首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of microtubule-associated proteins with actin filaments has been investigated by measuring the diffusion coefficient of either the filament or the microtubule-associated proteins. Experiments were performed using the technique of fluorescence photobleaching recovery with actin labeled with iodoacetamidotetramethyl rhodamine or microtubule-associated proteins labeled with iodoacetamidofluorescein. Actin filaments composed of pure rhodamine-labeled actin are not immobilized under a variety of conditions (Tait, J. F., and Frieden, C. (1982c) Biochemistry 21, 6046-6053). We find that addition of microtubule-associated proteins to rhodamine-labeled actin in a ratio as low as 1:1000 can cause immobilization, presumably cross-linking actin into a network of nondiffusible filaments. Immobilization occurs after polymerization is complete, suggesting either a length redistribution of actin filaments, a redistribution of the cross-links between filaments, or the slow addition of actin filaments to other filaments via the microtubule-associated protein. Experiments using fluorescein-labeled microtubule-associated proteins show that these proteins are bound to actin filaments as they are formed and that binding depended on actin concentration, indicating that there are a number of binding sites on the actin filaments. However, while the actin filaments become completely immobilized, the microtubule-associated proteins become only partially immobilized suggesting at least two different classes of binding affinities. The large peptide obtained from trypsin-treated fluorescein-labeled microtubule-associated proteins is not able to immobilize actin filaments since it does not bind to the filaments.  相似文献   

2.
Bovine corneal endothelial cells deposit an extracellular matrix in short-term cultures, which contains various morphologically distinct structures when analysed by electron microscopy after negative staining. Amongst these were long-spacing fibers with a 150 nm periodicity, which appeared also to be assembled into more complex hexagonal lattices. Another structure was fine filaments, 10-40 nm in diameter, which occasionally exhibited 67 nm periodic cross-striation. Non-striated 10-20 nm filaments sometimes formed radially oriented bundles arranged in networks and fuzzy granular material was associated with the filaments in the bundles. Often, these bundles extended into solitary filaments, 10-20 nm in diameter, with a smooth surface. In addition, amorphous patches were seen, which contained dense aggregates of fibrillar and granular material. In longer-term cultures, some of the structures coalesced to form large fibrillar bundles. By using specific antibodies to various extracellular matrix components and immunolabeling with gold some of these structures could be identified as to their protein composition. Whereas fibronectin antibodies labeled a variety of structures--fine filaments with granular materials, radially oriented bundles, patchy amorphous aggregates and small granular material scattered throughout the background--type III collagen antibody predominantly labeled filaments with periodic banding (10-40 nm in diameter). A small amount of type III specific labeling was also observed over the networks of radially oriented fibrils and fine filaments associated with granular material. Type IV collagen and laminin antibodies localized in areas of the patchy amorphous aggregates. Type VI collagen antibodies, on the other hand, labeled fine filaments and the gold particles showed a pattern of 100 nm periodicity. Many of the fine 10-20 nm filaments exhibited a tubular appearance on cross-section, but they were not reactive with any of the antibodies used. Also negative were the long-spacing fibers and assemblies--including hexagonal lattices--containing this structural element.  相似文献   

3.
During epidermal differentiation in mammals, keratins and keratin-associated matrix proteins rich in histidine are synthesized to produce a corneous layer. Little is known about interkeratin proteins in nonmammalian vertebrates, especially in reptiles. Using ultrastructural autoradiography after injection of tritiated proline or histidine, the cytological process of synthesis of beta-keratin and interkeratin material was studied during differentiation of the epidermis of lizards. Proline is mainly incorporated in newly synthesized beta-keratin in beta-cells, and less in oberhautchen cells. Labeling is mainly seen among ribosomes within 30 min postinjection and appears in beta-keratin packets or long filaments 1-3 h later. Beta-keratin appears as an electron-pale matrix material that completely replaces alpha-keratin filaments in cells of the beta-layer. Tritiated histidine is mainly incorporated into keratohyalin-like granules of the clear layer, in dense keratin bundles of the oberhautchen layer, and also in dense keratin filaments of the alpha and lacunar layer. The detailed ultrastructural study shows that histidine-labeling is localized over a dense amorphous material associated with keratin filaments or in keratohyalin-like granules. Large keratohyalin-like granules take up labeled material at 5-22 h postinjection of tritiated histidine. This suggests that histidine is utilized for the synthesis of keratins and keratin-associated matrix material in alpha-keratinizing cells and in oberhautchen cells. As oberhautchen cells fuse with subjacent beta-cells to form a syncytium, two changes occur : incorporation of tritiated histidine, but uptake of proline increases. The incorporation of tritiated histidine in oberhautchen cells lowers after merging with cells of the beta-layer, whereas instead proline uptake increases. In beta-cells histidine-labeling is lower and randomly distributed over the cytoplasm and beta-keratin filaments. Thus, change in histidine uptake somehow indicates the transition from alpha- to beta-keratogenesis. This study indicates that a functional stratum corneum in the epidermis of amniotes originates only after the association of matrix and corneous cell envelope proteins with the original keratin scaffold of keratinocytes.  相似文献   

4.
The effect of acute and chronic nicotine on the metabolism of specific brain proteins was examined by measuring incorporation of labeled valine into protein, with densitometric scanning of proteins resolved by gel electrophoresis. Acute and chronic administration of nicotine (0.4 mg/kg per 30 min for 2 hours, s.c., or 0.5 mg/kg per 30 min for 5 days (Alzet mini-pump implanted subcutaneously) reduced incorporation of [14C]valine administered by approximately 6–7%. The results with chronic nicotine administration indicated a lack of tolerance for this effect of nicotine. Mecamylamine, a nicotinic ganglionic antagonist, does not seem to block the inhibition of protein synthesis. Small increases in protein content were observed in a high- and a low-molecular-weight region of SDS-polyacrylamide gel, used to separate proteins from newborn brain. In adult brain after chronic nicotine administration, selective increases and a decrease were seen in selective bands. Results are consonant with selective effects of nicotine on the synthesis or degradation of specific brain proteins.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

5.
Fluorescently labeled desmin was incorporated into intermediate filaments when microinjected into living tissue culture cells. The desmin, purified from chicken gizzard smooth muscle and labeled with the fluorescent dye iodoacetamido rhodamine, was capable of forming a network of 10-nm filaments in solution. The labeled protein associated specifically with the native vimentin filaments in permeabilized, unfixed interphase and mitotic PtK2 cells. The labeled desmin was microinjected into living, cultured embryonic skeletal myotubes, where it became incorporated in straight fibers aligned along the long axis of the myotubes. Upon exposure to nocodazole, microinjected myotubes exhibited wavy, fluorescent filament bundles around the muscle nuclei. In PtK2 cells, an epithelial cell line, injected desmin formed a filamentous network, which colocalized with the native vimentin intermediate filaments but not with the cytokeratin networks and microtubular arrays. Exposure of the injected cells to nocadazole or acrylamide caused the desmin network to collapse and form a perinuclear cap that was indistinguishable from vimentin caps in the same cells. During mitosis, labeled desmin filaments were excluded from the spindle area, forming a cage around it. The filaments were partitioned into two groups either during anaphase or at the completion of cytokinesis. In the former case, the perispindle desmin filaments appeared to be stretched into two parts by the elongating spindle. In the latter case, a continuous bundle of filaments extended along the length of the spindle and appeared to be pinched in two by the contracting cleavage furrow. In these cells, desmin filaments were present in the midbody where they gradually were removed as the desmin filament network became redistributed throughout the cytoplasm of the spreading daughter cells.  相似文献   

6.
The location of constitutive proteins of different types of intermediate-sized (about 10 mm) filaments (cytokeratin, vimentin, desmin, brain filament protein) was examined in various tissues of 11–20 day chick embryos, using specific antibodies against the isolated proteins and immunofluorescence microscopy on frozen sections and on isolated serous membrane. The tissues studied which contained epithelia were small intestine, gizzard, esophagus, crop, liver, kidney, thymus, mesenteries, and epidermis. The results show that the different intermediate filament proteins, as seen in the same organ, are characteristic of specific lines of differentiation: Cytokeratin filaments are restricted to – and specific for – epithelial cells; vimentin filaments are seen – at this stage of embryogenesis – only in mesenchymal cells, including connective tissue, endothelial and blood cells, and chondrocytes; filaments containing protein(s) related to the subunit protein prepared from gizzard 10 nm filaments (i.e., desmin) are significant only in muscle cells; and intermediate filament protein of brain, most probably neurofilament protein, is present only in nerve cells. We conclude that for most tissues the expression of filaments of cytokeratin, vimentin, desmin, and neurofilament protein is mutually exclusive, and that these protein structures provide useful markers for histochemical and cytochemical differentiation of cells of epithelial, mesenchymal, myogenic, and neurogenic differentiation.  相似文献   

7.
用荧光标记的鬼笔碱染色,对离体的黄蝉和姜花的生殖细胞内肌动蛋白微丝的分布进行了研究,结果证明两种植物的生殖细胞内部都存在一个微丝网络,黄蝉生殖细胞的比姜花的简单,微丝束较粗。但姜花生殖细胞的网络微丝束比黄蝉的更紧密地环绕着核。用免疫荧光技术在黄蝉生殖细胞的分裂前期和中期,可以观察到一些微丝束的存在,但在分裂后期和末期细胞内的肌动蛋白则变为颗粒状。  相似文献   

8.
Our laboratory recently isolated and began to characterize a 66 kd rat brain cytoskeletal protein, dubbed alpha-internexin for its interactions in vitro with several other cytoskeletal proteins. Although alpha-internexin bore several of the characteristics of intermediate filament (IF) proteins, including the recognition by an antibody reactive with all IF proteins, it did not polymerize into 10 nm filaments under the conditions tested. Here we show that the predicted amino acid sequence of a cDNA encoding alpha-internexin shows the latter to be an IF protein, probably most closely related to the neurofilament proteins. Northern blotting shows that alpha-internexin expression is brain specific, and that rat brain alpha-internexin mRNA levels are maximal prior to birth and decline into adulthood, while the converse is seen for NF-L, the low molecular weight neurofilament subunit, suggesting that these two proteins play different roles in the developing brain.  相似文献   

9.
Comparison of 10 nm filaments from three bovine tissues   总被引:4,自引:0,他引:4  
Enriched fractions of 10 nm filaments were isolated from three bovine tissues and were compared using morphological biochemical, and immunological techniques. We studied keratin filaments from hoof epidermis, 10 nm filaments from corneal epithelium, and 10 nm filaments from brain white matter. The parameters of comparison and results were as follows.
1. 1. Corneal epithelial filaments and keratin filaments repolymerized after a buffered 8 M urea extract of the tissue was dialyzed against a low ionic strength (0.005 M) buffer. However, a greater yield of repolymerized corneal epithelial filaments was obtained if the urea-soluble fraction was dialyzed against the same buffer containing 0.17 M NaCl. Brain filaments harvested by cell fractionation did not repolymerize when similarly treated.
2. 2. Electrophoretic patterns of proteins of filament-enriched fractions from the three sources were different in sodium dodecyl sulphate (SDS) polyacrylamide gels, except for one co-migrating band.
3. 3. Peptide mapping by limited proteolysis of the eluted co-migrating proteins showed few similarities.
4. 4. Amino acid analysis of the co-migrating proteins revealed numerous differences.
5. 5. Antibodies to the co-migrating corneal epithelial filament and brain filament proteins reacted only with their own antigen and whole filament type, and antibody to total keratin filament protein cross-reacted only with keratin filaments.
  相似文献   

10.
In amphibian epidermis mucus is thought to constitute the matrix material that links keratin filaments present in cells of the corneous layer. As contrast in mammals, and perhaps in all amniotes, histidine-rich proteins form the matrix material. In order to address the study of matrix molecules in the epidermis of the first tetrapods, the amphibians, an autoradiographic and electrophoretic study has been done after administration of tritiated histidine. Histological analysis of amphibian epidermis shows that histidine is taken up in the upper intermediate and replacement layers beneath the corneous layer. Ultrastructural autoradiographic analysis reveals that electron-dense interkeratin material is labeled after administration of tritiated histidine. Electrophoretic analysis of the epidermis shows labeled proteic bands at 58-61, 50-55, 40-45, and some only weakly labeled at 30 and 24-25 kDa at 4-48 hours after injection of tritiated histidine. Keratin markers show that bands at 40-61 kDa contain keratins. Most histidine is probably converted into other amino acids such as glutamate and glutamine that are incorporated into newly synthetized keratins. However, non-keratin histidine-incorporating proteins within the keratin range could also be formed. The bands at 30 and 24-25 kDa suggest that these putative histidine-rich proteins are not keratins. In fact, their molecular weigh is below the range of that for keratins. In contrast with the mammalian condition, but resembling reports for lizard epidermis, putative histidine-rich proteins in amphibians have no high molecular weight precursor. Although filaggrin is not detectable by immunofluorescence in sections of amphibian epidermis, protein extraction, electrophoresis and immunoblotting are more sensitive. In the epidermis of toad and frog, but only occasionally in that of newt, filaggrin cross-reactive proteic bands are seen at 50-55, 40-45, and sometimes at 25 kDa. This suggests that after extraction and unmasking of reactive sites in the epidermis of more terrestrial amphians (anurans), some HRPs with filaggrin-like cross-reactivity are present. The overlap that exists at 50-55 kDa between filaggrin-positive and AE2-positive keratins, but not that at 40-45 kDa further indicate that non-keratin, filaggrin-like proteins may be present in anuran epidermis. The present study suggests for the first time that very small amounts of histidine-rich proteins are produced among keratin filaments in upper intermediate, replacement and corneous layers of amphibian epidermis. Although the molecular composition of these proteins is unknown, precluding understanding of their relationship to those of mammals and reptiles, these cationic proteins might have originated in conjunction with the formation of a horny layer during the adaptation to land during the Carboniferous and were possibly refined later in the epidermis of amniotes.  相似文献   

11.
Identification of prion amyloid filaments in scrapie-infected brain   总被引:34,自引:0,他引:34  
Extracellular collections of abnormal filaments composed of prion proteins have been identified in the brains of scrapie-infected hamsters using immunoelectron microscopy. Some of the filaments were 1500 nm in length; generally, they exhibited a uniform diameter of 16 nm. Rarely, the filaments had a twisted appearance, raising the possibility that they are flattened cylinders or are composed of helically wound protofilaments. The prion filaments possess the same diameter and limited twisting as the shorter rod-shaped particles observed in purified preparations of prions. Both the filaments and rods are composed of PrP 27-30 molecules, as determined by immunoelectron microscopy using affinity-purified antibodies. The ultrastructural features of the prion filaments are similar to those reported for amyloid in many tissues including brain. These results provide the first evidence that prion proteins assemble into filaments within the brain and that these filaments accumulate in extracellular spaces to form amyloid plaques.  相似文献   

12.
The incorporation of [methyl-3H]thymidine into DNA, of [5-3H]uridine into RNA, and of [1-14C]leucine into proteins of cerebral hemispheres, cerebellum, and brainstem of guinea pigs after 80 hr of hypoxic treatment was measured. Both in vivo (intraventricular administration of labeled precursors) and in vitro (tissue slices incubation) experiments were performed. The labeling of macromolecules extracted from the various subcellular fractions of the above-mentioned brain regions was also determined. After hypoxic treatment the incorporation of the labeled precursors into DNA, RNA, and proteins was impaired to a different extent in the three brain regions and in the various subcellular fractions examined; DNA and RNA labeling in cerebellar mitochondria and protein labeling in microsomes of the three brain regions examined were particularly affected.  相似文献   

13.
The location of constitutive proteins of different types of intermediate-sized (about 10 mm) filaments (cytokeratin, vimentin, desmin, brain filament protein) was examined in various tissues of 11--20 day chick embryos, using specific antibodies against the isolated proteins and immunofluorescence microscopy on frozen sections and on isolated serous membrane. The tissues studied which contained epithelia were small intestine, gizzard, esophagus, crop, liver, kidney, thymus, mesenteries, and epidermis. The results show that the different intermediate filament proteins, as seen in the same organ, are characteristic of specific lines of differentiation: Cytokeratin filaments are restricted to--and specific for--epithelial cells; vimentin filaments are seen--at this stage of embryogenesis--only in mesenchymal cells, including connective tissue, endothelial and blood cells, and chondrocytes; filaments containing protein(s) related to the subunit protein prepared from gizzard 10 nm filaments (i.e., desmin) are significant only in muscle cells; and intermediate filament protein of brain, most probably neurofilament protein, is present only in nerve cells. We conclude that for most tissues the expression of filaments of cytokeratin, vimentin, desmin, and neurofilament protein is mutually exclusive, and that these protein structurees provide useful markers for histochemical and cytochemical differentiation of cells of epithelial, mesenchymal, myogenic, and neurogenic differentiation.  相似文献   

14.
Preparations of isolated brain postsynaptic densities (PSDs) contain a characteristic set of proteins among which the most prominent has a molecular weight of approximately 50,000. Following the suggestion that this major PSD protein might be related to a similarly sized component of neurofilaments (F. Blomberg et al., 1977, J. Cell Biol., 74:214- 225), we searched for evidence of neurofilament proteins among the PSD polypeptides. This was done with a novel technique for detecting protein antigens in SDS-polyacrylamide gels (immunoblotting) and an antiserum that was selective for neurofilaments in immunohistochemical tests. As a control, an antiserum against glial filament protein (GFAP) was used because antisera against GFAP stain only glial cells in immunohistochemical tests. They would, therefore, not be expected to react with PSDs that occur only in neurons. The results of these experiments suggested that PSDs contain both neuronal and also glial filament proteins at higher concentrations than either synaptic plasma membranes, myelin, or myelinated axons. However, immunoperoxidase staining of histological sections with the same two antisera gave contradictory results, indicating that PSDs in intact brain tissue contain neither neuronal or glial filament proteins. This suggested that the intermediate filament proteins present in isolated PSD preparations were contaminants. To test this possibility, the proteins of isolated brain intermediate filaments were labeled with 125I and added to brain tissue at the start of a subcellular fractionation schedule. The results of this experiment confirmed that both neuronal and glial filament proteins stick selectively to PSDs during the isolation procedure. The stickiness of PSDs for brain cytoplasmic proteins indicates that biochemical analysis of subcellular fractions is insufficient to establish a given protein as a synaptic junctional component. An immunohistochemical localization of PSDs in intact tissue, which has now been achieved for tubulin, phosphoprotein I, and calmodulin, appears to be an essential accessory item of evidence. Our findings also corroborate recent evidence which suggests that isolated preparations of brain intermediate filaments contain both neuronal and glial filaments.  相似文献   

15.
Cytoskeleton and vesicle mobility in astrocytes   总被引:2,自引:0,他引:2  
Exocytotic vesicles in astrocytes are increasingly viewed as essential in astrocyte-to-neuron communication in the brain. In neurons and excitable secretory cells, delivery of vesicles to the plasma membrane for exocytosis involves an interaction with the cytoskeleton, in particular microtubules and actin filaments. Whether cytoskeletal elements affect vesicle mobility in astrocytes is unknown. We labeled single vesicles with fluorescent atrial natriuretic peptide and monitored their mobility in rat astrocytes with depolymerized microtubules, actin, and intermediate filaments and in mouse astrocytes deficient in the intermediate filament proteins glial fibrillary acidic protein and vimentin. In astrocytes, as in neurons, microtubules participated in directional vesicle mobility, and actin filaments played an important role in this process. Depolymerization of intermediate filaments strongly affected vesicle trafficking and in their absence the fraction of vesicles with directional mobility was reduced.  相似文献   

16.
The importance of protein phosphatases in maintaining the integrity of intermediate filaments is supported by the fact that intermediate filaments would undergo a massive reorganization in cells treated with inhibitors of protein phosphatases 1 and 2A. Herein we used okadaic acid to investigate the differential roles of protein phosphatases 1 and 2A in the maintenance of intermediate filament integrity in 9L rat brain tumor cells. Protein phosphatase 2A activity was substantially inhibited after treatment with 400 nM okadaic acid for 2 h, whereas the activity of protein phosphatase 1 was only slightly affected. Furthermore, protein phosphatase 2A shows selective specificity toward phosphovimentin, which was immunologically precipitated from isotopically labeled and okadaic acid-treated cells. Further biochemical fractionation and microscopic studies revealed that vimentin intermediate filaments were colocalized with protein phosphatase 2A, but not protein phosphatase 1, in control cells. On okadaic acid treatment, vimentin filament disassembled and protein phosphatase 2A redistributed throughout the cytoplasm, suggesting that these two proteins separate from each other, whereas protein phosphatase 2A was inhibited. This working hypothesis was further supported by treatment with a low concentration (40 nM) of okadaic acid, which causes the same phenomenon. Taken together, our results showed that protein phosphatase 2A could be assigned to the intermediate filaments to serve the physiological role in maintaining the proper phosphorylation level of intermediate filaments in normal cells. This finding should pave the way for the elucidation of the regulatory mechanism of intermediate filament organization governed by protein phosphorylation.  相似文献   

17.
On-grid immunogold labeling of structures like intermediate filaments has been difficult to achieve. Presumably this is because such structures are thinner than the thin sections themselves and because gold-labeled reagents remain on the surface and do not penetrate epoxy resins. Many pathologic and other tissues, however, are primarily available as epoxy-embedded blocks, and a postembedding gold procedure capable of detecting such thin structures would be useful. This study aimed to investigate the astrocytic intermediate filament antigen glial fibrillary acidic protein (GFAP) in glutaraldehyde-fixed, epoxy-embedded brain biopsy tissue from a child with Alexander's disease. A protocol was developed for performing on-grid immunogold labeling which minimized nonspecific deposition of gold reagent. The method utilized ovalbumin and skim milk in the washes and diluent for the gold reagent and the same solution with added Tween-20 and high sodium chloride in the diluent for antibodies and normal serum. In grids etched with metaperiodate and hydrogen peroxide, the astrocytic intermediate filaments were only occasionally and sparsely labeled. When an etching procedure with sodium ethoxide was employed, however, extensive labeling was obtained on the astrocytic intermediate filaments. In contrast, the larger, pathological Rosenthal fibers characteristic of Alexander's disease were labeled after both etching procedures, but labeling was enhanced after ethoxide etching. Postosmicated material showed much less labeling. The findings demonstrate that postembedding procedures can be used with epoxy-embedded material to immunolabel thin structures like intermediate filaments.  相似文献   

18.
The ultrastructure of CV-1 cells infected with subacute sclerosing panencephalitis (SSPE) viruses was compared with that of CV-1 cells infected with the wild or Edmonston strain of measles virus. Both SSPE viruses and the measles viruses produced two types of nucleocapsid structures: smooth filaments, 15 to 17 nm in diameter, and granular filaments, 22 to 25 nm. The smooth and granular filaments produced by SSPE and measles virus did not differ in appearance. In CV-1 cells infected with SSPE viruses, smooth filaments formed large intranuclear inclusions and granular filaments occupied a large area of the cytoplasm, but always spared the area under the cell membrane. Particles budding from the surface of these cells contained no nucleocapsids. In CV-1 cells infected with measles virus, only small aggregates of smooth filaments were seen in the nuclei. Granular filaments in the cytoplasm predominantly occupied the area under the cell membrane, and were aligned beneath the cell membrane in a parallel fashion and assembled into budding particles. These differences between SSPE and measles virus may be regarded as quantitative, but they do distinguish SSPE viruses from measles virus. Moreover, the formation of large nuclear inclusions filled with smooth filaments appears to be a characteristic process of SSPE, but not of measles, since this type of inclusion is invariably seen in SSPE brain tissues, brain cultures derived from them, and CV-1 cells infected with SSPE viruses.  相似文献   

19.
Detection of actin assembly by fluorescence energy transfer   总被引:18,自引:10,他引:8       下载免费PDF全文
Fluorescence energy transfer was used to measure the assembly and disassembly of actin filaments. Actin was labeled at cysteine 373 with an energy donor (5-iodoacetamidofluorescein) or an energy acceptor (tetramethylrhodamine iodoacetamide or eosin iodoacetamide). Donor- labeled actin and acceptor-labeled actin were coassembled. The dependence of the transfer efficiency on the mole fraction of acceptor- labeled actin showed that the radial coordinate of the label at cysteine 373 is approximately 35 A, which means that this site is located near the outer surface of the filament. The distance between a donor and the closest acceptor in such a filament is 58 A. The increase in fluorescence after the mixing of actin filaments containing both donor and acceptor with unlabeled filaments showed that there is a slow continuous exchange of actin units. The rate of exchange was markedly accelerated when the filaments were sonicated. The rapid loss of energy transfer caused by mechanical shear probably resulted from an increase in the number of filament ends, which in turn accelerated the exchange of monomeric actin units. Energy transfer promises to be a valuable tool in characterizing the assembly and dynamics of actin and other cytoskeletal and contractile proteins in vitro and in intact cells.  相似文献   

20.
The incorporation of newly synthesized protein into myofibrils has been examined in a cell-free system. Myofibrils were added to a reticulocyte lysate after the in vitro translation of muscle-specific poly(A)+RNA. Only a small number of the many synthesized proteins were found to associate with the exogenously added myofibrils. These proteins were all identified as sarcomeric components and had subunit mobilities (Mr) of 200, 140, 95, 86, 43, 38, 35, 25, 23, 20, and 18 kD. The association was rapid (t1/2 less than 15 min) and, for most of the proteins, relatively temperature insensitive. Except for a 43-kD polypeptide, tentatively identified as beta-actin, none of the proteins encoded by brain poly(A)+RNA associated with the myofibrils. When filaments made from purified myosin or actin were used as the "capture" substrates, only thick or thin filament proteins, respectively, were incorporated. Incorporation was substantially reduced when cross-linked myosin filaments were used. These results are compatible with a model in which proteins of the sarcomere are in kinetic equilibrium with homologous proteins in a soluble pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号