-phosphate and Pi were noncompetitive with respect to each other indicating the formation of a dead end complex. These product inhibition relationships are in accord with a Random Bi Bi mechanism.  相似文献   

10.
Rhizobium japonicum CJ1 was capable of growing using formate as the sole source of carbon and energy. During aerobic growth on formate a cytoplasmic NAD+-dependent formate dehydrogenase and ribulose bisphosphate carboxylase activity was demonstrated in cell-free extracts, but hydrogenase enzyme activity could not be detected. Under microaerobic growth conditions either formate or hydrogen metabolism could separately or together support ribulose bisphosphate carboxylase-dependent CO2 fixation. A number of R. japonicum strains defective in hydrogen uptake activity were shown to metabolise formate and induce ribulose bisphosphate carboxylase activity. The induction and regulation of ribulose bisphosphate carboxylase is discussed.Abbreviations hup hydrogen uptake - MOPS 3-(N-morpholino)-propanesulphonate - TSA tryptone soya agar - RuBP ribulose 1,5-bisphosphate - FDH formate dehydrogenase  相似文献   

11.
This paper reports that microM concentrations of fructose bisphosphate are titrated by rabbit muscle fructose-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) when the enzyme concentration is varied in the range which secures measurable initial velocities of reaction: a result that can only be explained by supposing that the enzyme has a greater affinity for fructose bisphosphate than suggested by Fernando, J., Enser, M., Pontremoli, S. and Horecker, B.L. (1968) Arch. Biochem. Biophys. 126, 599-606. The results also suggest that the keto form of the substrate may be the preferred configuration and that the enzyme is inhibited by magnesium-bound fructose bisphosphate.  相似文献   

12.
The effects of temperature on ribulose bisphosphate carboxylase activity were studied in two tomato ( Lycopersicon esculentum Mill.) cultivars which differed in sensitivity to high temperatures. The heat tolerant cultivar, Saladette, had a smaller reduction in photosynthesis and a smaller increase in mesophyll resistance then the sensitive cultivar Roma VF, after 24 h at 35 to 40°C. One hour in vitro treatments at 50°C decreased the activity of ribulose bisphosphate carboxylase extracted from Roma VF by 75%, while Saladette was not affected. Heat stress to the entire plant caused greater inhibition of ribulose bisphosphate carboxylase in the heat sensitive cultivar. Ribulose bisphosphate carboxylase activity in both cultivars decreased with heat treatment but recovered under normal temperatures. Ribulose bisphosphate oxygenase activity decreased similarly in both cultivars under 37/18°C day/night temperatures, which resulted in an apparent change in the relative carboxylase/oxygenase activity of the two cultivars. Carbonic anhydrase activity was slightly greater in Saladette than in Roma VF but no significant decrease in activity was observed in plants exposed to high temperatures.  相似文献   

13.
Leaf discs of brinjal, tomato, sugar cane and maize rapidly incorporated [32P]orthophosphate into total phospholipids. Analyses of the labelled lipid extracts by thin-layer chromatography, autoradiography and comparison with inositol phospholipid standards demonstrated the labelling of phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate in addition to other phospholipids. The presence of polyphosphoinositides was further confirmed by deacylation of phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate and separation of the water-soluble products, glycerophosphoinositol phosphate and glycerophosphoinositol bisphosphate by formate exchange chromatography. Incorporation of [32P]orthophosphate into inositol phospholipids was time-dependent, with monoester phosphate groups attaining isotopic equilibrium within 90 min of incubation. After 2 h, incorporation of label into phosphatidylinositol, phosphatidylinositol monophosphate and phosphatidylinositol bisphosphate was about 15, 10 and 3%, respectively, of the total phospholipids. The ratio of radioactivity in phosphatidylinositol/phosphatidylinositol monophosphate/phosphatidylinositol bisphosphate was about 5:5:1 in brinjal leaves. However, this ratio may be an overestimate of the amounts of inositol phospholipids present, as other lysophospholipids may comigrate with standards.  相似文献   

14.
Brain glucose bisphosphatase requires inosine monophosphate   总被引:4,自引:0,他引:4  
Glucose bisphosphate phosphatase has been partially purified from the cytosol of mouse brain. Enzyme activity required Mg2+ and a heat-stable cofactor. The activator was present in boiled extracts of mouse brain mitochondrial-nuclear fraction, of red blood cells, or of rabbit muscle. The chemical properties of the activator are consistent with its identification as inosine monophosphate (IMP), including its mobility in a high pressure liquid chromatography (HPLC) system capable of resolving all of the biologically important mononucleotides. A large number of other biologically important compounds were not effective, including AMP, cAMP, cGMP, and UMP, GMP, purified by HPLC, (50 or 74 microM), gave a rate about 35% of that obtained with IMP (5 microM). The enzyme was separated completely from phosphoglucomutase and significantly from glucose bisphosphate synthase. The products of the reaction are glucose-P and Pi. Fructose bisphosphate at 500 microM inhibited only 40% in the presence of 20 microM glucose bisphosphate. The activation by IMP follows hyperbolic kinetics with an apparent Ka of 5 microM in the presence of 12 microM glucose bisphosphate. The apparent Km of glucose bisphosphate was 10 microM in the presence of 50 microM IMP. There was no inhibition by 5 or 50 microM AMP or ADP. The possible regulatory importance of glucose bisphosphate in carbohydrate metabolism and the significance of the regulation of the phosphatase by the nucleotide are discussed.  相似文献   

15.
Dean C  Leech RM 《Plant physiology》1982,70(6):1605-1608
The quantitative relationships between ribulose bisphosphate carboxylase, nuclear ploidy, and plastid DNA content were examined in the nonisogenic polyploid series Triticum monococcum (2×), Triticum dicoccum (4×), and Triticum aestivum (6×). Ribulose bisphosphate carboxylase per mesophyll cell increased in step with each increase in nuclear ploidy so the ratios of ribulose bisphosphate carboxylase per mesophyll cell (picograms) to nuclear DNA per mesophyll cell (picograms) were almost identical in the three species. Ribulose bisphosphate carboxylase per plastid was 14.1, 14.7, and 16.8 picograms in the 2×, 4×, and 6× ploidy levels, respectively. Plastid area in these three species decreased with increasing nuclear ploidy so the concentration of ribulose bisphosphate carboxylase in the plastoids was 60% higher in the hexaploid compared to the diploid species. DNA levels per plastid were 64 and 67 femtograms for the diploid and tetraploid species, respectively, but were 40% less in the plastids of the hexaploid species. These relationships are discussed in terms of cellular and plastid control of ribulose bisphosphate carboxylase content.  相似文献   

16.
The allosteric properties of the fructose-1,6-bis-phosphate-activated pyruvate kinase from Escherichia coli were examined in the presence of a number of fructose bisphosphate analogues, as well as of increased ionic strength (NaCl) and of the hydrogen-bond-breaking agent, formamide. Fructose 2,6-bisphosphate, ribulose 1,5-bisphosphate and 5-phosphorylribose 1-pyrophosphate gave allosteric activation (additive to that of fructose 1,6-bisphosphate). Formamide always decreased Vmax, but left unchanged the Km for phosphoenolpyruvate, while it decreased the concentration of fructose bisphosphate required to give half-maximal activity (K0.5). NaCl increased the K0.5 for both phosphoenolpyruvate and fructose bisphosphate, leaving Vmax unchanged. These results are consistent with ionic binding of fructose bisphosphate through phosphates and with a critical role of hydrogen bonds in stabilizing both the inactive and the active enzyme conformers.  相似文献   

17.
Ribulose bisphosphate carboxylase consists of cytoplasmically synthesized "small" subunits and chloroplast-synthesized "large" subunits. Large subunits of ribulose bisphosphate carboxylase synthesized in vivo or in organello can be recovered from intact chloroplasts in the form of two different complexes with sedimentation coefficients of 7S and 29S. About one-third to one-half of the large subunits synthesized in isolated chloroplasts are found in the 7S complex, the remainder being found in the 29S complex. Upon prolonged illumination of the chloroplasts, newly synthesized large subunits accumulate in the 18S ribulose bisphosphate carboxylase molecule and disappear from both the 7S and the 29S large subunit complexes. The 29S complex undergoes an in vitro dissociation reaction and is not as stable as ribulose bisphosphate carboxylase. The data indicate that (a) the 7S large subunit complex is a chloroplast product, the (b) the 29S large subunit complex is labeled in vivo, that (c) each of these two complexes can account quantitatively for all the large subunits assembled into RuBPCase in organello, and that (d) excess large subunits are degraded in chloroplasts.  相似文献   

18.
Analysis of inositol phosphate formation in chemoattractant-stimulated human polymorphonuclear leukocytes demonstrated the production of inositol 1,4,5-trisphosphate, inositol 1,3,4-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, inositol 1,4-bisphosphate and another inositol bisphosphate isomer not detected in unstimulated cells. Studies in cell sonicates provided evidence that the previously unidentified inositol bisphosphate isomer is produced via the degradation of inositol 1,3,4-trisphosphate. This unidentified inositol bisphosphate peak was purified by high pressure liquid chromatography, and base hydrolyzed to form a mixture of inositol monophosphate isomers. Based on these studies, the unidentified peak was identified as inositol 3,4-bisphosphate. Identification of this isomer defines a new metabolic product derived from the initial inositol 1,4,5-trisphosphate formation, and also suggests another substrate for the inositol 1-phosphatase.  相似文献   

19.
The cell extract of Halobacterium mediterranei catalyses incorporation of 14CO2 into 3-phosphoglycerate in the presence of ribulose bisphosphate suggesting the existence of ribulose bisphosphate carboxylase activity in this halophilic archaebacterium.  相似文献   

20.
Phosphatidylinositol bisphosphate hydrolysis is an immediate response to many hormones, including growth factors. The hydrolysis of phosphatidylinositol bisphosphate is catalyzed by phosphatidylinositol-specific phospholipase C. A number of phospholipase C isozymes have been identified. Different isozymes are activated by different receptor classes. This review will summarize the different isozymes of phospholipase C, and the current knowledge of the mechanisms by which phospholipase C acitivity is modulated by growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号