首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main objective of this study was to evaluate the variability in in situ CP degradation characteristics of 15 batches lupin grains from nine genotypes in a standardised approach. This study also investigated whether differences in CP degradation can be described by protein fractionation using the Cornell Net Carbohydrate and Protein System (CNCPS) and also whether thermal processing of lupins has an effect on CP degradation in the rumen and analysed protein fractions. The rising political and consumer demand for milk products from dairy production systems based on domestic protein sources and the wide range of lupin types and varieties that can be chosen as protein feed in dairy nutrition requires research to determine the variability in CP degradation characteristics in the rumen. For CP degradation measurements, ground grains were incubated in the rumen of three lactating Jersey cows fitted with a ruminal cannula for different times from 2 to 48 h, and the washing loss of non-incubated samples was also measured. Protein fractions were analysed according to CNCPS and used for the estimation of ruminally degraded protein. In situ CP degradation parameters varied widely between untreated samples. The mean value for the washout fraction was 29.3% (from 16.4% to 43.6%). The potentially degradable fraction averaged 70.5% (from 55.6% to 83.7%), hence maximal degradation of CP was close to completeness. Mean degradation rate was 16.6%/h (from 12.6 to 21.0%/h). Variation in estimated parameters led to variation in the effective degradation (ED) averaging 76.6% (from 67.3% to 83.0%) when calculated assuming a ruminal outflow of 8%/h. Thermal treatment of lupins induced changes in degradation characteristics, primarily by lowering degradation rates, and also led to a significant reduction in ED. The ED calculated from analysed protein fractions averaged 10 percentage points higher than ED calculated from in situ parameters for untreated grains. The ED based on protein fractionation was also reduced by heat treatment, but the correlation with in situ based ED was poor. It can be concluded that the variation in ED indicates a potential to increase the amount of rumen undegraded protein without additional chemical or physical treatment and the effect of genetic factors and agronomic practices on ED of lupin grains should be investigated in systematic studies in the future.  相似文献   

2.
To improve the prediction accuracy in the regime where template alignment quality is poor, an updated version of TASSER_2.0, namely TASSER_WT, was developed. TASSER_WT incorporates more accurate contact restraints from a new method, COMBCON. COMBCON uses confidence-weighted contacts from PROSPECTOR_3.5, the latest version, PROSPECTOR_4, and a new local structural fragment-based threading algorithm, STITCH, implemented in two variants depending on expected fragment prediction accuracy. TASSER_WT is tested on 622 Hard proteins, the most difficult targets (incorrect alignments and/or templates and incorrect side-chain contact restraints) in a comprehensive benchmark of 2591 nonhomologous, single domain proteins ≤200 residues that cover the PDB at 35% pairwise sequence identity. For 454 of 622 Hard targets, COMBCON provides contact restraints with higher accuracy and number of contacts per residue. As contact coverage with confidence weight ≥3 (Fwt≥3cov) increases, the more improved are TASSER_WT models. When Fwt≥3cov > 1.0 and > 0.4, the average root mean-square deviation of TASSER_WT (TASSER_2.0) models is 4.11 Å (6.72 Å) and 5.03 Å (6.40 Å), respectively. Regarding a structure prediction as successful when a model has a TM-score to the native structure ≥0.4, when Fwt≥3cov > 1.0 and > 0.4, the success rate of TASSER_WT (TASSER_2.0) is 98.8% (76.2%) and 93.7% (81.1%), respectively.  相似文献   

3.
It is known that the level of dietary protein modulates the enzymatic activity of the digestive tract of fish; however, its effect at the molecular level on these enzymes and the hormones regulating appetite has not been well characterised. The objective of this study was to evaluate the effect of CP on the activity of proteases and the expression of genes related to the ingestion and protein digestion of juveniles of red tilapia (Oreochromis sp.), as well as the effects on performance, protein retention and body composition of tilapia. A total of 240 juveniles (29.32 ± 5.19 g) were used, distributed across 20 tanks of 100 l in a closed recirculation system. The fish were fed to apparent satiety for 42 days using four isoenergetic diets with different CP levels (24%, 30%, 36% and 42%). The results indicate that fish fed the 30% CP diet exhibited a higher growth performance compared to those on the 42% CP diet (P < 0.05). Feed intake in fish fed 24% and 30% CP diets was significantly higher than that in fish fed 36% and 42% CP diets (P < 0.05). A significant elevation of protein retention was observed in fish fed with 24% and 30% CP diets. Fish fed with 24% CP exhibited a significant increase in lipid deposition in the whole body. The diet with 42% CP was associated with the highest expression of pepsinogen and the lowest activity of acid protease (P < 0.05). The expression of hepatopancreatic trypsinogen increased as CP levels in the diet increased (P < 0.05) up to 36%, whereas trypsin activity showed a significant reduction with 42% CP (P < 0.05). The diet with 42% CP was associated with the lowest intestinal chymotrypsinogen expression and the lowest chymotrypsin activity (P < 0.05). α-amylase expression decreased with increasing (P < 0.05) CP levels up to 36%. No significant differences were observed in the expression of procarboxypeptidase, lipase or leptin among all the groups (P > 0.05). In addition, the diet with 42% CP resulted in a decrease (P < 0.05) in the expression of ghrelin and insulin and an increase (P < 0.05) in the expression of cholecystokinin and peptide yy. It is concluded that variation in dietary protein promoted changes in the metabolism of the red tilapia, which was reflected in proteolytic activity and expression of digestion and appetite-regulating genes.  相似文献   

4.
Ovoglycoprotein, a protein of hen''s-egg white   总被引:3,自引:3,他引:0       下载免费PDF全文
  相似文献   

5.
In current feed evaluation systems, the nutritional value of protein sources in diets for pigs is based on the ileal digestibility of protein and amino acids, which does not account for the kinetics of protein digestion along the gastrointestinal tract. The objective of the present study was to determine the in vitro protein digestion kinetics of different protein sources (soya bean meal (SBM), wheat gluten (WG), rapeseed meal (RSM), whey powder (WP), dried porcine plasma protein, yellow meal worm larvae and black soldier fly larvae (BSF)). Protein sources were incubated with pepsin at pH 3.5 for 0 to 90 min and subsequently with pancreatin at pH 6.8 for 0 to 210 min at 39°C. The in vitro protein digestion kinetics were described as the kinetics of nitrogen (N) solubilisation and the release of low molecular weight peptides (LMW) (<500 Da). The N solubilisation rate ranged from 0.025 min−1 for BSF to 0.685 min−1 for WP during the incubation with pepsin, and from 0.027 min−1 for RSM to 0.343 min−1 for WP during the incubation with pancreatin. The release rate of LMW peptides ranged from 0.027 min−1 for WG to 0.093 min−1 for WP during the incubation with pepsin, and from 0.029 min−1 for SBM to 0.385 min−1 for WP. Black soldier fly larvae showed a similar release rate of LMW peptides as WP during the incubation with pancreatin. At the end of the sequential incubation with pepsin (90 min) and pancreatin (210 min), WG and WP showed the highest percentage of N present in LMW peptides relative to total N (78% and 79%, respectively), whereas SBM showed the lowest (35%). In conclusion, protein sources for pig diets show substantial differences in in vitro protein digestion kinetics as measured by the kinetics of N solubilisation and the release of LMW peptides. The rate of release of LMW peptides was not correlated to the rate of N solubilisation for each of the protein sources evaluated.  相似文献   

6.
Embryos at various stages of early development from 1.5 to 5 hr after oviposition were made permeable with octane and labeled for 1 hr with [3H]phenylalanine. Measurements of the rate of incorporation of [3H]phenylalanine into ribosomal proteins and total protein were made using these synchronized Drosophila embryos. The rate of synthesis of those ribosomal proteins incorporated into ribosomes increases until 3 to 4 hr after fertilization (550 pg/embryo-hr) then declines later in embryonic development. The rate of total protein synthesis is maximal as early during embryonic development as could be measured. During the period between 1.5 and 2.5 hr after fertilization this rate is 9.4 ng/embryo-hr and then also declines. The synthesis of ribosomal proteins accounts for a substantial portion (4.5%–8.9%) of total protein synthesis in early embryos. These results indicate that ribosome formation is a significant activity during the earliest stages of Drosophila development.  相似文献   

7.
Doctor VM  Kerur L 《Applied microbiology》1968,16(11):1723-1726
Dried Penicillium mycelium served as a protein source in animal diet when it was supplemented at 7.5% protein level along with 7.5% protein level from peanut meal. Under these conditions, the food consumption was optimal, and the rat growth response was comparable with 15% casein diet. The role of peanut meal appears to be twofold; it makes the mycelium diet more palatable and it supplies protein. The amino acids, lysine and threonine, which are found to be limiting in peanut meal, are reported to be present in the Penicillium mycelium. This type of formulation affords considerable economic advantage because both the peanut meal and the Penicillium mycelium are by-products and, therefore, are inexpensive sources of protein.  相似文献   

8.
Membrane proteins are vital type of proteins that serve as channels, receptors, and energy transducers in a cell. Prediction of membrane protein types is an important research area in bioinformatics. Knowledge of membrane protein types provides some valuable information for predicting novel example of the membrane protein types. However, classification of membrane protein types can be both time consuming and susceptible to errors due to the inherent similarity of membrane protein types. In this paper, neural networks based membrane protein type prediction system is proposed. Composite protein sequence representation (CPSR) is used to extract the features of a protein sequence, which includes seven feature sets; amino acid composition, sequence length, 2 gram exchange group frequency, hydrophobic group, electronic group, sum of hydrophobicity, and R-group. Principal component analysis is then employed to reduce the dimensionality of the feature vector. The probabilistic neural network (PNN), generalized regression neural network, and support vector machine (SVM) are used as classifiers. A high success rate of 86.01% is obtained using SVM for the jackknife test. In case of independent dataset test, PNN yields the highest accuracy of 95.73%. These classifiers exhibit improved performance using other performance measures such as sensitivity, specificity, Mathew's correlation coefficient, and F-measure. The experimental results show that the prediction performance of the proposed scheme for classifying membrane protein types is the best reported, so far. This performance improvement may largely be credited to the learning capabilities of neural networks and the composite feature extraction strategy, which exploits seven different properties of protein sequences. The proposed Mem-Predictor can be accessed at http://111.68.99.218/Mem-Predictor.  相似文献   

9.
Cytosolic juvenile hormone binding protein (cJHBP) is a carrier of juvenile hormone (JH) in insects, however knowledge about its evolution and expression remains extremely limited. In this study, a gene encoding for cJHBP was isolated from the Chinese oak silkmoth Antheraea pernyi. A database search showed that the homologous sequences were present in several animal species including nematodes, insects, tunicates, fish, and mammals. The A. pernyi cJHBP had 54–85% identity with its homolog from other insects, and 58–62% identity with vertebrate glyoxalase domain containing protein 4 (Glod-4). Phylogenetic analysis supported the hypothesis that insect cJHBP shares a common ancestor with vertebrate Glod-4. RT-PCR detection showed that the cJHBP gene was expressed throughout the developmental stages and in all tested tissues of A. pernyi, which agreed with the data from Bombyx mori cJHBP and Homo sapiens Glod-4. These data suggest that insect cJHBP may play a similar function as vertebrate Glod-4.  相似文献   

10.
Awassi is a multi-purpose sheep breed. Awassi lambs being finished are usually offered an 18% crude protein (CP) diet. The growth rate of Awassi lambs is lower than other meat breeds. Therefore, this high content of dietary CP is questionable. The objective of this study was to estimate the optimum CP level for finishing Awassi lambs. Fifty male Awassi lambs (23.0±1.2 kg) were fed five high concentrate isocaloric diets (10 lambs per diet) that contained 10, 12, 14, 16, and 18% CP in a totally mixed diets for 9 weeks using a completely randomized design. Lambs were fed twice daily, and feed offered and feed refusals recorded for each feeding. Individual lamb intakes were calculated using daily feed offered and feed refused averaged over the interval of the experiment. Digestibility estimates were measured by total fecal collection. Lambs fed diets that contained 10, 12, and 14% CP gained less weight than those fed the 16 and 18% CP diets (P<0.05). Dry matter and CP intakes increased (P<0.05) with increasing levels of dietary CP. No difference (P>0.10) was observed in feed-to-gain ratio between diets except for the diet that contained 10% CP (P<0.05) which had a lower ratio. Organic matter and CP digestibility were lowest in lambs fed the 10% CP diet. Results suggest that the optimum CP concentration is 16% and that any increase above this level will not result in any improvement in production.  相似文献   

11.
Ubiquitin expression protein DNA clone (Hl-UBI) was isolated from Heterodera latipons collected from North Jordan. Its sequence of 285 nucleotides was also determined and deposited in the GeneBank. The 285-bp open reading frame coded for 76-amino acid protein having two domains; the ubiquitin domain and the C terminal extension. The first 59 amino acids were predicted with the ubiquitin domain with identity percentages of 78% to ubiquitin of H. schachtii, 77% to polyubiquitin of Globodera pallida, 74% to ubiquitin of Globodera rostochiensis and 72% to ubiquitin of Heterodera glycines. The other domain at the C-terminus, containing 17 amino acids, showed no homology to any known protein. Sequence analysis showed a calculated encoding amino acids molecular weight of 8.77 kDa, theoretical isoelectric point = 4.76, negatively charged residues = 12, positively charged residues = 9, extinction coefficient = 1490, estimated half-life = 30 h, instability index = 32.51 and grand average of hydropathicity = ?0.537. The demonstrated subcellular localization analysis of cytoplasm, cell nucleus, mitochondrion, cell skeleton and plasma membrane of Hl-UBI protein occupied about 52.20, 21.70, 17.40, 4.30 and 4.30%, respectively. Sequence, homology and structural analysis confirmed that Hl-UBI gene was highly conserved during evolution and belonged to ubiquitin gene family.  相似文献   

12.
Characterization of the major integral protein of vacuolar membrane   总被引:13,自引:5,他引:8       下载免费PDF全文
Maeshima M 《Plant physiology》1992,98(4):1248-1254
The vacuolar membrane of radish (Raphanus sativus) taproot contained a large quantity of a protein of 23 kilodaltons that accounted for more than 25% of the total membrane proteins. The protein, tentatively named VM 23, was purified and characterized. VM 23 tends to aggregate at high temperature even in the presence of 1% sodium dodecyl sulfate. The apparent molecular size of VM 23 was estimated to be about 400 kilodaltons by polyacrylamide gel electrophoresis in the presence of 0.1% Triton X-100. VM 23 was partially extracted from the vacuolar membranes with chloroform:methanol, indicating its high hydrophobicity. The hydrophobic carboxyl modifier N,N′-dicyclohexylcarbodiimide bound covalently to VM 23. The results suggest that VM 23 may act as a secondary transport system coupled with the proton transport. The antibody against radish VM 23 reacted with the major proteins in the vacuolar membranes of mung bean (Vigna radiata) and castor bean (Ricinus communis) hypocotyls and pumpkin (Cucurbita moschata) epicotyl, but not with that of sugar beet (Beta vulgaris) taproot. VM 23 comigrated with vacuolar H+-pyrophosphatase on sucrose density gradient centrifugation after sonication of membranes, indicating that it is associated with the vacuolar membrane.  相似文献   

13.
The Archaebacterium Thermoplasma acidophilum contains a basic chromosomal protein remarkably similar to the histones of eukaryotes. Therefore, it was of interest to examine a different Archaebacterium for similar proteins. We chose to examine Sulfolobus acidocaldarius because it is thermophilic, like T. acidophilum, but nevertheless the two organisms are not particularly closely related. Two major chromosomal proteins were found in S. acidocaldarius. The smaller of these was soluble in 0.2 M H2SO4 and had a molecular weight of 14500. The larger was acid-insoluble and had a molecular weight of about 36000. Together, the proteins protected about 5% of the DNA against nuclease digestion and stabilized about 50% against thermal denaturation. Overall, the properties of these proteins were intermediate between those of the Escherichia coli protein HU and T. acidophilum protein HTa.  相似文献   

14.
The stabilities of myoglobin, apo-myoglobin, and of two myoglobins with chlorophyllous chromophores (Zn-pheophorbide a and Zn-bacteriopheophorbide a), have been studied by thermal and chemical denaturation. With guanidinium chloride, the stability order is myoglobin > Zn-pheophorbide-myoglobin > Zn-bacteriopheophorbide-myoglobin ∼ apo-myoglobin. The thermal behavior is more complex. The transition temperature of thermal unfolding of the apoprotein (62.4 °C) is increased by Zn-pheophorbide a (83.9 °C) and Zn-bacteriopheophorbide a (82.6 °C) to a similar degree as by the native chromophore, heme (83.5 °C). The recovery with Zn-pheophorbide (92-98%) is even higher than with heme (74-76%), while with Zn-bacteriopheophorbide (40%) it is as low as with the apoprotein (42%). Recovery also depends on the rates of heating, and in particular the time spent at high temperatures. It is concluded that irreversibility of unfolding is related to loss of the chromophores, which are required for proper re-folding.  相似文献   

15.
《Process Biochemistry》2014,49(12):2063-2070
Escherichia coli expression systems are still preferred to other bacterial expression systems. However, by-product formation via glycolytic pathways inhibits protein production efficiency. In this paper, by-product-forming pathways were engineered to evaluate their effect on foreign protein production. Elimination of d-lactate dehydrogenase (encoded by ldhA) resulted in enhanced cell performance and 17.8% increase in recombinant β-mannanase production. Single deletions of pflB (encoding pyruvate formate lyase), pps (encoding phoenolpyruvate synthase) or poxB (encoding pyruvate oxidase) also had an affirmative impact on recombinant protein production. Furthermore, simultaneous deletions of ldhA, pflB, pps and poxB increased cell mass by 29% and β-mannanase production by 56% under shake-flasks cultivation. Meanwhile, overall acetate concentration showed a decrease of 33%. This quadruple mutant showed the best performance under bioreactor process, in which volume and specific activity of β-mannanase increased by 1.9 and 1.46 fold compared to the control strain respectively. The approach shown here indicated that rational engineering of glycolytic pathways can efficiently improve foreign protein production in E. coli.  相似文献   

16.
Addition of a metabolizable substrate (glucose, ethanol and, to a degree, trehalose) to non-growing baker's yeast cells causes a boost of protein synthesis, reaching maximum rate 20 min after addition of glucose and 40–50 min after ethanol or trehalose addition. The synthesis involves that of transport proteins for various solutes which appear in the following sequence: H+, l-proline, sulfate, l-leucine, phosphate, α-methyl-d-glucoside, 2-aminoisobutyrate. With the exception of the phosphate transport system, the Kt of the synthesized systems is the same as before stimulation. Glucose is usually the best stimulant, but ethanol matches it in the case of sulfate and exceeds it in the case of proline. This may be connected with ethanol's stimulating the synthesis of transport proteins both in mitochondria and in the cytosol while glucose acts on cytosolic synthesis alone. The stimulation is often repressed by ammonium ions (leucine, proline, sulfate, H+), by antimycin (proline, trehalose, sulfate, H+), by iodoacetamide (all systems tested), and by anaerobic preincubation (leucine, proline, trehalose, sulfate). It is practically absent in a respiration-deficient petite mutant, only little depressed in the op1 mutant lacking ADP/ATP exchange in mitochondria, but totally suppressed (with the exception of transport of phosphate) in a low-phosphorus strain. The addition of glucose causes a drop in intracellular inorganic monophosphate by 30%, diphosphate by 45%, ATP by 70%, in total amino acids by nearly 50%, in transmembrane potential (absolute value) by about 50%, an increase of high-molecular-weight polyphosphate by 65%, of total cAMP by more than 100%, in the endogenous respiration rate by more than 100%, and a change of intracellular pH from 6.80 to 7.05. Ethanol caused practically no change in ATP, total amino acids, endogenous respiration, intracellular pH or transmembrane potential; a slight decrease in inorganic monophosphate and diphosphate and a sizeable increase in high-molecular-weight polyphosphate. The synthesis of the various transport proteins thus appears to draw its energy from different sources and with different susceptibility to inhibitors. It is much more stimulated in facultatively aerobic species (Saccharomyces cerevisiae, Endomyces magnusii) than in strictly aerobic ones (Rhodotorula glutinis, Candida parapsilosis) where an inhibition of transport activity is often observed after preincubation with metabolizable substrates.  相似文献   

17.
18.
The efficiency of cell-penetrating peptide (CPP)-mediated dsDNA transfection in triticale microspores was investigated through transient and stable integration of the β-glucoronidase (GUS) reporter gene and expression assays in microspore-derived embryos and plantlets. The RecA protein, usually associated with prokaryote homologous recombination, was also tested for its capacity to protect the linear transgene from degradation. Transfections mediated by the CPP nanocarriers Tat2 and Pep1 reduced the number of regenerated embryos from 158 in the control to 122 and 100, respectively. The co-delivery of CPP-dsDNA with RecA protein also resulted in fewer embryos, 87 and 104 for Tat2 and Pep1, respectively. Delivery of dsDNA with Tat2 or Pep1, without RecA, resulted in the highest frequencies of GUS activity in regenerated embryos, at 26%. Co-delivery with RecA decreased the percentage of GUS-positive embryos to 16%. Interestingly, co-delivered RecA-dsDNA reduced the loss of integrity of inserted genetic construct, as observed by polymerase chain reaction (PCR) amplification of the 5′ and 3′ ends. GUS activity was also detected in mature haploid and diploid plants. Of all treatments, 31 T0 plants tested positive for the GUS gene by quantitative PCR, although 50% were derived from the single treatment dsDNA-Tat2. The estimated copy number of the GUS transgene varied between four and eight. This study provides the foundations for CPP-mediated co-delivery of dsDNA and protein RecA in haploid microspore nuclei for functional genomic studies in crop species.  相似文献   

19.
In this study, 10 samples of rapeseed meal (RSM) from 10 different oil plants in Germany were examined. In situ rumen degradation of CP was determined by incubation over 1, 2, 4, 8, 16, 32 and 72 h in duplicate per time point using three rumen fistulated dry cows. Degradation kinetics were estimated by an exponential model and effective CP degradation was calculated. Degradation was corrected for small particle loss as the difference between washing loss and water-soluble fraction. Amino acid analysis was carried out in the samples and in the residues after 8 and 16 h of incubation in situ and degradation of individual amino acids was calculated for these incubation times. In vitro pepsin–pancreatin digestibility of CP (IPD) was determined in the samples as well as in the 8 and 16 h residues. Effective CP degradation for a rumen outflow rate of 8%/h (ED8) averaged 54.3% with a considerable variation among samples ranging from 44.3% to 62.7%. A multiple regression equation containing acid detergent insoluble N, total glucosinolates and petroleum ether extract as independent variables predicted ED8 with satisfying accuracy (R2 = 0.74; RSD = 6.4%). Degradation of amino acids was different from that of CP for most amino acids studied, especially after 8 h of incubation. Compared with CP, degradation of essential amino acids was predominantly lower while degradation of non-essential amino acids was higher in most cases. However, for lysine and methionine no distinct difference with CP degradation was found. Degradation of individual amino acids was predicted from CP degradation with high accuracy using linear regression equations. Average IPD of RSM was 79.8 ± 2.6%. IPD was lower in the incubation residues and decreased with longer incubation time and increasing rumen degradation, respectively.  相似文献   

20.
Protein methylase II (S-adenosyl-methionine:protein-carboxyl methyltransferase) from calf thymus was purified approximately 2400-fold with a yield of 7% by incorporating the pH 5.1 treatment and QAE (triethylaminoethyl)-Sephadex column chromatography to the published purification steps (Kim and Paik (1970) J. Biol. Chem., 245, 1806). The enzyme is found stable at pH 10.2, but loses 50% of its activity in 60 min at pH 5. The enzyme activity disappeared in 8 m urea 2.5 m guanidine hydrochloride at pH 8.0. However, about 80% of the activity returned upon dialysis of the mixture. The highly purified enzyme is stable for at least 2 yr in the presence of 50% glycerol at pH 8.0 or in the form of lyophilized powder. Protein methylase II from different tissues exhibits different pI values, determined by isoelectrofocusing; 4.85 with the enzyme preparation isolated from calf thymus, 5.8 from calf spleen, and 5.08 from rat testis. Reinvestigation of the methanol-forming enzyme system from calf posterior pituitary gland by Axelrod and Daly [Science 150, 892 (1965)] indicated that this enzyme is identical with protein methylase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号