首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double-strand break repair is executed by two major repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). Whereas NHEJ contributes to the repair of ionizing radiation (IR)-induced double strand breaks (DSBs) throughout the cell cycle, HR acts predominantly during the S and G2 phases of the cell cycle. The rare-cutting restriction endonuclease, I-SceI, is in common use to study the repair of site-specific chromosomal DSBs in vertebrate cells. To facilitate analysis of I-SceI-induced DSB repair, we have developed a stably expressed I-SceI fusion protein that enables precise temporal control of I-SceI activation, and correspondingly tight control of the timing of onset of site-specific chromosome breakage. I-SceI-induced HR showed a strong, positive linear correlation with the percentage of cells in S phase, and was negatively correlated with the G1 fraction. Acute depletion of BRCA1, a key regulator of HR, disrupted the relationship between S phase fraction and I-SceI-induced HR, consistent with the hypothesis that BRCA1 regulates HR during S phase.  相似文献   

2.
DNA double-strand breaks (DSBs) are arguably the most important lesions induced by ionizing radiation (IR) since unrepaired or mis-repaired DSBs can lead to chromosomal aberrations and cell death. The two major pathways to repair IR-induced DSBs are non-homologous end-joining (NHEJ) and homologous recombination (HR). Perhaps surprisingly, NHEJ represents the predominant pathway in the G1 and G2 phases of the cell cycle, but HR also contributes and repairs a subset of IR-induced DSBs in G2. Following S-phase-dependent genotoxins, HR events give rise to sister chromatid exchanges (SCEs), which can be detected cytogenetically in mitosis. Here, we describe that HR occurring in G2-irradiated cells also generates SCEs in ~50% of HR events. Since HR of IR-induced DSBs in G2 is a slow process, SCE formation in G2-irradiated cells requires several hours. During this time, irradiated S-phase cells can also reach mitosis, which has contributed to the widely held belief that SCEs form only during S phase. We describe procedures to measure SCEs exclusively in G2-irradiated cells and provide evidence that following IR cells do not need to progress through S phase in order to form SCEs.  相似文献   

3.
In order to evaluate the relative role of two major DNA double strand break repair pathways, i.e., non-homologous end joining (NHEJ) and homologous recombination repair (HRR), CHO mutants deficient in these two pathways and the parental cells (AA8) were X-irradiated with various doses. The cells were harvested at different times after irradiation, representing G2, S and G1 phase at the time of irradiation, The mutant cell lines used were V33 (NHEJ deficient), Irs1SF, 51-D1 (HRR deficient). In addition to parental cell line (AA8), a revertant of V33, namely V33-155 was employed. Both types of mutant cells responded with increased frequencies of chromosomal aberrations at all recovery times in comparison to the parental and revertant cells. Mutant cells deficient in NHEJ were more sensitive in all cell stages in comparison to HRR deficient mutant cells, indicating NHEJ is the major repair pathway for DSB repair through out the cell cycle. Both chromosome and chromatid types of exchange aberrations were observed following G1 irradiation (16 and 24 h recovery). Interestingly, configurations involving both chromosome (dicentrics) and chromatid exchanges were encountered in G1 irradiated V33 cells. This may indicate that unrepaired DSBs accumulate in G1 in these mutant cells and carried over to S phase, where they are repaired by HRR or other pathways such as B-NHEJ (back up NHEJ), which appear to be highly error prone. Both NHEJ and HRR, which share some of the same proteins in their pathways, are involved in the repair of DSBs leading to chromosomal aberrations, but with a major role of NHEJ in all stages of cell cycle.  相似文献   

4.
DNA double-strand breaks (DSBs) are dangerous lesions that can lead to potentially oncogenic genomic rearrangements or cell death. The two major pathways for repair of DSBs are nonhomologous end joining (NHEJ) and homologous recombination (HR). NHEJ is an intrinsically error-prone pathway while HR results in accurate repair. To understand the origin of genomic instability in human cells it is important to know the contribution of each DSB repair pathway. Studies of rodent cells and human cancer cell lines have shown that the choice between NHEJ or HR pathways depends on cell cycle stage. Surprisingly, cell cycle regulation of DSB repair has not been examined in normal human cells with intact cell cycle checkpoints. Here we measured the efficiency NHEJ and HR at different cell cycle stages in hTERT-immortalized diploid human fibroblasts. We utilized cells with chromosomally-integrated fluorescent reporter cassettes, in which a unique DSB is introduced by a rare-cutting endonuclease. We show that NHEJ is active throughout the cell cycle, and its activity increases as cells progress from G1 to G2/M (G1 < S < G2/M). HR is nearly absentin G1, most active in the S phase, and declines in G2/M. Thus, inG2/M NHEJ is elevated, while HR is on decline. This is in contrastto a general belief that NHEJ is most active in G1, while HR isactive in S, G2 and M. The overall efficiency of NHEJ was higherthan HR at all cell cycle stages. We conclude that human somaticcells utilize error-prone NHEJ as the major DSB repair pathway atall cell cycle stages, while HR is used, primarily, in the S phase.  相似文献   

5.
The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO(3)). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.  相似文献   

6.
DNA double-strand breaks (DSBs) are repaired by either homologous recombination (HR) or non-homologous end joining (NHEJ) in mammalian cells. Repair with NHEJ or HR using single-strand annealing (SSA) often results in deletions and is generally referred to as non-conservative recombination. Error-free, conservative HR involves strand invasion and requires a homologous DNA template, and therefore it is generally believed that this type of repair occurs preferentially in the late S, G2 and M phases of the cell cycle, when the sister chromatid is available. There are several observations supporting this hypothesis, although it has not been tested directly. Here, we synchronize human SW480SN.3 cells in the G1/G0 (with serum starvation), S (with thymidine block) and M (with nocodazole) phases of the cell cycle and investigate the efficiency of conservative HR repair of an I-SceI-induced DSB. The frequency of HR repair of DSBs was 39 times higher in S-phase cells than in M-phase cells and 24-fold higher than in G1/G0 cells. This low level of conservative HR occurs even though a homologous template is present within the recombination substrate. We propose that this can be explained by an absence of recombination proteins outside the S phase or alternatively that there maybe factors that suppress HR in G1/G0 and M. Furthermore, we found that HR repair of DSBs involves short tract gene conversion in all the phases of the cell cycle. This indicates that the same pathway for conservative HR is employed in the repair of DSBs regardless of phase of the cell cycle and that only the frequency is affected.  相似文献   

7.
DNA double-strand breaks (DSB) represent a major disruption in the integrity of the genome. DSB can be generated when a replication fork encounters a DNA lesion. Recombinational repair is known to resolve such replication fork-associated DSB, but the molecular mechanism of this repair process is poorly understood in mammalian cells. In the present study, we investigated the molecular mechanism by which recombination resolves camptothecin (CPT)-induced DSB at DNA replication forks. The frequency of homologous recombination (HR) was measured using V79/SPD8 cells which contain a duplication in the endogenous hprt gene that is resolved by HR. We demonstrate that DSB associated with replication forks induce HR at the hprt gene in early S phase. Further analysis revealed that these HR events involve an exchange mechanism. Both the irs1SF and V3-3 cell lines, which are deficient in HR and non-homologous end joining (NHEJ), respectively, were found to be more sensitive than wild-type cells to DSB associated with replication forks. The irs1SF cell line was more sensitive in this respect than V3-3 cells, an observation consistent with the hypothesis that DSB associated with replication forks are repaired primarily by HR. The frequency of formation of DSB associated with replication forks was not affected in HR and NHEJ deficient cells, indicating that the loss of repair, rather than the formation of DSB associated with replication forks is responsible for the increased sensitivity of the mutant strains. We propose that the presence of DSB associated with replication forks rapidly induces HR via an exchange mechanism and that HR plays a more prominent role in the repair of such DSB than does NHEJ.  相似文献   

8.
Unrepaired DNA double-strand breaks (DSBs) produced by ionizing radiation (IR) are a major determinant of cell killing. To determine the contribution of DNA repair pathways to the well-established cell cycle variation in IR sensitivity, we compared the radiosensitivity of wild-type CHO cells to mutant lines defective in nonhomologous end joining (NHEJ), homologous recombination repair (HRR), and the Fanconi anemia pathway. Cells were irradiated with IR doses that killed approximately 90% of each asynchronous population, separated into synchronous fractions by centrifugal elutriation, and assayed for survival (colony formation). Wild-type cells had lowest resistance in early G1 and highest resistance in S phase, followed by declining resistance as cells move into G2/M. In contrast, HR-defective cells (xrcc3 mutation) were most resistant in early G1 and became progressively less resistant in S and G2/M, indicating that the S-phase resistance in wild-type cells requires HRR. Cells defective in NHEJ (dna-pk(cs) mutation) were exquisitely sensitive in early G1, most resistant in S phase, and then somewhat less resistant in G2/M. Fancg mutant cells had almost normal IR sensitivity and normal cell cycle dependence, suggesting that Fancg contributes modestly to survival and in a manner that is independent of cell cycle position.  相似文献   

9.
The repair of DNA double-strand breaks (DSBs) by homologous recombinational repair (HRR) underlies the high radioresistance and low mutability observed in S-phase mammalian cells. To evaluate the contributions of HRR and non-homologous end-joining (NHEJ) to overall DSB repair capacity throughout the cell cycle after γ-irradiation, we compared HRR-deficient RAD51D-knockout 51D1 to CgRAD51D-complemented 51D1 (51D1.3) CHO cells for survival and chromosomal aberrations (CAs). Asynchronous cultures were irradiated with 150 or 300 cGy and separated by cell size using centrifugal elutriation. Cell survival of each synchronous fraction (~20 fractions total from early G1 to late G2/M) was measured by colony formation. 51D1.3 cells were most resistant in S, while 51D1 cells were most resistant in early G1 (with survival and chromosome-type CA levels similar to 51D1.3) and became progressively more sensitive throughout S and G2. Both cell lines experienced significantly reduced survival from late S into G2. Metaphases were collected from every third elutriation fraction at the first post-irradiation mitosis and scored for CAs. 51D1 cells irradiated in S and G2 had ~2-fold higher chromatid-type CAs and a remarkable ~25-fold higher level of complex chromatid-type exchanges compared to 51D1.3 cells. Complex exchanges in 51D1.3 cells were only observed in G2. These results show an essential role for HRR in preventing gross chromosomal rearrangements in proliferating cells and, with our previous report of reduced survival of G2-phase NHEJ-deficient prkdc CHO cells [Hinz et al., DNA Repair 4, 782–792, 2005], imply reduced activity/efficiency of both HRR and NHEJ as cells transition from S to G2.  相似文献   

10.
DNA double-strand breaks (DSBs) are arguably the most important lesions induced by ionizing radiation (IR) since unrepaired or misrepaired DSBs can lead to chromosomal aberrations and cell death. The two major pathways to repair IR-induced DSBs are non-homologous end-joining (NHEJ) and homologous recombination (HR). Perhaps surprisingly, NHEJ represents the predominant pathway in the G1 and G2 phases of the cell cycle, but HR also contributes and repairs a subset of IR-induced DSBs in G2. Following S-phase-dependent genotoxins, HR events give rise to sister chromatid exchanges (SCEs), which can be detected cytogenetically in mitosis. Here, we describe that HR occurring in G2-irradiated cells also generates SCEs in ∼50% of HR events. Since HR of IR-induced DSBs in G2 is a slow process, SCE formation in G2-irradiated cells requires several hours. During this time, irradiated S-phase cells can also reach mitosis, which has contributed to the widely held belief that SCEs form only during S phase. We describe procedures to measure SCEs exclusively in G2-irradiated cells and provide evidence that following IR cells do not need to progress through S phase in order to form SCEs.Key words: sister chromatid exchanges, double-strand break repair, ionizing radiation, homologous recombination, G2 phase  相似文献   

11.
Bacterial nonhomologous end joining (NHEJ) is a recently described DNA repair pathway best characterized in mycobacteria. Bacterial NHEJ proteins LigD and Ku have been analyzed biochemically, and their roles in linear plasmid repair in vivo have been verified genetically; yet the contributions of NHEJ to repair of chromosomal DNA damage are unknown. Here we use an extensive set of NHEJ- and homologous recombination (HR)-deficient Mycobacterium smegmatis strains to probe the importance of HR and NHEJ in repairing diverse types of chromosomal DNA damage. An M. smegmatis Delta recA Delta ku double mutant has no apparent growth defect in vitro. Loss of the NHEJ components Ku and LigD had no effect on sensitivity to UV radiation, methyl methanesulfonate, or quinolone antibiotics. NHEJ deficiency had no effect on sensitivity to ionizing radiation in logarithmic- or early-stationary-phase cells but was required for ionizing radiation resistance in late stationary phase in 7H9 but not LB medium. In addition, NHEJ components were required for repair of I-SceI mediated chromosomal double-strand breaks (DSBs), and in the absence of HR, the NHEJ pathway rapidly mutates the chromosomal break site. The molecular outcomes of NHEJ-mediated chromosomal DSB repair involve predominantly single-nucleotide insertions at the break site, similar to previous findings using plasmid substrates. These findings demonstrate that prokaryotic NHEJ is specifically required for DSB repair in late stationary phase and can mediate mutagenic repair of homing endonuclease-generated chromosomal DSBs.  相似文献   

12.
All mutagenic agents induce lesions in the cellular DNA and they are repaired efficiently by different repair mechanisms. Un-repaired and mis-repaired lesions lead to chromosomal aberrations (CAs). Depending upon the mutagenic agents involved, different DNA repair pathways, such as nucleotide excision repair (NER), base excision repair (BER), non-homologous end joining (NHEJ), homologous recombination repair (HRR), cross-link repair (FANC), single strand annealing (SSA) etc., are operative. Following ionising radiation, DNA double strand breaks (DSBs, which are considered to be the most important leasion leading to observed biological effects) are repaired either by NHEJ and/or HRR. We have investigated the relative role of these two repair pathways leading to chromosomal aberrations using Chinese hamster ovary (CHO) mutant cells deficient in one of these two repair pathwatys. NHEJ operates both in G1 and G2 phases of the cell cycle, wheras HHR operates mainly in S and G2 phases of the cell cycle. In NHEJ-deficient mutant cells irradiated in G1, un-repaired double strand breaks reaching S phase are repaired (unexpectedly with a large mis-repair component) by HRR. In HRR-deficient mutant cells, un-repaired DSBs reaching S phase are repaired by NHEJ (unexpectedly with a low mis-repair component) as evidenced by the frequencies of chromatid type aberrations. Employing a similar approach, following treatment with benzo(alpha)pyrene-7,8diol-9,10epoxide (BPDE), the active metabolite of benzo(alpha)pyrene, NER and HRR seem to be the most important repair pathways protecting against chromosomal damage induced by this agent. In the case of acetaldehyde, (primary metabolite of alcohol in vivo) a DNA cross-linking agent, HRR and FANC pathways are important for protection against damage induced by this agent. Irrespective of the type of DNA lesions induced, ultimately they have to be converted to DSBs in order to give rise to CA. Therefore, both NHEJ and HRR are also involved to some extent in the origin of CA following treatment with S-dependent agents.The relative importance of different repair pathways in bestowing protection against DNA damage leading to chromosomal alterations is discussed.  相似文献   

13.
Non-homologous end-joining (NHEJ) and homologous recombination (HR) are the two prominent pathways responsible for the repair of DNA double-strand breaks (DSBs). NHEJ is not restricted to a cell-cycle stage, whereas HR is active primarily in the S/G2 phases suggesting there are cell cycle-specific mechanisms that play a role in the choice between NHEJ and HR. Here we show NHEJ is attenuated in S phase via modulation of the autophosphorylation status of the NHEJ factor DNA-PKcs at serine 2056 by the pro-HR factor BRCA1. BRCA1 interacts with DNA-PKcs in a cell cycle-regulated manner and this interaction is mediated by the tandem BRCT domain of BRCA1, but surprisingly in a phospho-independent manner. BRCA1 attenuates DNA-PKcs autophosphorylation via directly blocking the ability of DNA-PKcs to autophosphorylate. Subsequently, blocking autophosphorylation of DNA-PKcs at the serine 2056 phosphorylation cluster promotes HR-required DNA end processing and loading of HR factors to DSBs and is a possible mechanism by which BRCA1 promotes HR.  相似文献   

14.
This study investigated the efficiency of Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair systems in rejoining DNA double-strand breaks (DSB) induced in CCD-34Lu cells by different γ-ray doses. The kinetics of DNA repair was assessed by analyzing the fluorescence decrease of γ-H2AX foci measured by SOID (Sum Of Integrated Density) parameter and counting foci number in the time-interval 0.5–24 hours after irradiation. Comparison of the two methods showed that the SOID parameter was useful in determining the amount and the persistence of DNA damage signal after exposure to high or low doses of ionizing radiation. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1, S, and G2 phase cells on the basis of nuclear fluorescence of the CENP-F protein. Six hours after irradiation, γ-H2AX foci resolution was higher in G2 compared to G1 cells in which both NHEJ and HR can cooperate. The rejoining of γ-H2AX foci in G2 phase cells was, moreover, decreased by RI-1, the chemical inhibitor of HR, demonstrating that homologous recombination is at work early after irradiation. The relevance of HR in DSB repair was assessed in DNA-PK-deficient M059J cells and in CCD-34Lu treated with the DNA-PKcs inhibitor, NU7026. In both conditions, the kinetics of γ-H2AX demonstrated that DSBs repair was markedly affected when NHEJ was absent or impaired, even in G2 phase cells in which HR should be at work. The recruitment of RAD51 at DSB sites was, moreover, delayed in M059J and in NU7026 treated-CCD-34Lu, with respect to DNA-PKcs proficient cells and continued for 24 hours despite the decrease in DNA repair. The impairment of NHEJ affected the efficiency of the HR system and significantly decreased cell survival after ionizing radiation, confirming that DSB rejoining is strictly dependent on the integrity of the NHEJ repair system.  相似文献   

15.
Regulation of DNA double-strand break repair pathway choice   总被引:31,自引:0,他引:31  
DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including largeor small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources including reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1(XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.  相似文献   

16.
Double-strand breaks (DSBs) are potentially lethal DNA lesions that can be repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). We show that DSBs induced by ionizing radiation (IR) are efficiently processed for HR and bound by Rfa1 during G1, while endonuclease-induced breaks are recognized by Rfa1 only after the cell enters S phase. This difference is dependent on the DNA end-binding Yku70/Yku80 complex. Cell-cycle regulation is also observed in the DNA damage checkpoint response. Specifically, the 9-1-1 complex is required in G1 cells to recruit the Ddc2 checkpoint protein to damaged DNA, while, upon entry into S phase, the cyclin-dependent kinase Cdc28 and the 9-1-1 complex both serve to recruit Ddc2 to foci. Together, these results demonstrate that the DNA repair machinery distinguishes between different types of damage in G1, which translates into different modes of checkpoint activation in G1 and S/G2 cells.  相似文献   

17.
Homologous recombination (HR) and nonhomologous end joining (NHEJ) play overlapping roles in repair of DNA double-strand breaks (DSBs) generated during the S phase of the cell cycle. Here, we characterized the involvement of HR and NHEJ in the rescue of DNA replication forks arrested or slowed by treatment of hamster cells with hydroxyurea or thymidine. We show that the arrest of replication with hydroxyurea generates DNA fragmentation as a consequence of the formation of DSBs at newly replicated DNA. Both HR and NHEJ protected cells from the lethal effects of hydroxyurea, and this agent also increased the frequency of recombination mediated by both homologous and nonhomologous exchanges. Thymidine induced a less stringent arrest of replication and did not generate detectable DSBs. HR alone rescued cells from the lethal effects of thymidine. Furthermore, thymidine increased the frequency of DNA exchange mediated solely by HR in the absence of detectable DSBs. Our data suggest that both NHEJ and HR are involved in repair of arrested replication forks that include a DSB, while HR alone is required for the repair of slowed replication forks in the absence of detectable DSBs.  相似文献   

18.
Beta human papillomavirus (β-HPV) are hypothesized to make DNA damage more mutagenic and potentially more carcinogenic. Double strand breaks (DSBs) are the most deleterious DNA lesion. They are typically repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). HR occurs after DNA replication while NHEJ can occur at any point in the cell cycle. HR and NHEJ are not thought to occur in the same cell at the same time. HR is restricted to cells in phases of the cell cycle where homologous templates are available, while NHEJ occurs primarily during G1. β-HPV type 8 protein E6 (8E6) attenuates both repair pathways. We use a series of immunofluorescence microscopy and flow cytometry experiments to better define the impact of this attenuation. We found that 8E6 causes colocalization of HR factors (RPA70 and RAD51) with an NHEJ factor (activated DNA-PKcs or pDNA-PKcs) at persistent DSBs. 8E6 also causes RAD51 foci to form during G1. The initiation of NHEJ and HR at the same lesion could lead to antagonistic DNA end processing. Further, HR cannot be readily completed in an error-free manner during G1. Both aberrant repair events would cause deletions. To determine if these mutations were occurring, we used next generation sequencing of the 200kb surrounding a CAS9-induced DSB. 8E6 caused a 21-fold increase in deletions. Chemical and genetic inhibition of p300 as well as an 8E6 mutant that is incapable of destabilizing p300 demonstrates that 8E6 is acting via p300 destabilization. More specific chemical inhibitors of DNA repair provided mechanistic insight by mimicking 8E6-induced dysregulation of DNA repair in a virus-free system. Specifically, inhibition of NHEJ causes RAD51 foci to form in G1 and colocalization of RAD51 with pDNA-PKcs.  相似文献   

19.
Ionizing radiation (IR) produces direct two-ended DNA double-strand breaks (DSBs) primarily repaired by non-homologous end joining (NHEJ). It is, however, well established that homologous recombination (HR) is induced and required for repair of a subset of DSBs formed following IR. Here, we find that HR induced by IR is drastically reduced when post-DNA damage replication is inhibited in mammalian cells. Both IR-induced RAD51 foci and HR events in the hprt gene are reduced in the presence of replication polymerase inhibitor aphidicolin (APH). Interestingly, we also detect reduced IR-induced toxicity in HR deficient cells when inhibiting post-DNA damage replication. When studying DSB formation following IR exposure, we find that apart from the direct DSBs the treatment also triggers formation of secondary DSBs peaking at 7-9 h after exposure. These secondary DSBs are restricted to newly replicated DNA and abolished by inhibiting post-DNA damage replication. Further, we find that IR-induced RAD51 foci are decreased by APH only in cells replicating at the time of IR exposure, suggesting distinct differences between IR-induced HR in S- and G2-phases of the cell cycle. Altogether, our data indicate that secondary replication-associated DSBs formed following exposure to IR are major substrates for IR-induced HR repair.  相似文献   

20.
Shao Z  Davis AJ  Fattah KR  So S  Sun J  Lee KJ  Harrison L  Yang J  Chen DJ 《DNA Repair》2012,11(3):310-316
DNA double strand breaks (DSBs) are repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). The DNA cell cycle stage and resection of the DSB ends are two key mechanisms which are believed to push DSB repair to the HR pathway. Here, we show that the NHEJ factor Ku80 associates with DSBs in S phase, when HR is thought to be the preferred repair pathway, and its dynamics/kinetics at DSBs is similar to those observed for Ku80 in non-S phase in mammalian cells. A Ku homolog from Mycobacterium tuberculosis binds to and is retained at DSBs in S phase and was used as a tool to determine if blocking DNA ends affects end resection and HR in mammalian cells. A decrease in DNA end resection, as marked by IR-induced RPA, BrdU, and Rad51 focus formation, and HR are observed when Ku deficient rodent cells are complemented with Mt-Ku. Together, this data suggests that Ku70/80 binds to DSBs in all cell cycle stages and is likely actively displaced from DSB ends to free the DNA ends for DNA end resection and thus HR to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号