首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Na(+)/Ca(2+)-K(+) exchanger (NCKX) extrudes Ca(2+) from cells utilizing both the inward Na(+) gradient and the outward K(+) gradient. NCKX is thought to operate by a consecutive mechanism in which a cation binding pocket accommodates both Ca(2+) and K(+) and alternates between inward and outward facing conformations. Here we developed a simple fluorometric method to analyze changes in K(+) and Ca(2+) dependences of mutant NCKX2 proteins in which candidate residues within membrane-spanning domains were substituted. The largest shifts in both K(+) and Ca(2+) dependences compared with wild-type NCKX2 were observed for the charge-conservative substitutions of Glu(188) and Asp(548), whereas the size-conservative substitutions resulted in nonfunctional proteins. Substitution of several other residues including two proline residues (Pro(187) and Pro(547)), three additional acidic residues (Asp(258), Glu(265), Glu(533)), and two hydroxyl-containing residues (Ser(185) and Ser(545)) showed smaller shifts, but shifts in Ca(2+) dependence were invariably accompanied by shifts in K(+) dependence. We conclude that Glu(188) and Asp(548) are the central residues of a single cation binding pocket that can accommodate both K(+) and Ca(2+). Furthermore, a single set of residues lines a transport pathway for both K(+) and Ca(2+).  相似文献   

2.
The Na(+)/Ca(2+)-K(+) exchanger (NCKX) is a polytopic membrane protein that uses both the inward Na(+) gradient and the outward K(+) gradient to drive Ca(2+) extrusion across the plasma membrane. NCKX1 is found in retinal rod photoreceptors, while NCKX2 is found in retinal cone photoreceptors and is also widely expressed in the brain. Here, we have identified a single residue (out of >100 tested) for which substitution removed the K(+) dependence of NCKX-mediated Ca(2+) transport. Charge-removing replacement of Asp(575) by either asparagine or cysteine rendered the mutant NCKX2 proteins independent of K(+), whereas the charge-conservative substitution of Asp(575) to glutamate resulted in a nonfunctional mutant NCKX2 protein, accentuating the critical nature of this residue. Asp(575) is conserved in the NCKX1-5 genes, while an asparagine is found in this position in the three NCX genes, coding for the K(+)-independent Na(+)/Ca(2+) exchanger.  相似文献   

3.
长白蝮蛇类凝血酶基因的克隆及分析   总被引:1,自引:1,他引:0  
从长白蝮蛇(Agkistrodon halys Ussurin)毒腺中抽提总RNA,采用RT-PCR扩增其类凝血酶基因,经全序列测定,获得2个类凝血酶基因,ussurin和ussurase,它们全长分别为708和699个核苷酸,即分别编码236和233个氨基酸;根据同源性,推测它们的活性中心分别为His^43,Asp^88和Ser^182与His^40,Asp^85和Ser^179;二硫键分别为Cys^7-Cys^141,Cys^28-Cys^44,Cys^76-Cys^234,Cys^120-Cys^188,Cys^152-Cys^167和Cys^178-Cys^203;与Cys^7-Cys^138,Cys^25-Cys^41,Cys^73-Cys^231,Cys^117-Cys^185,Cys^149-Cys^164和Cys^175-Cys^200。该蛇毒类凝血酶cDNA序列及推导的氨基酸序列为首次报道。  相似文献   

4.
Calreticulin is a Ca2+ -binding chaperone that resides in the lumen of the endoplasmic reticulum and is involved in the regulation of intracellular Ca2+ homeostasis and in the folding of newly synthesized glycoproteins. In this study, we have used site-specific mutagenesis to map amino acid residues that are critical in calreticulin function. We have focused on two cysteine residues (Cys(88) and Cys(120)), which form a disulfide bridge in the N-terminal domain of calreticulin, on a tryptophan residue located in the carbohydrate binding site (Trp(302)), and on certain residues located at the tip of the "hairpin-like" P-domain of the protein (Glu(238), Glu(239), Asp(241), Glu(243), and Trp(244)). Calreticulin mutants were expressed in crt(-/-) fibroblasts, and bradykinin-dependent Ca2+ release was measured as a marker of calreticulin function. Bradykinin-dependent Ca2+ release from the endoplasmic reticulum was rescued by wild-type calreticulin and by the Glu(238), Glu(239), Asp(241), and Glu(243) mutants. The Cys(88) and Cys(120) mutants rescued the calreticulin-deficient phenotype only partially ( approximately 40%), and the Trp(244) and Trp(302) mutants did not rescue it at all. We identified four amino acid residues (Glu(239), Asp(241), Glu(243), and Trp(244)) at the hairpin tip of the P-domain that are critical in the formation of a complex between ERp57 and calreticulin. Although the Glu(239), Asp(241), and Glu(243) mutants did not bind ERp57 efficiently, they fully restored bradykinin-dependent Ca2+ release in crt(-/-) cells. This indicates that binding of ERp57 to calreticulin may not be critical for the chaperone function of calreticulin with respect to the bradykinin receptor.  相似文献   

5.
Cysteine residues play an important role in many proteins, either in enzymatic activity or by mediating inter- or intramolecular interactions. The Na(+)/Ca(2+)-K(+) exchanger plays a critical role in Ca(2+) homeostasis in retinal rod (NCKX1) and cone (NCKX2) photoreceptors by extruding Ca(2+) that enters rod and cone cells via the cGMP-gated channels. NCKX1 and NCKX2 contain five highly conserved cysteine residues. The objectives of this study were threefold: (1) to examine the importance of cysteine residues in NCKX2 protein function; (2) to examine their role in the interaction between NCKX2 and the CNGA subunit of the cGMP-gated channel; and (3) to generate a functional cysteine-free NCKX2 protein. The latter will facilitate structural studies taking advantage of the unique chemistry of the thiol group following insertion of cysteine residues at specific positions in the cysteine-free background. We generated a cysteine-free NCKX2 mutant protein that showed normal protein synthesis and processing and approximately 50% wild-type cation transport function. Cysteine residues were also not critical for the formation of NCKX2 homo-oligmers or NCKX2 hetero-oligomers with the CNGA subunit of the cGMP-gated channel. Our results appear to rule out a critical importance of an intramolecular disulfide linkage in NCKX2 protein synthesis and folding as had been reported before.  相似文献   

6.
Oxygen-containing amino acids in the transmembrane region of the Na, K-ATPase alpha subunit were studied to identify residues involved in Na+ and/or K+ coordination by the enzyme. Conserved residues located in the polar face of transmembrane helices were selected using helical wheel and topological models of the enzyme. Alanine substitution of these residues were introduced into an ouabain-resistant sheep alpha1 isoform and expressed in HeLa cells. The capacity to generate essential Na+ and K+ gradients and thus support cell growth was used as an initial indication of the functionality of heterologous enzymes. Enzymes carrying alanine substitution of Ser94, Thr136, Ser140, Gln143, Glu144, Glu282, Thr334, Thr338, Thr340, Ser814, Tyr817, Glu818, Glu821, Ser822, Gln854, and Tyr994 supported cell growth, while those carrying substitutions Gln923Ala, Thr955Ala, and Asp995Ala did not. To study the effects of these latter replacements on cation binding, they were introduced into the wild-type alpha1 sheep isoform and expressed in mouse NIH3T3 cells where [3H]ouabain binding was utilized to probe the heterologous proteins. These substitutions did not affect ouabain, K+, or Na+ binding. Expression levels of these enzymes were similar to that of control. However, the level of Gln923Ala-, Thr955Ala-, or Asp995Ala-substituted enzyme at the plasma membrane was significantly lower than that of the wild-type isoform. Thus, these substitutions appear to impair the maturation process or targeting of the enzyme to the plasma membrane, but not cation-enzyme interactions. These results complete previous studies which have identified Ser755, Asp804, and Asp808 as absolutely essential for Na+ and K+ transport by the enzyme. Thus, it is significant that most transmembrane conserved-oxygen-containing residues in the Na,K-ATPase can be replaced without substantially affecting cation-enzyme interactions to the extent of preventing enzyme function. Consequently, other chemical groups, aromatic rings or backbone carbonyls, should be considered in models of cation-binding sites.  相似文献   

7.
Site-directed mutagenesis was employed to map and characterize Ca(2+)-binding sites in annexin II, a member of the annexin family of Ca(2+)- and phospholipid-binding proteins which serves as a major cellular substrate for the tyrosine kinase encoded by the src oncogene. Several single amino acid substitutions were introduced in the human annexin II and the various mutant proteins were scored for their affinity towards Ca2+ in different assays. The data support our previous finding [Thiel, C., Weber, K. and Gerke V. (1991) J. Biol. Chem. 266, 14,732-14,739] that a Ca(2+)-binding site is present in the third of the four repeat segments which comprise the 33-kDa protein core of annexin II. In addition to Gly206 and Thr207, which are localized in the highly conserved endonexin fold of the third repeat, Glu246 is involved in the formation of this site. Thus the architecture of this Ca(2+)-binding site in solution is very similar, if not identical, to that of Ca2+ sites identified recently in annexin V crystals [Huber, R., Schneider, M., Mayr, I., R?misch, J. and Paques, E.-P. (1990) FEBS Lett. 275, 15-21]. In addition to the site in repeat 3, we have mapped sites of presumably similar architecture in repeats 2 and 4 of annexin II. Again, an acidic amino acid which is located 40 residues C-terminal to the conserved glycine at position 4 of the endonexin fold is indispensable for high-affinity Ca2+ binding: Asp161 in the second and Asp321 in the fourth repeat. In contrast, repeat 1 does not contain an acidic amino acid at a corresponding position and also shows deviations from the other repeats in the sequence surrounding the conserved glycine. These results on annexin II together with the crystallographic information on annexin V reveal that annexins can differ in the position of the Ca2+ sites. Ca(2+)-binding sites of similar structure are present in repeats 2, 3, and 4 of annexin II while in annexin V they occur in repeats 1, 2, and 4. We also synthesized an annexin II derivative with mutations in all three Ca2+ sites. This molecule shows a greatly reduced affinity for the divalent cation. However, it is still able to bind Ca2+, indicating the presence of (an) additional Ca2+ site(s) of presumably different architecture.  相似文献   

8.
In voltage-gated ion channels, residues responsible for ion selectivity were identified in the pore-lining SS1-SS2 segments. Negatively charged glutamate residues (E393, E736, E1145, and E1446) found in each of the four repeats of the alpha 1C subunit were identified as the major determinant of selectivity in Ca2+ channels. Neutralization of glutamate residues by glutamine in repeat I (E393Q), repeat III (E1145Q), and repeat IV (E1446Q) decreased the channel affinity for calcium ions 10-fold from the wild-type channel. In contrast, neutralization of glutamate residues in repeat II failed to significantly alter Ca2+ affinity. Likewise, mutation of neighboring residues in E1149K and D1450N did not affect the channel affinity, further supporting the unique role of glutamate residues E1145 in repeat III and E1446 in repeat IV in determining Ca2+ selectivity. Conservative mutations E1145D and E1446D preserved high-affinity Ca2+ binding, which suggests that the interaction between Ca2+ and the pore ligand sites is predominantly electrostatic and involves charge neutralization. Mutational analysis of E1446 showed additionally that polar residues could achieve higher Ca2+ affinity than small hydrophobic residues could. The role of high-affinity calcium binding sites in channel permeation was investigated at the single-channel level. Neutralization of glutamate residue in repeats I, II, and III did not affect single-channel properties measured with 115 mM BaCl2. However, mutation of the high-affinity binding site E1446 was found to significantly affect the single-channel conductance for Ba2+ and Li+, providing strong evidence that E1446 is located in the narrow region of the channel outer mouth. Side-chain substitutions at 1446 in repeat IV were used to probe the nature of divalent cation-ligand interaction and monovalent cation-ligand interaction in the calcium channel pore. Monovalent permeation was found to be inversely proportional to the volume of the side chain at position 1446, with small neutral residues such as alanine and glycine producing higher Li+ currents than the wild-type channel. This suggests that steric hindrance is a major determinant for monovalent cation conductance. Divalent permeation was more complex. Ba2+ single-channel conductance decreased when small neutral residues such as glycine were replaced by bulkier ones such as glutamine. However, negatively charged amino acids produced single-channel conductance higher than predicted from the size of their side chain. Hence, negatively charged residues at position 1446 in repeat IV are required for divalent cation permeation.  相似文献   

9.
Plasma membrane Na+/Ca2+-exchangers play a predominant role in Ca2+ extrusion in brain. Neurons express several different Na+/Ca2+-exchangers belonging to both the K+-independent NCX family and the K+-dependent NCKX family. The unique contributions of each of these proteins to neuronal Ca2+ homeostasis and/or physiology remain largely unexplored. To address this question, we generated mice in which the gene encoding the abundant neuronal K+ -dependent Na+/Ca2+-exchanger protein, NCKX2, was knocked out. Analysis of these animals revealed a significant reduction in Ca2+ flux in cortical neurons, a profound loss of long term potentiation and an increase in long term depression at hippocampal Schaffer/CA1 synapses, and clear deficits in specific tests of motor learning and spatial working memory. Surprisingly, there was no obvious loss of photoreceptor function in cones, where expression of the NCKX2 protein had been reported previously. These data emphasize the critical and non-redundant role of NCKX2 in the local control of neuronal [Ca2+] that is essential for the development of synaptic plasticity associated with learning and memory.  相似文献   

10.
The S1 site (Asp(189)) of factor Xa (fXa) is located on a loop (residues 185-189) that contains three solvent-exposed charged residues (Asp(185), Lys(186), and Glu(188)) below the active-site pocket of the protease. To investigate the role of these residues in the catalytic function of fXa, we expressed three mutants of the protease in which the charges of these residues were neutralized by their substitutions with Ala (D185A, K186A, and E188A). Kinetic studies revealed that E188A has a normal catalytic activity toward small synthetic and natural substrates and inhibitors of fXa; however, the same activities were slightly ( approximately 2-fold) and dramatically ( approximately 20-50-fold) impaired for the D185A and K186A mutants, respectively. Further studies revealed that the affinity of D185A and K186A for interaction with Na(+) has also been altered, with a modest impairment ( approximately 2-fold) for the former and a dramatic impairment for the latter mutant. Both prothrombinase and direct binding studies indicated that K186A also has an approximately 6-fold impaired affinity for factor Va. Interestingly, a saturating concentration of factor Va restored the catalytic defect of K186A in reactions with prothrombin and the recombinant tick anticoagulant peptide that is known to interact with the Na(+) loop of fXa, but not with other substrates. These results suggest that factor Va interacts with 185-189-loop for fXa, which is energetically linked to the Na(+)-binding site of the protease.  相似文献   

11.
Residues in conserved motifs (625)TGD, (676)FARXXPXXK, and (701)TGDGVND in domain P of sarcoplasmic reticulum Ca(2+)-ATPase, as well as in motifs (601)DPPR and (359)NQR(/K)MSV in the hinge segments connecting domains N and P, were examined by mutagenesis to assess their roles in nucleotide and Mg(2+) binding and stabilization of the Ca(2+)-activated transition state for phosphoryl transfer. In the absence of Mg(2+), mutations removing the charges of domain P residues Asp(627), Lys(684), Asp(703), and Asp(707) increased the affinity for ATP and 2',3'-O-(2,4,6-trinitrophenyl)-8-azidoadenosine 5'-triphosphate. These mutations, as well as Gly(626)--> Ala, were inhibitory for ATP binding in the presence of Mg(2+) and for tight binding of the beta,gamma-bidentate chromium(III) complex of ATP. The hinge mutations had pronounced, but variable, effects on ATP binding only in the presence of Mg(2+). The data demonstrate an unfavorable electrostatic environment for binding of negatively charged nucleotide in domain P and show that Mg(2+) is required to anchor the phosphoryl group of ATP at the phosphorylation site. Mutants Gly(626) --> Ala, Lys(684) --> Met, Asp(703) --> Ala/Ser/Cys, and mutants with alteration to Asp(707) exhibited very slow or negligible phosphorylation, making it possible to measure ATP binding in the pseudo-transition state attained in the presence of both Mg(2+) and Ca(2+). Under these conditions, ATP binding was almost completely blocked in Gly(626) --> Ala and occurred with 12- and 7-fold reduced affinities in Asp(703) --> Ala and Asp(707) --> Cys, respectively, relative to the situation in the presence of Mg(2+) without Ca(2+), whereas in Lys(684) --> Met and Asp(707) --> Ser/Asn the affinity was enhanced 14- and 3-5-fold, respectively. Hence, Gly(626) and Asp(703) seem particularly critical for mediating entry into the transition state for phosphoryl transfer upon Ca(2+) binding at the transport sites.  相似文献   

12.
Cytoplasmic free Ca2+ ([Ca2+]cyt) is essential for the contraction and relaxation of blood vessels. The role of plasma membrane Na+/Ca2+ exchange (NCX) activity in the regulation of vascular Ca2+ homeostasis was previously ascribed to the NCX1 protein. However, recent studies suggest that a relatively newly discovered K+-dependent Na+/Ca2+ exchanger, NCKX (gene family SLC24), is also present in vascular smooth muscle. The purpose of the present study was to identify the expression and function of NCKX in arteries. mRNA encoding NCKX3 and NCKX4 was demonstrated by RT-PCR and Northern blot in both rat mesenteric and aortic smooth muscle. NCXK3 and NCKX4 proteins were also demonstrated by immunoblot and immunofluorescence. After voltage-gated Ca2+ channels, store-operated Ca2+ channels, and Na+ pump were pharmacologically blocked, when the extracellular Na+ was replaced with Li+ (0 Na+) to induce reverse mode (Ca2+ entry) activity of Na+/Ca2+ exchangers, a large increase in [Ca2+]cyt signal was observed in primary cultured aortic smooth muscle cells. About one-half of this [Ca2+]cyt signal depended on the extracellular K+. In addition, after the activity of NCX was inhibited by KB-R7943, Na+ replacement-induced Ca2+ entry was absolutely dependent on extracellular K+. In arterial rings denuded of endothelium, a significant fraction of the phenylephrine-induced and nifedipine-resistant aortic or mesenteric contraction could be prevented by removal of extracellular K+. Taken together, these data provide strong evidence for the expression of NCKX proteins in the vascular smooth muscle and their novel role in mediating agonist-stimulated [Ca2+]cyt and thereby vascular tone.  相似文献   

13.
The sequences Thr-Gly-Glu-Ser184 and Asp-Gln-Ser178 and individual residues Asp149, Asp157, and Asp162 in the sarcoplasmic reticulum Ca2(+)-ATPase are highly conserved throughout the family of cation-transporting ATPases. Mutant Thr181----Ala, Gly182----Ala, Glu183----Ala, and Glu183----Gln, created by in vitro mutagenesis, were devoid of Ca2+ transport activity. None of these mutations, however, affected phosphorylation of the enzyme by ATP in the presence of Ca2+ or by inorganic phosphate in the absence of Ca2+, indicating that the high affinity Ca2(+)-binding sites and the nucleotide-binding sites were intact. In each of these mutants, the ADP-sensitive phosphoenzyme intermediate (E1P) decayed to the ADP-insensitive form (E2P) very slowly relative to the wild-type enzyme, whereas E2P decayed at a rate similar to that of the wild-type enzyme. Thus, the inability of the mutants to transport Ca2+ was accounted for by an apparent block of the transport reaction at the E1P to E2P conformational transition. These results suggest that Thr181, Gly182, and Glu183 play essential roles in the conformational change between E1P and E2P. Mutation of Ser184, Asp157, or Ser178 had little or no effect on either Ca2+ transport activity or expression. Mutations of Asp149, Asp162, and Gln177, however, were poorly expressed. Where expression could be measured, in mutations to Asp162 and Gln177, Ca2+ transport activity was essentially equivalent to that of the wild-type enzyme.  相似文献   

14.
15.
Mammalian Na+/Ca2+ exchangers are members of three branches of a much larger family of transport proteins [the CaCA (Ca2+/cation antiporter) superfamily] whose main role is to provide control of Ca2+ flux across the plasma membranes or intracellular compartments. Since cytosolic levels of Ca2+ are much lower than those found extracellularly or in sequestered stores, the major function of Na+/Ca2+ exchangers is to extrude Ca2+ from the cytoplasm. The exchangers are, however, fully reversible and thus, under special conditions of subcellular localization and compartmentalized ion gradients, Na+/Ca2+ exchangers may allow Ca2+ entry and may play more specialized roles in Ca2+ movement between compartments. The NCX (Na+/Ca2+ exchanger) [SLC (solute carrier) 8] branch of Na+/Ca2+ exchangers comprises three members: NCX1 has been most extensively studied, and is broadly expressed with particular abundance in heart, brain and kidney, NCX2 is expressed in brain, and NCX3 is expressed in brain and skeletal muscle. The NCX proteins subserve a variety of roles, depending upon the site of expression. These include cardiac excitation-contraction coupling, neuronal signalling and Ca2+ reabsorption in the kidney. The NCKX (Na2+/Ca2+-K+ exchanger) (SLC24) branch of Na+/Ca2+ exchangers transport K+ and Ca2+ in exchange for Na+, and comprises five members: NCKX1 is expressed in retinal rod photoreceptors, NCKX2 is expressed in cone photoreceptors and in neurons throughout the brain, NCKX3 and NCKX4 are abundant in brain, but have a broader tissue distribution, and NCKX5 is expressed in skin, retinal epithelium and brain. The NCKX proteins probably play a particularly prominent role in regulating Ca2+ flux in environments which experience wide and frequent fluctuations in Na+ concentration. Until recently, the range of functions that NCKX proteins play was generally underappreciated. This situation is now changing rapidly as evidence emerges for roles including photoreceptor adaptation, synaptic plasticity and skin pigmentation. The CCX (Ca2+/cation exchanger) branch has only one mammalian member, NCKX6 or NCLX (Na+/Ca2+-Li+ exchanger), whose physiological function remains unclear, despite a broad pattern of expression.  相似文献   

16.
Hauser K  Barth A 《Biophysical journal》2007,93(9):3259-3270
Protonation of acidic residues in the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA 1a) was studied by multiconformation continuum electrostatic calculations in the Ca(2+)-bound state Ca(2)E1, in the Ca(2+)-free state E2(TG) with bound thapsigargin, and in the E2P (ADP-insensitive phosphoenzyme) analog state with MgF(4)(2-) E2(TG+MgF(4)(2-)). Around physiological pH, all acidic Ca(2+) ligands (Glu(309), Glu(771), Asp(800), and Glu(908)) were unprotonated in Ca(2)E1; in E2(TG) and E2(TG+MgF(4)(2-)) Glu(771), Asp(800), and Glu(908) were protonated. Glu(771) and Glu(908) had calculated pK(a) values larger than 14 in E2(TG) and E2(TG+MgF(4)(2-)), whereas Asp(800) titrated with calculated pK(a) values near 7.5. Glu(309) had very different pK(a) values in the Ca(2+)-free states: 8.4 in E2(TG+MgF(4)(2-)) and 4.7 in E2(TG) because of a different local backbone conformation. This indicates that Glu(309) can switch between a high and a low pK(a) mode, depending on the local backbone conformation. Protonated Glu(309) occupied predominantly two main, very differently orientated side-chain conformations in E2(TG+MgF(4)(2-)): one oriented inward toward the other Ca(2+) ligands and one oriented outward toward a protein channel that seems to be in contact with the cytoplasm. Upon deprotonation, Glu(309) adopted completely the outwardly orientated side-chain conformation. The contact of Glu(309) with the cytoplasm in E2(TG+MgF(4)(2-)) makes this residue unlikely to bind lumenal protons. Instead it might serve as a proton shuttle between Ca(2+)-binding site I and the cytoplasm. Glu(771), Asp(800), and Glu(908) are proposed to take part in proton countertransport.  相似文献   

17.
Cerebellar granule cells (CGCs) express K+-dependent (NCKX) and K+-independent (NCX) plasmalemmal Na+/Ca2+ exchangers which, under plasma membrane-depolarizing conditions and high cytosolic [Na+], may reverse and mediate potentially toxic Ca2+ influx. To examine this possibility, we inhibited NCX or NCKX with KB-R7943 or K+-free medium, respectively, and studied how gramicidin affects cytosolic [Ca2+] and 45Ca2+ accumulation. Gramicidin forms pores permeable to alkali cations but not Ca2+. Therefore, gramicidin-induced Ca2+ influx is indirect; it results from fluxes of monovalent cations. In the presence of Na+, but not Li+ or Cs+, gramicidin induced Ca2+ influx that was inhibited by simultaneous application of KB-R7943 and K+-free medium. The data indicate that gramicidin-induced Na+ influx reverses NCX and NCKX. To test the role of NCX and/or NCKX in excitotoxicity, we studied how NMDA affects the viability of glucose-deprived and depolarized CGCs. To assure depolarization of the plasma membrane, we inhibited Na+,K+-ATPase with ouabain. Although inhibition of NCX or NCKX reversal failed to significantly limit 45Ca2+ accumulation and excitotoxicity, simultaneously inhibiting NCX and NCKX reversal was neuroprotective and significantly decreased NMDA-induced 45Ca2+ accumulation. Our data suggest that NMDA-induced Na+ influx reverses NCX and NCKX and leads to the death of depolarized and glucose-deprived neurons.  相似文献   

18.
Asterosap, a group of equally active isoforms of sperm-activating peptides from the egg jelly of the starfish Asterias amurensis, functions as a chemotactic factor for sperm. It transiently increases the intracellular cGMP level of sperm, which in turn induces a transient elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)). Using a fluorescent Ca(2+)-sensitive dye, Fluo-4 AM, we measured the changes in sperm [Ca(2+)](i) in response to asterosap. KB-R7943 (KB), a selective inhibitor of Na(+)/Ca(2+) exchanger (NCX), significantly inhibited the asterosap-induced transient elevation of [Ca(2+)](i), suggesting that asterosap influences [Ca(2+)](i) through activation of a K+-dependent NCX (NCKX). An NCKX activity of starfish sperm also shows K(+) dependency like other NCKXs. Therefore, we cloned an NCKX from the starfish testes and predicted that it codes for a 616 amino acid protein that is a member of the NCKX family. Pharmacological evidence suggests that this exchanger participates in the asterosap-induced Ca(2+) entry into sperm.  相似文献   

19.
The 1.8-A resolution structure of the ATP-Mg(2+)-Ca(2+)-pyruvate quinary complex of Escherichia coli phosphoenolpyruvate carboxykinase (PCK) is isomorphous to the published complex ATP-Mg(2+)-Mn(2+)-pyruvate-PCK, except for the Ca(2+) and Mn(2+) binding sites. Ca(2+) was formerly implicated as a possible allosteric regulator of PCK, binding at the active site and at a surface activating site (Glu508 and Glu511). This report found that Ca(2+) bound only at the active site, indicating that there is likely no surface allosteric site. (45)Ca(2+) bound to PCK with a K(d) of 85 micro M and n of 0.92. Glu508Gln Glu511Gln mutant PCK had normal activation by Ca(2+). Separate roles of Mg(2+), which binds the nucleotide, and Ca(2+), which bridges the nucleotide and the anionic substrate, are implied, and the catalytic mechanism of PCK is better explained by studies of the Ca(2+)-bound structure. Partial trypsin digestion abolishes Ca(2+) activation (desensitizes PCK). N-terminal sequencing identified sensitive sites, i.e., Arg2 and Arg396. Arg2Ser, Arg396Ser, and Arg2Ser Arg396Ser (double mutant) PCKs altered the kinetics of desensitization. C-terminal residues 397 to 540 were removed by trypsin when wild-type PCK was completely desensitized. Phe409 and Phe413 interact with residues in the Ca(2+) binding site, probably stabilizing the C terminus. Phe409Ala, DeltaPhe409, Phe413Ala, Delta397-521 (deletion of residues 397 to 521), Arg396(TAA) (stop codon), and Asp269Glu (Ca(2+) site) mutations failed to desensitize PCK and, with the exception of Phe409Ala, appeared to have defects in the synthesis or assembly of PCK, suggesting that the structure of the C-terminal domain is important in these processes.  相似文献   

20.
Two types of Na+/Ca2+-exchangers have been characterized in the literature: The first is the cardiac, skeletal muscle and brain type, which exchanges 1 Ca2+ for 3 Na+, the second, found in retinal photosensor cells, transports 1 Ca2+ and 1 K+ in exchange for 4 Na+. The present work describes the properties of chimeric constructs of the two exchanger types. Ca2+ gel overlay experiments have identified a high affinity (Kd in the 1 microM range) Ca2+-binding domain between Glu601 and Asp733 in the main cytosolic loop of the retinal protein, just after transmembrane domain 5. Insertion of the retinal Ca2+-binding domain in the cytosolic loop of the cardiac exchanger conferred K+-dependence to the Ca2+ uptake activity of the chimeric constructs expressed in HeLa cells. The apparent Km of the K+ effect was about 1 mM. Experiments with C-terminally truncated versions of the retinal insert indicated that the sequence between Leu643 and Asp733 was critical in mediating K+ sensitivity of the recombinant chimeras. Thus, the high affinity Ca2+-binding domain in the main cytosolic loop of the retinal exchanger may regulate the activity of the retinal protein by binding Ca2+, and by conferring to it K+ sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号