首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human intestinal trefoil factor hITF, a polypeptide of the P-domain family, was found to occur in hypothalamic neurons. With combined immunofluorescence and immunoperoxidase technique we investigated the coexistence of hITF with the neurohypophysial peptide oxytocin and the associated neurophysin I in sections of the human hypothalamus. In the supraoptic nucleus, 39.2% of magnocellular oxytocinergic perikarya show hITF immunoreactivity. A similar distribution was observed in perivascular hypothalamic oxytocinergic neurons, whereas in the paraventricular nucleus, 99% of the oxytocinergic neurons show hITF coexpression. In the periventricular nucleus (PEV), single, scattered neurons with both immunoreactivities occur. Our findings indicate that hITF and oxytocin are coexpressed in a portion of the magnocellular neurons in the human hypothalamus, and that hITF is among the neurohypophysial peptides.  相似文献   

2.
The distribution of dynorphin in the central nervous system was investigated in rats pretreated with relatively high doses (300–400 μg) of colchicine administered intracerebroventricularly. To circumvent the problems of antibody cross-reactivity, antisera were generated against different portions as well as the full dynorphin molecule (i.e., residues 1–13, 7–17, or 1–17). For comparison, antisera to [Leu]enkephalin (residues 1–5) were also utilized. Dynorphin was found to be widely distributed throughout the neuraxis. Immunoreactive neuronal perikarya exist in hypothalamic magnocellular nuclei, periaqueductal gray, scattered reticular formation sites, and other brain stem nuclei, as well as in spinal cord. Additionally, dynorphin-positive fibers or terminals occur in the cerebral cortex, olfactory bulb, nucleus accumbens, caudate-putamen, globus pallidus, hypothalamus, substantia nigra, periaqueductal gray, many brain stem sties, and the spinal cord. In many areas studied, dynorphin and enkephalin appeared to form parallel but probably separate anatomical systems. The results suggest that dynorphin occurs in neuronal systems that are immunocytochemically distinct from those containing other opioid peptides.  相似文献   

3.
E Weber  K A Roth  C J Evans  J K Chang  J D Barchas 《Life sciences》1982,31(16-17):1761-1764
Dynorphin(1-8) immunoreactivity was visualized by immunohistofluorescence in hypothalamic magnocellular neurons of the rat. No immunoreactive met-enkephalin-Arg6-Gly7-Leu8, a fragment of the adrenal medulla pro-enkephalin molecule, was detected in magnocellular neurons. However, a strong met-enkephalin-Arg6-Gly7-Leu8-like immunostaining was seen in other regions of the brain. These results suggest that in magnocellular neurons dynorphin(1-8) exists independently from pro-enkephalin and therefore the magnocellular neurons represent a third opioid peptide neuronal system in brain. These observations, however, do not rule out a coexistence of proenkephalin and dynorphin-related peptides in other regions of the brain.  相似文献   

4.
Cultured magnocellular neurons, isolated from adult rat supraoptic nuclei, were characterized by immunocytochemistry, using the avidin--biotin--peroxidase complex and antisera to vasopressin, oxytocin, galanin and cholecystokinin. Light microscope examination of the immunostained cultures revealed the presence of vasopressin- and oxytocin-like immunoreactivity, as well as neurons containing either galanin- or cholecystokinin- like immunoreactivity. In contrast, no significant galanin- or cholecystokinin-like immunoreactivity could be observed in freshly dispersed cells. Correlative scanning electron microscopical observations in the secondary electron imaging mode revealed that the stained neurons appeared significantly brighter than the unstained structures. Complementary observations with toad brain sections (preoptic area), immunostained for galanin, led to the same result. Considering previous results, it is suggested that the presence of galanin- and cholecystokinin-like immunoreactivity in the cultured neurons and its virtual absence in freshly dispersed cells is indicating a participation of these peptides in the regenerative processes taking place during culture. It is further concluded that the avidin--biotin-- peroxidase method is suitable for correlative light and scanning electron microscopical studies of smooth surfaces and cultured cells. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

5.
Tissues of the reproductive tract have been shown to contain mRNAs coding for pro-opiomelanocortin (POMC), pro-enkephalin and pro-dynorphin. However, the amounts of immunoreactive opioid peptides in these tissues are low, and in the case of the enkephalins and dynorphin, the molecular species responsible for the immunoreactivities have not been characterized. The chromatographic properties of dynorphin and enkephalin immunoreactivities in extracts of guinea pig and rat testis have therefore been determined. Dynorphin A and dynorphin B immunoreactivity was heterogeneous, with a significant amount attributable to high-molecular-weight forms. About 20% of the dynorphin A immunoreactivity, and about 40% of the dynorphin B immunoreactivity, in guinea pig testis extracts behaved as authentic dynorphin A or B, respectively during fractionation by ion exchange, gel filtration and high-performance liquid chromatography. Both high- and low-molecular-weight forms of [Leu5]enkephalin immunoreactivity were also present, with roughly 50-70% of the immunoreactivity attributable to low-molecular-weight forms. In extracts of guinea pig testis only a small part of this immunoreactivity eluted as authentic [Leu5]enkephalin during high-performance liquid chromatography. In rat testis most of the low-molecular-weight [Leu5]enkephalin immunoreactivity behaved as the authentic peptide. These results confirm that opioid peptides are produced in guinea pig and rat testis, and demonstrate that immunoreactive forms of the peptides similar to those found in brain and pituitary are present in the tissue.  相似文献   

6.
Summary The existence of cholecystokinin in the posterior hypophysis and its hypothalamic origin have been unequivocally demonstrated. Immunocytochemical evidence is presented for the coexistence of gastrin-cholecystokinin and oxytocin-neurophysin I immunoreactivities in some magnocellular neurons of the supraoptic and paraventricular nuclei both in rat and bovine hypothalamus.  相似文献   

7.
The mammalian supraoptic nucleus (SON) is a neuroendocrine center in the brain regulating a variety of physiological functions. Within the SON, peptidergic magnocellular neurons that project to the neurohypophysis (posterior pituitary) are involved in controlling osmotic balance, lactation, and parturition, partly through secretion of signaling peptides such as oxytocin and vasopressin into the blood. An improved understanding of SON activity and function requires identification and characterization of the peptides used by the SON. Here, small-volume sample preparation approaches are optimized for neuropeptidomic studies of isolated SON samples ranging from entire nuclei down to single magnocellular neurons. Unlike most previous mammalian peptidome studies, tissues are not immediately heated or microwaved. SON samples are obtained from ex vivo brain slice preparations via tissue punch and the samples processed through sequential steps of peptide extraction. Analyses of the samples via liquid chromatography mass spectrometry and tandem mass spectrometry result in the identification of 85 peptides, including 20 unique peptides from known prohormones. As the sample size is further reduced, the depth of peptide coverage decreases; however, even from individually isolated magnocellular neuroendocrine cells, vasopressin and several other peptides are detected.  相似文献   

8.
Summary The anatomical distribution of neurons and nerve fibers containing corticotropin-releasing factor (CRF) has been studied in the brain of the snake, Natrix maura, by means of immunocytochemistry using an antiserum against rat CRF. To test the possible coexistence of CRF with the neurohypophysial peptides arginine vasotocin (AVT) and mesotocin (MST) adjacent sections were stained with antisera against the two latter peptides. CRF-immunoreactive (CRF-IR) neurons exist in the paraventricular nucleus (PVN). In some neurons of the PVN, coexistence of CRF with MST or of CRF with AVT has been shown. Numerous CRF-IR fibers run along the hypothalamo-hypophysial tract and end in the outer layer of the median eminence. In addition, some fibers reach the neural lobe of the hypophysis. CRF-IR perikarya have also been identified in the following locations: dorsal cortex, nucleus accumbens, amygdala, subfornical organ, lamina terminalis, nucleus of the paraventricular organ, nucleus of the oculomotor nerve, nucleus of the trigeminal nerve, and reticular formation. In addition to all these locations CRF-IR fibers were also observed in the lateral septum, supraoptic nucleus, habenula, lateral forebrain bundle, paraventricular organ, hypothalamic ventromedial nucleus, raphe and interpeduncular nuclei.  相似文献   

9.
Nonspecific staining was detected in immunocytochemical procedures on the porcine hypothalamus with rabbit antisera, irrespective of the antigen specificity of the sera, in magnocellular neurons of the paraventricular (PVN) and supraoptic nuclei (SON), and in the vasopressin- and oxytocin-containing nucleus (VON). The present study was designed to test the hypothesis that this staining is mediated by the Fc portion of rabbit immunoglobulins. Rabbit antisera against neuropeptides localized predominantly outside the PVN, SON, and VON were employed in combination with different detection methods. The intensity of the nonspecific staining varied depending on the antiserum and persisted after pre-absorption of the antisera with their homologous peptides. Nonspecific staining and antigen-specific staining were differentially affected by the method of tissue fixation. The nonspecific staining could be prevented by preincubation of the antisera with proteins A and G, which left the antigen-specific staining intact, whereas additional preabsorption with homologous peptide abolished all staining. These observations suggest that the Fc region of IgGs is indeed involved in the nonspecific staining. On press-blots of homogenates from SON tissue subjected to isoelectric focusing, one band in the low-pH region was found with all antisera. Pre-incubation of the antisera with protein A abolished the staining of this band but did not affect staining of antigen-specific bands. Pre-incubation with proteins A and G is proposed as a routine control to check for nonspecific staining mediated by the Fc region of IgGs in immunocytochemical procedures, particularly those that employ rabbit sera in porcine brain.  相似文献   

10.
α-Neo-endorphin was isolated as the first form of “big” Leu-enkephalin and its complete amino acid sequence has recently been established. Using an antiserum raised against synthetic α-neo-endorphin, a highly sentitive and specific radioimmunoassay was developed. The antiserum practically possesses no cross-reactivity to Leu-enkephalin, dynorphin[1–13] and PH-8P, and very little to β-neo-endorphin. Distribution of α-neo-endorphin has been determined in rat brain and pituitary by the use of the highly specific antiserum. The highest concentration was observed at posterior lobe of pituitary. Furthermore, immunoreactive α-neo-endorphin was characterized by gel-filtration and high performance liquid chromatography, and shown to be identical with authentic α-neo-endorphin.  相似文献   

11.
Y Cetin 《Histochemistry》1985,83(4):369-373
Serial sections from araldite-embedded rat and man pancreata were investigated immunohistochemically for the presence of prodynorphin-related peptides and alpha-endorphin. Immunoreactivities were visualized by the avidin/biotin-peroxidase complex (ABC) technique. In the human pancreas, none of the endocrine cells could be immunostained for prodynorphin-, proopiomelanocortin-related peptides and enkephalins. In the rat pancreas, however, all glucagon cells exhibited immunoreactivities for both beta-neoendorphin and dynorphin A. In addition, these cells contain alpha-endorphin-like immunoreactivity but no immunoreactivities for corticotropin, melanotropin, 16 K-fragment, alpha-N-acetyl-alpha-endorphin and enkephalins. All specificity controls confirmed that the rat endocrine pancreas might be an other source of dynorphin and endorphin with a biosynthetic pathway different from that in the pituitary or in other locations. However, concerning synthesis or degradation of peptide precursor substances interspecies differences may exist.  相似文献   

12.
α-neo-endorphin-like immunoreactivity was demonstrated in the nerve fibers and Herring's bodies in the posterior lobe of rat pituitary glands by an indirect immunoperoxidase method using α-neo-endorphin-antiserum. The number of α-neo-endorphin positive fibers and Herring's bodies did not decrease in the sections in which α-neo-endorphin-antisera pretreated with oxytocin, ADH and leu-enkephalin were used as primary antisera. In view of the reports that met-enkephalin, leu-enkephalin and dynorphin were present in the posterior lobe of the pituitary gland, this finding suggested that there were four kinds of opiate-like peptides in the posterior lobes of the pituitary gland. Furthermore, by staining alternately 3he serial sections of the rat pituitary glands with ADH and α-neo-endorphin-antisera, it was revealed that α-neo-endorphin-positive Herring's bodies were identical to a large number of ADH positive Herring's bodies. This finding, together with the observation that morphine injection caused ADH release, suggested that α-neo-endorphin may play an important role in the regulation of ADH release.  相似文献   

13.
Summary Immunoreactive galanin-like material was recently shown to co-exist with vasopressin in parvocellular and magnocellular perikarya of the paraventricular nucleus in the anterior hypothalamus of the rat (Melander et al. 1986). Since this distribution pattern differed from our observation of oxytocin-associated galanin-like immunoreactivity (LI) in the neurohypophysis, we compared in series of 0.5-m thick sections the localisation of galanin-LI with the localisation of oxytocin and vasopressin/dynorphin in the hypothalamus, the median eminence and the neurohypophysis. In the oxytocin system, galanin-LI was intense in oxytocin varicosities of the neurohypophysis. Oxytocin perikarya of the hypothalamic supraoptic and paraventricular nuclei exhibited galanin-LI only after intraventricular injection of colchicine and when sections were treated with trypsin prior to application of the antibody. In the vasopressin/dynorphin system galanin-LI was intense in hypothalamic perikarya after colchicine injection and in neurohypophysial varicosities after treatment of the sections with trypsin. In these neurones, galanin-LI was absent or weak in all elements when treatments with colchicine or trypsin were omitted. Galanin-LI in the neurohypophysis was not co-localised with the numerous fine endings showing GABA-LI. These observations indicate that galanin-like material coexists with vasopressin and oxytocin in the respective magnocellular neurones, although not always in an immunoreactive form.  相似文献   

14.
Synapses between neurons with corticotropin-releasing-factor-(CRF)-like immunoreactivities and other immunonegative neurons in the hypothalamus of colchicine-treated rats, especially in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) were observed by immunocytochemistry using CRF antiserum. The immunoreactive nerve cell bodies and fibers were numerous in both the PVN and the SON. The CRF-containing neurons had synaptic contacts with immunonegative axon terminals containing a large number of clear synaptic vesicles alone or combined with a few dense-cored vesicles. We also found CRF-like immunoreactive axon terminals making synaptic contacts with other immunonegative neuronal cell bodies and fibers. And since some postsynaptic immunonegative neurons contained many large neurosecretory granules, they are considered to be magnocellular neurosecretory cells. These findings suggest that CRF functions as a neurotransmitter and/or modulator in addition to its function as a hormone.  相似文献   

15.
Summary Previous immunochemical investigations have demonstrated various opioid peptides in the pancreas. However, controversies exist related to the cellular localization of these peptides in the endocrine pancreas. Therefore, the guinea pig endocrine pancreas was immunohistochemically investigated for the presence of opioid peptides derived from pro-dynorphin, pro-enkephalin or pro-opiomelanocortin. Immunoreactivities were demonstrated on serial semithin sections by the peroxidase anti-peroxidase technique. In routinely immunostained sections, immunoreactivities for dynorphin A and -neo-endorphin were localized in pancreatic enterochromaffin cells, but not in islet cells. Immunoreactivity for Met-enkephalin was confined exclusively to B-cells and was localized only in some secretory granules. However, pre-treatment of semi-thin sections with trypsin and carboxypeptidase B led to a marked increase of Met-enkephalin immunoreactivity in B-cells. In addition, immunoreactivities for Met-enkephalin-Arg-Gly-Leu and bovine adrenal medulla dodecapeptide could be demonstrated in B-and A-cells, and -endorphin immunoreactivity was localized in A-cells. In no case, however, were immunoreactivities detected for bovine adrenal medulla docosapeptide, peptide F, corticotropin, melanotropin or dynorphin 1–32. The immunohistochemical findings indicate that opioids of different peptide families are present in the guinea pig endocrine pancreas. Since several opioid peptides of the corresponding pro-hormones could be demonstrated in the reference organs but not in the pancreas, it is concluded that the biosynthetic pathways of the respective precursors are different from those in the adrenal medulla or in the pituitary.  相似文献   

16.
Seven isoforms of tachykinin-related peptides (TRPs) have been isolated from the brain of the cockroach Leucophaea maderae. These peptides (LemTRP-1, 2, and 5-9) share the C-terminal sequence GFX(1)GX(2)Ramide (where X(1) and X(2) are variable residues). In order to determine the neuronal distribution of several of these LemTRP isoforms, we raised antisera to their variable N-termini. Antisera to LemTRP-1, 2, 3, 7, and 8 were utilized for immunocytochemistry on cryostat sections of the L. maderae brain. As expected, the gut peptide LemTRP-3 was not detected in the brain, and the antisera to LemTRP-1, 2, and 7 labeled the same sets of neurons in different regions of the brain. These neurons could also be labeled with antisera raised to the more conserved C-termini of LemTRP-1 and the locust TRP LomTK-I. The antiserum to LemTRP-8 predominantly labeled a set of neurons distinct from that seen with any other N- or C-terminus-directed antisera, suggesting that it recognizes epitope(s) other than known insect TRPs. Our findings indicate that at least three of the LemTRPs are always co-localized in neurons of the L. maderae brain. We have also been able to show that LemTRP-2, which is an N-terminally extended form (17-mere) of LemTRP-1 with a dibasic putative cleavage site, is transported throughout the processes of the neurons in the same manner as LemTRP-1 and 7. Thus, LemTRP-2 may be released with the other shorter LemTRPs. This is the first investigation of LemTRP distribution in the cockroach central nervous system utilizing antisera to native peptides.  相似文献   

17.
The distribution of oxytocin (OXT) and vasopressin (VP) neurons in the diencephalon of the hibernating Japanese horseshoe bat, Rhinolophus ferrumequinum, was immunohistochemically investigated by the avidin-biotin complex method. Magnocellular OXT and VP neurons were localized mainly in the paraventricular nucleus and the supraoptic nucleus. In addition to these main nuclei, both kinds of magnocellular neurons were also found in the periventricular nucleus, perifornical area and lateral hypothalamic area. Extensively distributed parvocellular neurons containing only VP were observed in the rostral and middle portions of the suprachiasmatic nucleus. The size of OXT and VP magnocellular neurons was almost equal in the paraventricular and ventromedial supraoptic nuclei, whereas VP neurons were significantly larger than OXT neurons in the dorsolateral supraoptic nucleus. The OXT and VP cells in the ventral supraoptic nucleus showed a distinctive elliptical shape. Both OXT and VP fibers were distributed in the lateral habenular nucleus, stria medullaris thalami, lateral preoptic area, stria terminalis, and medial and supracapsular part of the bed nucleus of the stria terminalis. Moreover, OXT fibers were found in the substantia nigra, and VP fibers were noted in the nucleus reunions and the paraventricular nucleus of the thalamus.  相似文献   

18.
The midgut of the female mosquitoAedes aegypti was studied immunohistologically with antisera to various regulatory peptides. Endocrine cells immunoreactive with antisera to perisulfakinin, RFamide, bovine pancreatic polypeptide, urotensin 1, locustatachykinin 2 and allatostatins A1 and B2 were found in the midgut. Perisulfakinin, RFamide and bovine pancreatic polypeptide all react with the same, about 500 endocrine cells, which were evenly distributed throughout the posterior midgut, with the exception of its most frontal and caudal regions. In addition, these antisera recognized three to five neurons in each ingluvial ganglion and their axons, which ran longitudinally over the anterior midgut, as well as axons innervating the pyloric sphincter. The latter axons appear to be derived from neurons located in the abdominal ganglia. Antisera to two different allatostatins recognized about 70 endocrine cells in the most caudal area of the posterior midgut and axons in the anterior midgut whose cell bodies were probably located in either the brain or the frontal ganglion. Antiserum to locustatachykinin 2 recognized endocrine cells present in the anterior midgut and the most frontal part of the posterior midgut, as well as about 50 cells in the most caudal region of the posterior midgut. Urotensin 1 immunoreactivity was found in endocrine cells in the same region as the perisulfakinin-immunoreactive cells, but no urotensin-immunoreactive axons were found in the midgut. Double labeling experiments showed that the urotensin and perisulfakinin immunoreactivities were located in different cells. Such experiments also showed that the locustatachykinin and allatostatin immunoreactivities in the most caudal area of the posterior midgut were present in different cells. No immunoreactivity was found in the mosquito midgut when using antisera to corazonin, allatotropin or leucokinin IV. Since these peptides have either been isolated from, or can reasonably be expected to be present in mosquitoes, it was concluded that these peptides are not present in the mosquito midgut.  相似文献   

19.
Summary Vasopressin and oxytocin are synthesized by neurons in the paraventricular and supraoptic nuclei of hypothalamus. Dense concentrations of vasopressin binding sites have also been localized in these nuclei. Using a vasopressin anti-idiotypic antiserum, a dual immunocytochemical labeling procedure has been employed to elucidate the distribution of putative vasopressin receptors in anatomical relation to vasopressin and oxytocin immunoreactive cells in rat brain. Putative vasopressin receptors are observed in relation to magnocellular neurons in hypothalamus that are vasopressin immunoreactive. They do not appear to be associated with parvocellular vasopressinergic cells or oxytocin immunoreactive neurons. The presence of these presumed autoreceptors would support evidence that vasopressin may autoregulate the activity of magnocellular vasopressinergic neurons in hypothalamus.  相似文献   

20.
Vasopressinergic and oxytocinergic pathways in the central nervous system   总被引:3,自引:0,他引:3  
Recent data obtained by immunohistochemical and other anatomical tracing methods indicate that oxytocin and vasopressin pathways are much more complex and extensive than previously recognized. In addition to the classic magnocellular neurons that project from the supraoptic and paraventricular (PVN) nuclei to the posterior pituitary gland, generally smaller neurons in various parts of the PVN send vasopressin fibers to the portal capillary bed in the median eminence, or send oxytocin or vasopressin projections to other brain and spinal cord sites. In addition, vasopressin neurons are also found in the suprachiasmatic nucleus and may contribute to extrahypothalamic projection areas. Many of these axonal projections appear to form synapses with other neurons in forebrain, hindbrain, and spinal cord regions, which suggests roles for these peptides in neuronal communication. In brain stem and spinal cord, terminal fields include both parasympathetic and sympathetic regulatory centers. Oxytocin terminals are also found on large intracerebral arteries where the peptide may regulate cerebral blood flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号