首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Escherichia coli mutant NM81, which is deficient in the nhaA gene for the sodium/proton antiporter, still has a sodium ion extrusion activity because of a second antiporter encoded by nhaB (E. Padan, N. Maisler, D. Taglicht, R. Karpel, and S. Schuldiner, J. Biol. Chem. 264:20297-20302, 1989). By chance, we have found that E. coli pop6810 already contains a mutation affecting the sodium ion circulation, probably in or near nhaB, and that its delta nhaA mutant, designated RS1, has no sodium ion extrusion activity at alkaline pH. The growth of RS1 was inhibited completely by 0.1 M sodium, whereas growth inhibition of NM81 was observed only at sodium concentrations greater than 0.2 M. RS1 grew at a normal rate in an alkaline medium containing a low sodium concentration. Furthermore, RS1 grew with a negligible proton motive force in the alkaline medium containing carbonyl cyanide m-chlorophenylhydrazone. The transport activities for proline and serine were not impaired in RS1, suggesting that these transport systems could be driven by the proton motive force at alkaline pH. These findings led us to conclude that the operation of the sodium/proton antiporter is not essential for growth at alkaline pH but that the antiporter is required for maintaining a low internal sodium concentration when the growth medium contains a high concentration of these ions.  相似文献   

2.
The glutamate decarboxylase (GAD) system is critical to the survival of Listeria monocytogenes LO28 at low-pH stress (相似文献   

3.
4.
5.
  1. The lipid composition of a mutant ofSaccharomyces cerevisiae which cannot synthesize unsaturated fatty acid (UFA) can be extensively manipulated by growing the organism in the presence of added fatty acids.
  2. Growth of the mutant is supported by a wide range of unsaturated fatty acids including oleic, palmitoleic, petroselenic, 11-eicosaenoic, ricinoleic, arachidonic, clupanodonic, linoleic and linolenic acids; 9- and 10-hydroxystearic acids support growth less effectively, but erucic, nervonic, elaidic and saturated fatty acids (C8∶0?C20∶0)* are ineffective. All the fatty acids which support growth are incorporated into cell lipids, apparently without further metabolism.
  3. The effects of altered lipid composition on the energy metabolism of yeast cells were investigated. Cells containing less than approximately 20% of their fatty acids as UFA cannot grow on non-fermentable substrates, and their growth on glucose is restricted to that which can be supported by fermentation alone.
  4. UFA-depleted cells contain mitochondria which are apparently normal in morphology, furthermore they have normal levels of cytochromesa+a 3,b,c 1 andc and respire at normal rates. This suggests that the lesion in energy metabolism produced by UFA-depletion may be the loss of the ability of the mitochondria to couple respiration to phosphorylation.
  5. UFA-depleted cells incorporate added UFA into their cell lipids and subsequently regain the ability to grow on non-fermentable substrates, showing that the lesion in energy metabolism is fully reversible.
  相似文献   

6.
Mutations conferring the ability to grow on extremely acidic media have been selected in the fungus Aspergillus nidulans and map to at least four genes. The mutations fall into two classes: those that confer acid resistance in media of both high and low buffering capacity and those that confer resistance only in media of low buffering capacity. In growth media of more moderate pH mutations of both classes result in reduced acidification of the medium.  相似文献   

7.
Cells of the yeast Saccharomyces cerevisiae could be depleted of their intramitochondrial ATP bu culturing on glucose in the presence of antimycin A, which prevents production of ATP in mitochondria, along with bongkrekic acid, which prevents transport of ATP from the cytosol into mitochondria. Alternatively, the depletion could be achieved by culturing respiration-deficient mutants in the presence of bongkrekic acid. The depleted cells of the respiration-deficient mutant did not grow on glucose in a synthetic medium and growth for a few generations was made possible by adding peptone, yeast extract or some amino acids into the medium. The depleted cells did not differ from control cells in their content of amino acids, proteins, nucleic acids and major phospholipids and had preserved the ability to carry on protein and nucleic acid syntheses and to mate to other cells. No conspicuous cytological differences were found between the control and depleted cells. After culturing in a semi-synthetic medium in the presence of bongkrekic acid the cells of the respiration-deficient mutant exhibited almost no cytochrome c in their spectra and their azide-sensitive ATPase activity was drastically reduced. The results suggest that intramitochondrial syntheses of some low-molecular compounds as well as import and/or assembly of some cytoplasmically synthesized mitochondrial proteins into mitochondria may be impaired in cells lacking intramitochondrial ATP and this may be responsible for their inability to grow and multiply.  相似文献   

8.
The unsaturated fatty acid auxotroph Escherichia coli AK7 was provided with either oleic acid (cis 18:1) or linolenic acid (cis 18:3) to vary the degree of unsaturation of cell membrane lipids. The susceptibility of oleic acid- and linolenic acid-grown cells to starvation at 37 degrees C in 154 mM NaCl was compared following the decline in the number of CFU by plating the cells on agar medium. The decline in CFU was faster for linolenic acid-than for oleic acid-grown cells, but it was not indicative of cell death, since culturable CFU was recovered after respirable substrate was added to the starved cell suspension. Cell envelope microviscosity (determined by fluorescence polarization) of oleic acid- and linolenic acid-grown cells was equal in the presence of a respirable substrate, but in its absence the microviscosity of linolenic acid-grown cells was lower than that of oleic acid-grown cells. The results suggest that cell envelope microviscosity is an important factor in determining the sensitivity of E. coli to conditions of nutrient depletion.  相似文献   

9.
10.
A hitherto undescribed sphingomyelinase (sph'ase 7.4) of human brain has been studied in crude and partially purified (3- to 4- fold) extracts of grey matter, and compared to the known sphingomyelinase with an acid pH optimum (sph'ase 5.0). Its specificity for sphingomyelin as substrate is similar to that of sph'ase 5.0, but it differs from sph'ase 5.0 in its pH optimum (7.4 vs 5.0) and in a requirement for Mg2+ for optimal activity. Other properties of sph'ase 7.4 that distinguish it from sph'ase 5.0 include (a) its lack of appreciable solubilization during dialysis of crude homogenates (b) a more marked concentrations in grey matter than in white matter (9- to 13- fold vs 1.5- to 2-fold for sph'ase 5.0); (c) inhibition by Ca2+ and Cd2+ ions, and by EDTA; (D) stimulation by dithiothreitol, and inhibition by cysteine, N-ethylmaleimide, and p-hydroxymercuribenzoate; (e) lack of inhibition by nucleotides (AMP.ADP, and ATP) and by NAD plus NADH; and (f) relative instability to storage or manipulation between -20degrees C and 40degrees C. These differences indicate the SPH'ASE 7.4 is a different enzyme protein from sph'ase 5.0. Unlike sph'ase 5.0, which is widely distributed in mammalian tissues, sph'ase 7.4 occurs predominantly in grey matter and little activity was observed is spleen, liver, or leukocytes. The high levels of this enzyme in brain suggest a role related to the specific functions of this organ or to the need for a more stringent control of sphingomyelin catabolism in brain as compared to other organs.  相似文献   

11.
The fatty acid desaturase activity in cell extracts of Bacillus subtilis was characterized and found to be O2 dependent, NADH dependent, and cyanide sensitive. In cell fractionation studies, only 10% of the desaturase activity was recovered in the membrane fraction; the addition of cytosolic factors, which by themselves were devoid of activity, restored membrane activity to the level found in the unfractionated cell extracts. NADH was preferred over NADPH as an electron donor, and palmitoyl-coenzyme A was used preferentially over stearoyl-coenzyme A as the straight-chain fatty acid substrate. An increase in desaturase activity was observed when either the growth or the assay temperature was lowered from 37 to 20 degrees C, although the assay temperature appeared to be the more important parameter. Three protonophore-resistant mutants of B. subtilis and a comparable mutant of Bacillus megaterium had been found to possess reduced levels of unsaturated fatty acids in their membrane phospholipids; their protonophore resistance was abolished when grown in the presence of an unsaturated fatty acid supplement. All of these strains were found to be either significantly deficient in or totally lacking desaturase activity in comparison with their wild-type parent strains. Full, protonophore-sensitive revertants of the mutants had levels of desaturase activity comparable to those of the wild-type. Temperature-sensitive revertants of two of the mutants, which grew at 32 degrees C but not at 26 degrees C in the presence of protonophore, exhibited desaturase activity comparable to that of the wild-type at 26 degrees C but lacked activity at 32 degrees C. These results indicate that the biochemical basis for protonophore resistance in these Bacillus mutants is a fatty acid desaturase deficiency.  相似文献   

12.
Saturated fatty acids are less vulnerable to lipid peroxidation than their unsaturated counterparts. In this investigation, individual fatty acids of the C(16), C(18) and (20) families were subjected to the thiobarbituric (TBA) assay. These fatty acids were chosen based on their degree of saturation and configuration of double bonds. Interestingly, an assay threshold was reached where increasing the fatty acid concentration resulted in no additional decrease in the TBARS concentrations. Therefore, the linear range of TBARS inhibition was determined for fatty acids in the C(16) and C(20) families. The rate of TBARS inhibition was greater for the saturated than for unsaturated fatty acids, as measured from the slope of the linear range. These findings demonstrate the need to standardize the TBARS assay using multiple fatty acid concentrations when using this assay for measuring in vitro lipid peroxidation.  相似文献   

13.
1. [1-14C]linolenic acid was injected into the rainbow trout, Salmo gairdnerii, ayu, Plecoglossus altivelis, eel, Anguilla japonica, red sea bream, Chrysophrys major, rockfish, Sebastiscus marmoratus, globefish, Fugu rubripes rubripes and prawn, Penaeus japonicus (molting stage D"1-D2), and the bioconversion of linolenic acid (18:3 omega 3) to highly unsaturated fatty acids such as eicosapentaenoic (20:5 omega 3) and docosahexaenoic (22:6 omega 3) acids was investigated. 2. Linolenic acid was converted to 20:5 omega 3 and 22:6 omega 3 intensively in the rainbow trout, moderately in the ayu, eel and prawn, but slightly in the red sea bream, rockfish and globefish. 3. These results were discussed in relation to the essential fatty acid requirements of the aquatic animals.  相似文献   

14.
Fatty acid composition, which is altered in patients with abdominal obesity, is influenced not only by dietary intake but also by the desaturating enzymes stearoyl-CoA desaturase (SCD), delta-6 desaturase (D6D) and delta-5 desaturase (D5D). We investigated desaturase activities and their associations with metabolic risk factors, C-reactive protein levels (CRP) and insulin resistance in Japanese children. There were 237 school children in this study; 115 were boys. The fatty acid composition of plasma phospholipids was analyzed, and the following desaturase activities were estimated: SCD (16:1n-7/16:0 and 18:1n-9/18:0), D6D (20:3n-6/18:2n-6) and D5D (20:4n-6/20:3n-6). D6D and D5D activities, but not SCD activity, were significantly associated with triglyceride levels, high-density lipoprotein cholesterol levels and insulin resistance in both sexes, and with CRP levels in boys. In addition, increased abdominal adiposity was significantly associated with increased D6D activity, and decreased D5D activity and insulin resistance in both sexes, and with increased CRP levels in boys. The n-6 polyunsaturated fatty acid desaturation pathway may be associated with metabolic risk factors, insulin resistance and increased inflammation in children with abdominal obesity, especially in boys.  相似文献   

15.
Membrane-bound fatty acid desaturases and related enzymes play a pivotal role in the biosynthesis of unsaturated and various unusual fatty acids. Structural insights into the remarkable catalytic diversity and wide range of substrate specificities of this class of enzymes remain limited due to the lack of a crystal structure. To investigate the structural basis of the double bond positioning (regioselectivity) of the desaturation reaction in more detail, we relied on a combination of directed evolution in vitro and a powerful yeast complementation assay to screen for Δx regioselectivity. After two selection rounds, variants of the bifunctional Δ12/Δ9-desaturase from the house cricket (Acheta domesticus) exhibited increased Δ9-desaturation activity on shorter chain fatty acids. This change in specificity was the result of as few as three mutations, some of them near the putative active site. Subsequent analysis of individual substitutions revealed an important role of residue Phe-52 in facilitating Δ9-desaturation of shorter chain acyl substrates and allowed for the redesign of the cricket Δ12/Δ9-desaturase into a 16:0-specific Δ9-desaturase. Our results demonstrate that a minimal number of mutations can have a profound impact on the regioselectivity of acyl-CoA fatty acid desaturases and include the first biochemical data supporting the acyl-CoA acyl carrier specificity of a desaturase able to carry out Δ12-desaturation.  相似文献   

16.
17.
Escherichia coli K1060, a fatty acid auxotroph unable to either synthesize or degrade unsaturated fatty acids (uFAs), was used to study the effect of membrane fluidity on survival after exposure to ionizing radiation. Using this strain of E. coli, significant alterations in the fatty acid composition of the membrane have been produced and verified by gas chromatography. Linolenic, oleic, elaidic and palmitelaidic acids were the uFAs used. Survival above the transition temperature (Tt) (liquid crystal in equilibrium gel) was comparable for these fatty-acid-supplemented membranes after exposure to gamma-irradiation, whereas gamma-irradiation below Tt resulted ina significant decrease in survival. An oxygen enhancement effect was observed for each experimental condition employed.  相似文献   

18.
Bacillus pseudofirmus OF4 is an extreme but facultative alkaliphile that grows non-fermentatively in a pH range from 7.5 to above 11.4 and can withstand large sudden increases in external pH. It is a model organism for studies of bioenergetics at high pH, at which energy demands are higher than at neutral pH because both cytoplasmic pH homeostasis and ATP synthesis require more energy. The alkaliphile also tolerates a cytoplasmic pH?>?9.0 at external pH values at which the pH homeostasis capacity is exceeded, and manages other stresses that are exacerbated at alkaline pH, e.g. sodium, oxidative and cell wall stresses. The genome of B.?pseudofirmus OF4 includes two plasmids that are lost from some mutants without viability loss. The plasmids may provide a reservoir of mobile elements that promote adaptive chromosomal rearrangements under particular environmental conditions. The genome also reveals a more acidic pI profile for proteins exposed on the outer surface than found in neutralophiles. A large array of transporters and regulatory genes are predicted to protect the alkaliphile from its overlapping stresses. In addition, unanticipated metabolic versatility was observed, which could ensure requisite energy for alkaliphily under diverse conditions.  相似文献   

19.
High levels of fatty acids contribute to loss of functional beta cell mass in type 2 diabetes, in particular in combination with high glucose levels. The aim of this study was to elucidate the role of the unsaturated free fatty acid oleate in glucolipotoxicity and to unravel the molecular pathways involved. INS-1E cells were exposed to 0.5 mM oleate, combined or not with 25 mM glucose, for 24 h. Protein profiling of INS-1E cells was done by 2D-DIGE, covering pH ranges 4-7 and 6-9 (n = 4). Identification of differentially expressed proteins (P < 0.05) was based on MALDI-TOF analysis using Peptide Mass Fingerprint (PMF) and fragmentation (MS/MS) of the most intense peaks of PMF and proteomic results were confirmed by functional assays. Oleate impaired glucose-stimulated insulin secretion and decreased insulin content. 2D-DIGE analysis revealed 53 and 54 differentially expressed proteins for oleate and the combination of oleate and high glucose, respectively. Exposure to oleate down-regulated chaperones, hampered insulin processing and ubiquitin-related proteasomal degradation, and induced perturbations in vesicle transport and budding. In combination with high glucose, shunting of excess amounts of glucose toward reactive oxygen species production worsened beta cell death. The present findings provide new insights in oleate-induced beta cell dysfunction and identify target proteins for preservation of functional beta cell mass in type 2 diabetes.  相似文献   

20.
Summary Rainbow trout (Salmo gairdneri) were acclimated to either 5 or 20°C, and then transferred to the opposite temperature, and changes in the fatty acid composition of liver microsomal membranes and the activities of the hepatic Δ9, Δ6, and Δ5 desaturases were measured at intervals of up to one month post-transfer. Inital changes (days 0–3) in fatty acid composition were: (1) an increase in the proportion of saturates and a decrease in the proportion of polyunsaturates during warm acclimation, and (2) a decrease in the proportion of saturates during cold acclimation. The activity of the Δ6 desaturase approximately doubled immediately following the changes in temperature, but alterations in Δ9 and Δ5 desaturase activities required at least 3 days to occur. The results indicate that desaturase enzymes do not play a major role in the initial adaptation of membrane fatty acid composition to changes in temperature. However, the desaturase enzymes may be involved in the later stages (3–28 days) of the acclimatory process. The proportion of monoenes was well correlated with Δ9 desaturase activity during both transfers, and appeared to be adjusted as required to offset changes in the proportion of polyunsaturates. Supported by National Science Foundation Grant PCM-8301757 to J.R.H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号