共查询到20条相似文献,搜索用时 0 毫秒
1.
Kazutaka Yamada Yoichi Kamagata Kazunori Nakamura Yuhei Inamori Isei Nakamura 《Archives of microbiology》1994,161(3):229-233
The anaerobic ciliate Trimyema compressum was cultivated on various food bacteria. Significant growth was observed when Lactobacillus sp., Escherichia coli, Enterobacter aerogenes, Desulfovibrio vulgaris, Methanoculleus bourgense, or Pelobacter propionicus cells were fed to the ciliates. The highest cell yield which we obtained was ca. 9,000 cells/ml when feeding D. vulgaris. However, no growth of the ciliates was observed on the culture with Clostridium novyi, Propionibacterium sp., Desulfobulbus propionicus, Methanobrevibacter arboriphilicus, Methanobacterium sp., Methanosarcina barkeri, or Methanothrix soehngenii cells. The ciliates produced acetate and methane as major end products in any cultures and small amounts of propionate, butyrate and hydrogen were also detected in some cultures. Physiological studies on the food bacteria which we tested indicated that the growth of T. compressum depended on the bacterial species, but there was no apparent correlation between the digestibility and the basic properties of those bacteria (i.e. size of the bacteria, gram-staining properties, susceptibility to the known lytic enzymes, Archaea or Bacteria). 相似文献
2.
A new monoxenic culture of the anaerobic ciliate Trimyema compressum was established on the purple nonsulfur bacterium Rubrivivax gelatinosus. Compared with the first monoxenic culture of T. compressum on a Bacteroides species no significant difference in growth rate was observed. Using both monoxenic cultures the fermentation products of the ciliate, acetate, lactate, formate and succinate were quantified. Ammonium was another product of the ciliates metabolism. The amount of the endproducts was dependent on the amount of bacteria consumed. The ratio of carbon consumed to ammonium formed was 8.7:1 indicating incomplete degradation of nitrogenous compounds of the bacterial biomass. Under microoxic conditions no effect of oxygen on the yield of the ciliate was observed but the amount of acetate and lactate was 25% lower. Cells of T. compressum with Methanobacterium formicicum as deliberately introduced endosymbiont did not form significantly different fermentation products, however, instead of formate methane was detected as product. The yield of the ciliate was not affected. It is concluded that methanogenic bacteria deliberately introduced into the cytoplasm of T. compressum as endosymbionts are pure commensalists. 相似文献
3.
Functional integration of Methanobacterium formicicum into the anaerobic ciliate Trimyema compressum
Monoxenic cultures of the anaerobic, endosymbiont-free ciliate Trimyema compressum were incubated with low numbers of Bacteroides sp. strain WoCb15 as food bacteria and two strains (DSM 3636 and 3637) of Methanobacterium formicicum, which originally had been isolated from the anaerobic protozoa Metopus striatus and Pelomyxapalustris. The ciliate which had lost its original endosymbiotic methanogens ingested both strains of M. formicicum. The methanogenic bacteria were found intact in large vacuoles in contrast to the food bacteria which were digested. Single methanogens were separated from the vacuoles and appeared surrounded by a membrane in the cytoplasm of the ciliate. After 2 months of incubation, the methanogenic bacteria still exhibited the typical bluish fluorescence and the new symbiotic association of M. formicicum and T. compressum excreted methane. Increasing the growth rate of the ciliates by large numbers of food bacteria resulted in a loss of the methanogenic bacteria, due to statistical outgrowth. 相似文献
4.
Sapropelic ciliates from anoxic mud samples were enriched and cultivated in monoculture together with natural food bacteria growing on cellulose. The ciliates lacked cytochrome oxidase and contained bluish fluorescent endosymbionts. One of the anaerobic ciliates, Trimyema compressum, contained methanogenic bacteria as was shown by methane formation. During continued cultivation, T. compressum gradually lost its endosymbionts. With SEM microscopy no episymbiotic bacteria could be detected.From enrichment cultures of T. compressum, anaerobic bacteria were isolated in pure culture. One of the strains, a Bacteroides spec., proved capable of serving as food bacteria, thus allowing establishment of monoxenic T. compressum cultures. These cultures exhibited a requirement for sterols as growth factors. The doubling time of this ciliate was 13 h at 28°C. The highest yield obtained was 2100 cells/ml.Dedicated to Holger W. Jannasch on the occasion of his 60th birthday 相似文献
5.
Two strains of the anaerobic ciliate Trimyema compressum, isolated from different habitats, were compared. The cytoplasm of the ciliates contained hydrogenosome-like microbodies and methanogenic bacteria; the latter were lost during continued cultivation. In addition both strains harbored a non-methanogenic endosymbiont, which was lost in strain K. The ciliates lacked cytochromes, cytochrome oxidase and catalase but contained superoxide dismutase. Hydrogenase activity could be demonstrated only in strain N. In monoxenic culture strain K needed sterols as growth factors. The cells of both strains reacted similarly with respect to oxygen tolerance (up to 0.5 mg O2/l), inhibition of growth by cyanide and azide, and resistance to antimycin A. Only cells of strain N showed growth inhibition by chloramphenicol. It is concluded that Trimyema compressum is an anaerobic, microaerotolerant organism, its microbodies show more resemblance to hydrogenosomes than to mitochondria. 相似文献
6.
Nico K. Goosen Anja M. C. Horemans Silvia J. W. Hillebrand Claudius K. Stumm Godfried D. Vogels 《Archives of microbiology》1988,150(2):165-170
The sapropelic ciliate Plagiopyla nasuta was isolated and cultured in monoculture. Optimal conditions for growth were: 15–20°C, pH about 7, and about 2% of oxygen in the headspace. Cultures of P. nasuta produced methane. Epifluorescence microscopy revealed the presence of methanogenic bacteria as endosymbionts. An endosymbiont of the ciliate was isolated and identified as Methanobacterium formicicum. In the ciliate cell these methanogens were found to be closely associated with microbody-like organelles. No mitochondria could be detected. 相似文献
7.
Johan J. A. van Bruggen Kor B. Zwart Renée M. van Assema Claudius K. Stumm Godfried G. Vogels 《Archives of microbiology》1984,139(1):1-7
The Gram-positive methanogenic endosymbiont of the sapropelic ciliateMetopus striatus was isolated and identified asMethanobacterium formicicum. In the ciliate cell the methanogens are in close association with microbody-like organelles. No mitochondria could be detected. The nature of the microbodies and the physiological background of the observed association are discussed. 相似文献
8.
Laboratory rearing of spruce budworm, Choristoneura fumiferana, in conjunction with field rearing, gravimetric analyses, a transfer experiment, and foliage chemical analyses at six dates during the period of budworm feeding activity indicated that the age of balsam fir, Abies balsamea, trees (70-year-old mature trees or 30-year-old juvenile trees) affected tree suitability for the spruce budworm via the chemical profile of the foliage. Insects reared on old trees had greater survival and pupal weight, shorter development times, and caused more defoliation than those reared on young trees. Young trees were more suitable for the development of young larvae (instars 2–5), while old trees were more suitable for the development of older, sixth-instar larvae. These results were confirmed by the laboratory transfer experiment. Young larvae fed foliage from young trees had higher relative growth rates (RGR), digestibility (AD), and efficiency of conversion of ingested foliage (ECI) than those fed foliage from old trees. These differences appeared to be related to the high N:tannins ratio, and the high contents of P present in young trees during the development of the young larvae. Old larvae fed foliage from old trees had higher relative growth rates, relative consumption rates (RCR), and digestibility of the foliage than those fed foliage from young trees. The high digestibility of the foliage of old trees was compensated for by a lower efficiency of conversion of digested food (ECD), which in turn resulted in no significant effect of tree age on the efficiency of conversion of ingested foliage by old larvae. The low relative consumption rate of old larvae fed foliage from young trees appeared to be related to the low N:tannins ratio, and the high contents of bornyl acetate, terpinolene, and °-3-carene present in young trees during the budworm sixth instar. Variations in these compounds in relation to tree age may serve as mechanisms of balsam fir resistance to spruce budworm by reducing the feeding rate of sixth instar larvae. 相似文献
9.
Molar growth yields for anaerobic growth of Aerobacter aerogenes in complex medium were much higher than for growth in minimal medium. In batch cultures the molar growth yield for glucose varied from 44 to 50 and Y
ATP from 17.1 to 18.8. For glucose-limited chemostat cultures a value of 17.5 g/mole was found for Y
ATP
max
and a value of 2.3 mmoles ATP/g dry weight h for the maintenance coeficient. Growth dependent pH changes were used to control the addition of fresh medium, containing excess of glucose to a continuous culture. The specific growth rate and the population density were dependent on the pH difference between the inflowing medium and the culture. At a value of 1.44 h-1 the molar growth yield for glucose was about 70 and Y
ATP about 28.5. An-equation is presented, which gives the relation between theoretical and experimental Y
ATP
max
values. 相似文献
10.
Rhodocyclus gelatinosus strain 1 (str. 1), a photoheterotrophic bacterium, used CO as an energy substrate under anaerobic CO/light conditions, and exhibited a diauxic growth response when CO was removed from the culture. Changes in the level of cyclic AMP which occurred in cells during diauxie suggested that the cyclic nucleotide operated as an intracellular control molecule. During CO/light-phase growth, intracellular cyclic AMP was 30 pmol/mg protein, and, as str. 1 adapted for photosynthetic growth after removal of CO, intracellular cyclic AMP levels decreased to 9 pmol/mg protein. Reexposure of a light culture to CO induced synthesis of CO oxidation activity (measured as CO:MV oxidoreductase). If 10 mM cyclic AMP was added with CO, the rate of synthesis of CO:MV oxidoreductase activity increased 25-fold, and str. 1 produced 1,230 units of activity (nmol CO oxidized min-1 mg-1 protein) after only 1 h. With cyclic AMP and no CO, no incerease in CO oxidation activity was seen. Appearance of CO oxidation activity in str. 1 represented de novo protein synthesis and was blocked with chloramphenicol. In addition to stimulating formation of CO oxidative activity, a high level of cyclic AMP in str. 1 during growth with CO appeared to influence photometabolism negatively by repressing bacteriochlorophyll formation.Abbreviations Bchl a
bacteriochlorophyll a
- MV
methyl viologen
- CO
MV oxidoreductase, carbon monoxide: methyl viologen oxidoreductase 相似文献
11.
Attemps were made to demonstrate the role of yeasts in the degradation of benzene compounds under natural soil conditions. Yeasts were isolated from acidic sandy soil supplied with benzene compounds. For this purpose the slant culture method was used. Growth on the benzene compounds took place on solid growth media at 10°C. Several yeast species were isolated: Leucosporidium scottii, Rhodotorula aurantiaca, Rhodotorula mucilaginosa, Trichosporon dulcitum, Trichosporon moniliiforme and Schizoblastosporion starkeyi-henricii. Cryptococcus humicolus and Cryptococcus laurentii were isolated from liquid enrichment cultures. All these strains assimilated several benzene compounds in pure culture.Cresol removal from contaminated soil was speeded up by inoculation with Rhodotorula aurantiaca G36. It was demonstrated that this yeast utilized this compound in competition with the soil microflora. 相似文献
12.
Propionic acid and its sodium salt have long been used as additives in poultry feed to reduce microbial populations, including Salmonella spp. Propionic acids in poultry feed may have a potential role in inhibiting growth of Salmonella in the chicken intestine. In this study, we determined growth response of a Salmonella typhimurium poultry isolate to propionic acid and sodium propionate under aerobic and anaerobic conditions. Growth rate consistently decreased with the addition of greater concentrations of either propionic acid or sodium propionate. The extent of growth inhibition was much greater with propionic acid than the sodium form. Media pH decreased only with addition of propionic acid. Growth inhibition was more effective under anaerobic growth conditions with either propionic acid or sodium propionate. When determined at the same pH level, growth rate was significantly lowered by addition of 25 mM of either propionate or sodium propionate alone, and also by the decrease in pH levels (P<0.05). These results showed that growth inhibition of S. typhimurium by propionic acid or sodium propionate is greatly enhanced by pH decrease, and to lesser extent by anaerobiosis. We also found that sodium propionate was more inhibitory for growth of S. typhimurium than propionic acid when compared at the same pH levels. 相似文献
13.
Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens 总被引:4,自引:0,他引:4
Rates of methane production by three anaerobic ciliates containing symbiotic methanogens (the marine Metopus contortus and Plagiopyla frontata, and the limnic Metopus palaeformis) were quantified. Hydrogen production by normal (containing active symbionts), aposymbiotic and BES-treated cells was also measured in the case of the marine species. Methanogenesis was closely coupled to host metabolism and growth; at maximum ciliate growth rates (20°C) each methanogen produced about 1 fmol CH4 per hour corresponding to about 7, 4 and 0.35 pmol per ciliate per hour for M. contortus, P. frontata and M. palaeformis, respectively. Normal cells produced traces of H2. Hydrogen production by BES-treated or aposymbiotic cells accounted for 75 and 45% of the methane production of normal M. contortus and P. frontata cells, respectively. However, it is possible that hydrogen production was partly inhibited in the absence of methanogens. Theoretical considerations suggest that hydrogen transfer is significant to the metabolism of larger anaerobic ciliates. Ciliates with methanogens produced CH4 under microaerobic conditions due to their ability to maintain an anoxic intracellular environment at low external oxygen tensions. Methanogenesis was still detectable at a pO2 of 0.63 kPa (3 %atm sat). 相似文献
14.
Food consumption and growth of larvae and juveniles of three cyprinid species at different food levels 总被引:1,自引:0,他引:1
Synopsis The relationships between food availability, consumption and growth were analyzed from the onset of feeding to an age of 90 days in three cyprinid species. Fish were held at 20 ± 0.5° C and given two (three) constant rations of approximately 30, (40) or 100% dry body weight (dbw) ind-1 day-1. Food consisted of living zooplankton, the size of which correlated with fish size. At high food densities consumption rates decreased rapidly with fish size in all three species. At reduced rations, fish consumed most of the food offered until they were larger than 10 mg dbw. In all species and at each feeding level daily rations consumed increased allometrically with body size. Respiration rate, expressed as routine metabolic rate differed insignificantly between the three species. At high ration levels, growth rates of small bleak, Alburnus alburnus, were distinctly lower than those of roach, Rutilus rutilus, and blue bream, Abramis ballerus. At low food supply all three species grew at similar rates. Assimilation efficiency at low food conditions was approximately twice that of the well-fed groups. If the caloric equivalents of oxygen consumption as measured in well-fed fish are applied to fish fed at low rations their energy budgets do not balance. This indicates the limitations of fish larvae in the partitioning of energy for growth or activity at such conditions. 相似文献
15.
Summary Dietary nicotine (0.5%), which is a substrate of the PSMO (polysubstrate monooxygenase) detoxification system in the southern armyworm Spodoptera eridania, has significant negative effects on the weight of food ingested, weight gained, relative growth rate (RGR), and efficiency of conversion of digested food (ECD) by fourthinstar S. eridania larvae on a nutrient-rich artificial diet. It has a significant positive effect on the weight of food respired by the larvae. Thus, the detoxification of nicotine by the PSMO system exacts a fitness cost and imposes a metabolic cost on S. eridania larvae. In contrast, dietary -(+)-pinene, an inducer of the PSMO system, neither exacts a fitness cost nor imposes a metabolic cost on the larvae. We believe this to be the first study to demonstrate unequivocally that the negative effect of a dietary toxin on net growth efficiency (ECD) in an insect herbivore is due to an increase in the allocation of assimilated food to energy metabolism and not to a decrease in the amount of food assimilated. This study, therefore, supports the hypothesis that detoxification can impose a significant metabolic load on an insect herbivore. Implications of a corroboration of the metabolic load hypothesis are discussed. 相似文献
16.
Degradation of phenol and phenolic compounds by a defined denitrifying bacterial culture 总被引:3,自引:0,他引:3
Thomas Swapna Sarfaraz Sami Mishra L.C. Iyengar Leela 《World journal of microbiology & biotechnology》2002,18(1):57-63
Phenol, a major pollutant in several industrial waste waters is often used as a model compound for studies on biodegradation. This study investigated the anoxic degradation of phenol and other phenolic compounds by a defined mixed culture of Alcaligenes faecalis and Enterobacter species. The culture was capable of degrading high concentrations of phenol (up to 600 mg/l) under anoxic conditions in a simple minimal mineral medium at an initial cell mass of 8 mg/l. However, the lag phase in growth and phenol removal increased with increase in phenol concentration. Dissolved CO2 was an absolute requirement for phenol degradation. In addition to nitrate, nitrite and oxygen could be used as electron acceptors. The kinetic constants, maximum specific growth rate max; inhibition constant, K
i and saturation constant, K
s were determined to be 0.206 h–1, 113 and 15 mg phenol/l respectively. p-Hydroxybenzoic acid was identified as an intermediate during phenol degradation. Apart from phenol, the culture utilized few other monocyclic aromatic compounds as growth substrates. The defined culture has remained stable with consistent phenol-degrading ability for more than 3 years and thus shows promise for its application in anoxic treatment of industrial waste waters containing phenolic compounds. 相似文献
17.
18.
Escherichia coli was grown anaerobically on sodium fumarate and molecular hydrogen or sodium formate in continuous culture. The maximal growth yield and the maintenance coefficient were determined. In a mineral medium a Y
fum
max
value of 6.6 g dry weight per mol fumarate was found. This value increased to 7.5 when casamino acids were present in the medium. From these data and the corresponding Y
ATP
max
values it could be calculated that per mol of fumarate reduced, 0.4 mol of ATP became available for growth. In batch culture a Yfum value of 4.8 g dry weight per mol fumarate was determined. 相似文献
19.
An investigation into the spatial distribution of hypolimnetic ciliates in three small eutrophic lakes during the period of summer stratification was carried out. Peak ciliate densities were found to occur at the oxic/anoxic boundary, ciliate numbers declining with increasing depth within the hypolimnion. The ciliates only occurred in aerobic water where oxygen levels were less than about 0.5 mgl–1 Laboratory experiments demonstrated that the ciliates swim upwards under anaerobic conditions but swim rapidly downwards under aerobic conditions. Further laboratory experiments showed that although the bulk of the population occured within anaerobic water, the hypolimnetic ciliates are aerobes and cannot survive indefinite anoxia. Despite the demonstrable toxicity of high levels of ammonia and sulphide, it was probably excesive distance from an available source of oxygen that excluded the ciliates from the lowest levels of the hypolimnion. Possible mechanisms which allowed these aerobic ciliates to colonise anaerobic water are considered. 相似文献
20.
Barbara B. Hemmingsen 《Cell biochemistry and biophysics》1986,8(3):189-200
Cells of the ciliateTetrahymena pyriformis were suspended with carmine or graphite particles or with Halobacterium gas vesicles, all of which promote bubble formation
in aqueous suspensions when tested with 10 atm and above (0.1−0.5×107 Pa) (carmine and graphite) or 25 atm and above (gas vesicles) of nitrogen supersaturations. All three particles were ingested,
but only the gas vesicles promoted intracellular gas bubble formation if the cells containing them were nitrogen or methane
saturated in a slow stepwise fashion prior to rapid decompression. Cell rupture did not occur until gas saturation pressures
greater than 25 atm were used; this suggests that the ciliate pellicle and cytoplasm cannot resist the mechanical forces of
an expanding gas phase induced by decompression from between 25 and 50 atm and thus provides an estimate of the physical strength
of these cellular components. The inability of the ingested carmine, graphite, and collapsed gas vesicles to induce intracellular
gas bubble formation suggests that the phagocytic process somehow altered them. This procedure may thus provide a tool for
the study of early events in the digestive processes of ciliates. 相似文献