首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. When irradiated 8-azido-ATP becomes covalently bound (as the nitreno compound) to beef-heart mitochondrial ATPase (F1) as the triphosphate, either in the absence or presence of Mg2+, label covalently bound is not hydrolysed. 2. In the presence of Mg2+ the nitreno-ATP is bound to both the alpha and beta subunits, mainly (63%) to the alpha subunits. 3. After successive photolabelling of F1 with 8-azido-ATP (no Mg2+) and 8-azido-ADP (with Mg2+) 4 mol label is bound to F1, 2 mol to the alpha and 2 mol to the beta subunits. 4. When the order of photolabelling is reversed, much less 8-nitreno-ATP is bound to F1 previously labelled with 8-nitreno-ADP. It is concluded that binding to the alpha-subunits hinders binding to the beta subunits. 5. F1 that has been photolabelled with up to 4 mol label still contains 2 mol firmly bound adenine nucleotides per mol F1. 6. It is concluded that at least 6 sites for adenine nucleotides are present in isolated F1.  相似文献   

2.
UV irradiation of rat liver F1 ATPase, previously exposed to Mg2+ and [beta, gamma-32P]-2-azido-ATP and separated from medium nucleotides, covalently modifies two tyrosine residues in adjacent tryptic peptides of the beta subunit. This results from the occupancy by 2-azido-ATP or 2-azido-ADP of two distinct types of nucleotide binding sites, the catalytic and noncatalytic sites. The two modified peptides are identical to the ones modified by 2-azido-adenine nucleotides in the beef heart F1 ATPase. Both catalytic and noncatalytic sites are labeled when the ATPase is exposed to [beta-32P]-2-azido-ADP in the presence or the absence of 5'-adenylyimidodiphosphate (AMP-PNP), showing that two distinct types of ADP binding sites are present on the liver enzyme. Similar incorporation of 2-azido-adenine nucleotides is obtained when membrane-bound rat liver F1 ATPase is incubated with Mg2+ and [beta, gamma-32P]-2-azido-ATP.  相似文献   

3.
The dissociation of mitochondrial F1-ATPase with 3 M LiCl at 0 degrees C, followed by reconstitution, has been analysed. FPLC over a gel filtration column in the dissociation buffer revealed the presence of two protein moieties, an alpha 3 gamma delta epsilon complex and single beta-subunits. When the dissociation and chromatography is performed at pH 6.2, the former protein moiety still contains some adenine nucleotides. Reconstitution of the dissociated complex is not possible any more after FPLC, probably due to the loss of residual adenine nucleotides. After a single column centrifugation step one nucleotide per F1 still remains bound. For reconstitution, additional ATP, or a suitable analog, is required. 2-Azido-ATP, but not 8-azido-ATP or ITP, can replace ATP during the reconstitution. F1, reconstituted in the presence of 2-azido-ATP, contains three tightly bound nucleotides, similar to freshly isolated F1, of which in this case one is an adenine nucleotide and two are azido-adenine nucleotides. One of the latter can be rapidly exchanged and is bound to a catalytic site. Covalent binding (at a beta-subunit) of the other tightly bound 2-azido-ATP by ultraviolet illumination does not result in inhibition of the enzyme. Digestion of F1 with trypsin, followed by HPLC, showed that the label is not bound to the fragment containing Tyr-368, nor to the fragment containing Tyr-345. This result was confirmed by CNBr digestion, followed by SDS-urea PAGE. We conclude that during dissociation of F1 one tightly bound nucleotide (ADP) remains bound at an alpha/beta interface site and that for reconstitution binding of ATP to a (non-catalytic) beta-site is required. The conformation of this site differs from that of the two catalytic beta-sites.  相似文献   

4.
Modifications of the catalytic beta subunits of the chloroplast ATPase (CF1-ATPase) are reported which support the proposal that all three subunits participate sequentially during catalysis. The beta subunits of the CF1-ATPase are sufficiently homogeneous to allow detection of their derivatization with dicyclohexylcarbodiimide (DCCD) or the substrate analog 2-azido-ATP by two-dimensional isoelectric focusing. Whether the DCCD reacts with the same beta subunit that tightly binds ATP has not been known. Our results show that when CF1-ATPase is covalently labeled with 2-azido-ATP followed by reaction with DCCD, different beta subunits are labeled. The DCCD labeling does not stop catalytic cooperativity of the CF1-ATPase and allows slow enzyme turnover. When the DCCD-modified enzyme catalyzes 2-azido-ATP cleavage and the enzyme with tightly bound nucleotide is photolyzed, both DCCD-modified and unmodified subunits are randomly labeled by the azido nucleotide. This result is as expected if during the catalytic cycle one beta subunit with unique properties is replaced by another subunit that gains these properties. The participation of all three subunits in the catalytic cycle is suggested by the apparent retention of catalytic cooperativity by the two remaining subunits after one subunit has already catalyzed 2-azido-ATP cleavage and been labeled.  相似文献   

5.
The photoreactive nucleotides [2-3H]8-azido-ATP and [2-3H]8-azido-ADP could be used to label the nucleotide binding sites on isolated mitochondrial F1-ATPase to a maximum of 4 mol of nucleotide per mol F1, also when the F1 was depleted of tightly bound nucleotides. At a photolabel concentration of 300-1000 microM, label was found on both alpha and beta subunits in a typically 1:3 ratio, independent of the total amount bound. Under these conditions the covalent binding of two nucleotides is needed for full inactivation (Wagenvoord, R.J., Van der Kraan, I. and Kemp, A. (1977) Biochim. Biophys. Acta 460, 17-24). At lower concentrations of [2-3H]8-azido-ATP (20 microM), it was found that covalent binding of only 1 mol of nucleotide per mole F1 was required for complete inactivation to take place indicating catalytic site cooperativity in the mechanism of ATP hydrolysis. Under those conditions, radioactivity was only found on the beta subunits, which would indicate that the catalytic site is located on a beta subunit and that a second site is located on the alpha/beta interface. It is found that four out of the six nucleotide binding sites are exchangeable and can be labelled with 8-azido-AT(D)P, i.e., two catalytic sites and two non-catalytic sites.  相似文献   

6.
M F Bruist  G G Hammes 《Biochemistry》1981,20(22):6298-6305
The solubilized coupling factor from spinach chloroplasts (CF1) contains one nondissociable ADP/CF1 which exchanges slowly with medium ADP in the presence of Ca2+, Mg2+, or EDTA; medium ATP also exchanges in the presence of Ca2+ or EDTA, but it is hydrolyzed, and only ADP is found bound to CF1. The rate of ATP exchange with heat-activated CF1 is approximately 1000 times slower than the rate of ATP hydrolysis. In the presence of Mg2+, both latent CF1 and heat-activated CF1 bind one ATP/CF1, in addition to the ADP. This MgATP is not removed by dialysis, by gel filtration, or by the substrate CaATP during catalytic turnover; however, it is released when the enzyme is stored several days as an ammonium sulfate precipitate. The photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]-propionyl]-ATP binds to the MgATP site, and photolysis results in labeling of the beta subunit of CF1. Equilibrium binding measurements indicate that CF1 has two identical binding sites for ADP with a dissociation constant of 3.9 microM (in addition to the nondissociable ADP site). When MgATP is bound to CF1, one ADP binding site with a dissociation constant of 2.9 microM is found. One ATP binding site is found in addition to the MgATP site with a dissociation constant of 2.9 microM. Reaction of CF1 with the photoaffinity label 3'-O-[3-[N-(4-azido-2-nitrophenyl)amino]propionyl]-ADP indicates that the ADP binding site which is not blocked by MgATP is located near the interface of alpha and beta subunits. No additional binding sites with dissociation constants less than 200 micro M are observed for MgATP with latent CF1 and for CaADP with heat-activated CF1. Thus, three distinct nucleotide binding sites can be identified on CF1, and the tightly bound ADP and MgATP are not at the catalytic site. The active site is either the third ADP and ATP binding site or a site not yet detected.  相似文献   

7.
The kinetic parameters for the hydrolysis by F1 of the photoreactive nucleotide analogue 2-azido-ATP were determined (Vmax, 105 U/mg F1; Km, 250 microM, in the presence of 1.0 mM SO2-3). In the absence of an activating anion, a non-linear relationship in a Lineweaver-Burk plot was found for the hydrolysis of 2-azido-ATP. The 2-azido-analogues of ATP and ADP proved to be good photoaffinity labels causing notable inactivation of the F1-ATPase activity upon irradiation at 360 nm. This inhibition was also used to demonstrate high-affinity binding of these analogues to a catalytic binding site on the F1. High-affinity binding proved to be an Mg2+-requiring process, occurring with both 2-azido-ATP and 2-azido-ADP but hardly or not occurring with 8-azido-AT(D)P. Covalent binding of 2-nitreno-ATP upon irradiation of F1 containing tightly bound [beta-32P]2-azido-ATP results in a proportional inhibition of ATPase activity, extrapolating to 0.92 mol of covalently bound label per mol of F1 needed for the complete inactivation of the enzyme. When the F1 was irradiated in the presence of excess [beta-32P]2-azido-AT(D)P, 3-4 mol of label were bound when the enzyme was fully inactivated. In all cases, all or most of the radioactivity was found on the beta subunits.  相似文献   

8.
Previous investigations on the distribution of [18O]Pi isotopomers formed by hydrolysis of [gamma-18O]ATP by the chloroplast F1-ATPase (CF1) showed that a single reaction pathway is used by all participating sites and that the pathway is modulated by ATP concentration as expected for cooperative interactions between catalytic sites. Such oxygen exchange measurements have been applied to CF1 modified at a single catalytic or noncatalytic site by 2-azido adenine nucleotides. When less than one catalytic or one noncatalytic site per enzyme is modified, hydrolysis occurs in part by the pathway of the unmodified enzyme plus at least one additional pathway at 200 microM and two additional pathways at 4 microM [gamma-18O]ATP. Thus, three sites are potentially catalytically active. The two new pathways shown by the derivatized enzyme logically can arise from nonidentical interactions of the remaining two underivatized beta subunits with the derivatized beta subunit. Reversals of bound ATP cleavage before Pi is released are increased, and the amount of product formed by the new pathways is changed when the ATP concentration is lowered. These modulations must result from the behavior of two remaining active catalytic sites rather than of one catalytic and one regulatory site. When the CF1 is derivatized more extensively, the original catalytic pathway is lost, and two catalytic pathways that do not show modulation by ATP concentration are found. The remaining beta subunits now have weak but independent catalytic capacity. In addition, the enzyme is no longer activated by Ca2+, loses MgGTPase activity, and is much less sensitive to azide.  相似文献   

9.
8-Azido-ATP is a substrate for the ATP synthase in submitochondrial particles with a Vmax equal to 6% of the Vmax with ATP. The Km values for 8-azido-ATP are similar to those for ATP. ATP synthase in submitochondrial particles can bind maximally 2 mol 8-N-ATP or 8-N-ADP per mole and the inhibition of ATP hydrolysis by covalently bound N-ATP or N-ADP is proportional to the saturation of the enzyme with inhibitor, similar to the results obtained with isolated F1. Both 8-N-ATP and 8-N-ADP are bound mainly to the beta subunits and at all levels of saturation the distribution of the label is 77% to the beta and 23% to the alpha subunits. It is proposed that the binding of 8-azido-AXP itself is mainly to the beta subunit, but that part of the nitreno radicals formed during excitation with light reacts with an amino acid of the alpha subunit, due to the location of the binding site at an interface between a beta and an alpha subunit. Partial saturation with 8-N-ATP, under conditions that the concentration of 8-azido-ATP during the incubation is intermediate between the low and high Km values, does not abolish the apparent negative cooperativity of ATP hydrolysis. It is concluded that this apparent cooperativity is not due to the presence of two different catalytic sites, nor to a cooperativity between the two catalytic sites, but to interaction between the catalytic sites and regulatory sites.  相似文献   

10.
After isolation and purification, the H+-ATPase from chloroplasts, CF0F1, contains one endogenous ADP at a catalytic site, and two endogenous ATP at non-catalytic sites. Incubation with 2-azido-[alpha-32P]ADP leads to tight binding of azidonucleotides. Free nucleotides were removed by three consecutive passages through centrifugation columns, and upon UV-irradiation most of the label was covalently bound. The labelled enzyme was digested by trypsin, the peptides were separated by ion exchange chromatography into nitreno-AMP, nitreno-ADP and nitreno-ATP labelled peptides, and these were then separated by reversed phase chromatography. Amino acid sequence analysis was used to identify the type of the nucleotide binding site. After incubation with 2-azido-[alpha-32P]ADP, the covalently bound label was found exclusively at beta-Tyr-362. Incubation conditions with 2-azido-[alpha-32P]ADP were varied, and conditions were found which allow selective binding of the label to different catalytic sites, designated as 1, 2 and 3 in order of decreasing affinity for ADP, and either catalytic site 1 or catalytic sites 1 and 2 together were labelled. For measurements of the degree of inhibition by covalent modification, CF0F1 was reconstituted into phosphatidylcholine liposomes, and the membranes were energised by an acid-base transition in the presence of a K+/valinomycin diffusion potential. The rate of ATP synthesis was 50-80 s(-1), and the rate of ATP hydrolysis was 15 s(-1) measured under multi-site conditions. Covalent modification of either catalytic site 1 or catalytic sites 1 and 2 together inhibited ATP synthesis and ATP hydrolysis equally, the degree of inhibition being proportional to the degree of modification. Extrapolation to complete inhibition indicates that derivatisation of catalytic site 1 leads to complete inhibition when 1 mol 2-nitreno-ADP is bound per mol CF0F1. Derivatisation of catalytic sites 1 and 2 together extrapolates to complete inhibition when 2 mol 2-nitreno-ADP are bound per CF0F1. The rate of ATP synthesis and the rate of ATP hydrolysis were measured as a function of the substrate concentration from multi-site to uni-site conditions with derivatised CF0F1 and with non-derivatised CF0F1. ATP synthesis and ATP hydrolysis under uni-site and under multi-site condition were inhibited by covalent modification of either catalytic site 1 or catalytic sites 1 and 2 together. The results indicate that derivatisation of site 1 inhibits activation of the enzyme and that cooperative interactions occur at least between the catalytic sites 2 and 3.  相似文献   

11.
On the soluble part of the coupling factor (CF1), extracted from spinach chloroplasts, three nucleotide-binding sites are identified. Three ADP are bound per CF1 when the enzyme is incubated with ADP either with or without Mg2+. Two ADP and one ATP are bound per CF1 when the enzyme is incubated with a limiting concentration of ATP, in the presence of Mg2+. At high ATP concentration, in the presence of Mg2+, one free ATP exchanges with one bound ADP and two ATP and one ADP remain bound per CF1. When Mg2+ is omitted from the incubation medium of ATP and CF1, only two ADP and around 0.5 ATP are bound per CF1. The three nucleotide binding sites of CF1 fall into two different and independent categories according to the ability of the bound nucleotides to be exchanged with free nucleotides. On one site the bound ADP is difficult to exchange. On the other two sites, the bound nucleotides. ADP or ATP, are readily exchangable. We propose that the two exchangeable sites form the catalytic part of the enzyme where ATP is hydrolyzed. When ATP concentration is high enough, in the presence of Mg2+, one ATP displaces one bound ADP and allows the ATP hydrolysis to proceed. We propose too that the site where ADP is difficult to exchange may represent the 'tight' ADP-binding site, different from the catalytic ones, which becomes exchangeable on the CF1 in vivo when the thylakoid membranes are energized by light, as stressed by Bickel-Sandk?tter and Strotman [(1976) FEBS Lett. 65, 102-106].  相似文献   

12.
Chloroplast thylakoid membranes contain tightly bound ADP which is intimately involved in the mechanism of photophosphorylation. The photoaffinity analog 2-azido-ADP binds tightly to spinach thylakoid membrane-bound coupling factor one (CF1) and, in a manner similar to ADP, inhibits the light-triggered ATPase activity (Czarnecki, J.J., Abbott, M.S. and Selman, B.R. (1983) Eur. J. Biochem. 136, 19-24). Ultraviolet irradiation of thylakoid membranes containing noncovalently, tightly bound 2-azido[beta-32P]ADP results in the inactivation of both the methanol-stimulated MgATPase activity of the membrane-bound CF1 and the octylglucoside-dependent MgATPase activity of the solubilized enzyme. There is a linear correlation between the loss of enzyme activity and the covalent incorporation of the photoaffinity analog. Full inactivation of catalytic activity is estimated to occur upon incorporation of 1.07 mol analog and 0.65 mol analog per mol enzyme for the methanol- and octylglucoside-stimulated activities, respectively. Since 2-azido-ADP modifies only the beta subunit of the CF1 and since there are probably three beta subunits per CF1, these results indicate strong cooperativity among beta subunits and between the site of tightly bound nucleotides and the catalytic sites.  相似文献   

13.
R.J. Wagenvoord  A. Kemp  E.C. Slater 《BBA》1980,593(2):204-211
1. When irradiated 8-azido-ATP becomes covalently bound (as the nitreno compound) to beef-heart mitochondrial ATPase (F1) as the triphosphate, either in the absence or presence of Mg2+, label covalently bound is not hydrolysed.

2. In the presence of Mg2+ the nitreno-ATP is bound to both the and β subunits, mainly (63%) to the subunits.

3. After successive photolabelling of F1 with 8-azido-ATP (no Mg2+) and 8-azido-ADP (with Mg2+) 4 mol label is bound to F1, 2 mol to the and 2 mol to the β subunits.

4. When the order of photolabelling is reversed, much less 8-nitreno-ATP is bound to F1 previously labelled with 8-nitreno-ADP. It is concluded that binding to the -subunits hinders binding to the β subunits.

5. F1 that has been photolabelled with up to 4 mol label still contains 2 mol firmly bound adenine nucleotides per mol F1.

6. It is concluded that at least 6 sites for adenine nucleotides are present in isolated F1.  相似文献   


14.
A de Waal  L de Jong  A F Hartog  A Kemp 《Biochemistry》1985,24(23):6493-6499
The synthesis is described of the photoaffinity label N-(4-azido-2-nitrophenyl)glycyl-(Pro-Pro-Gly)5 for the peptide binding site of prolyl 4-hydroxylase. The photoaffinity label is a good substrate and is capable of light-induced inactivation of prolyl 4-hydroxylase activity. Inactivation depends on the concentration of photoaffinity label and is prevented by competition with excess (Pro-Pro-Gly)5. Two moles of photoaffinity label per mole of enzyme is needed for 100% inactivation of enzymic activity. Oxidative decarboxylation of 2-oxoglutarate measured in the absence of added peptide substrate is not affected by labeling. We conclude that the covalently bound nitreno derivative of N-(4-azido-2-nitrophenyl)glycyl-(Pro-Pro-Gly)5 acts by preventing the binding of peptide substrate to the catalytic site without interfering with the binding of the other substrates and cofactors 2-oxoglutarate, O2, Fe2+, and ascorbate. Labeling is specific for the alpha subunit of the tetrameric alpha 2 beta 2 enzyme. In addition to two catalytic binding sites that are blocked by the photoaffinity label, the enzyme contains binding subsites for peptide substrates, as judged from the capability of photoinactivated enzyme to bind to a poly(L-proline) affinity column. These binding subsites may account for the rapidly increasing affinity for peptide substrates with increasing chain length.  相似文献   

15.
The three beta subunits of the Escherichia coli F1-ATPase react independently with chemical reagents (Stan Lotter, H. and Bragg, P.D. (1986) Arch. Biochem. Biophys. 248, 116-120). Thus, one beta subunit is readily cross-linked to the epsilon subunit, another reacts with N,N'-dicyclohexylcarbodiimide (DCCD), and the third one is modified by 4-chloro-7-nitrobenzofurazan (NbfCl). The relationship of the binding site for 2-azido-ATP to the three types of beta subunit recognized by chemical labeling was examined. The binding site for 2-azido-ATP was not associated with a specific type of beta-subunit. There was no relationship between the site of nucleotide and the association of the epsilon subunit with a particular beta subunit. It is concluded that the presence of the epsilon subunit (possibly in association with the other minor subunits) does not determine the position of the catalytic site. The possibility that the lack of a specific relationship between the 2-azido-ATP binding site and a specific beta subunit was due to turnover of the enzyme, making each beta a catalytic site in turn, could not be entirely rejected. However, the rate of hydrolysis of 2-azido-ATP by the DCCD-modified ATPase was very low in the presence of EDTA, and was likely due to catalysis at single sites.  相似文献   

16.
The photoaffinity analog 2-azido-ADP has been used to investigate the high-affinity binding site(s) for ATP on the chloroplast thylakoid membrane. Photophosphorylation of 2-azido-ADP results in the rapid formation of 2-azido-ATP, which remains tightly bound to the membranes after extensive washing. The kinetic parameters of the tight binding of ATP and of 2-azido-ATP are similar (apparent Km = 1-2 microM; maximum extent = 0.2-0.4 nmol/mg of chlorophyll). Ultraviolet irradiation of washed thylakoid membranes containing tightly bound 2-azido-[gamma-32P]ATP induces covalent incorporation of the label exclusively into the beta subunit of the chloroplast coupling factor one. Previous results have shown that the tight binding site for ADP is also located on the beta subunit of the ATP synthase (Czarnecki, J. J., Abbott, M. S., and Selman, B. R. (1983) Eur. J. Biochem. 136, 19-24). To further characterize the tight binding sites for ADP and ATP, the membrane-bound coupling factor has been covalently modified with either tightly bound 2-azido-[gamma-32P]ATP or tightly bound 2-azido-[beta-32P]ADP. The photolabeled beta subunits have been isolated and subjected to partial proteolytic digestion and SDS-gel electrophoresis. The results of these experiments demonstrate that the tight binding sites for ADP and ATP are located on identical portions of beta subunit polypeptide.  相似文献   

17.
By using gel filtration chromatography, following the technique of Hummel and Dreyer (Hummel, J., and Dreyer, W. (1962) Biochim. Biophys. Acta 63, 532-534), the adenine nucleotide-binding sites of isolated soluble chloroplast ATPase (CF1) and of the beta subunit were studied. CF1 possesses six adenine nucleotide-binding sites: two high affinity sites for ADP or ATP (KdH = 1-5 microM) in addition to one site where endogenous not-exchangeable ADP is bound, and three low affinity sites binding ADP or ATP with a dissociation constant (KdL = 15-20 microM) which is considerably increased in the presence of pyrophosphate. KdH is not modified by addition of pyrophosphate. The stability of nucleotide binding at the low affinity sites increases after heat activation of CF1. Removal of the delta or epsilon subunits on CF1 affects neither the number nor the binding parameters of the nucleotide-binding sites. The purified beta subunit possesses one easily exchangeable site/subunit. It is proposed that the low affinity sites on CF1 are the catalytic sites.  相似文献   

18.
1. In addition to the previously studied 8-azido-ATP, 8-azido-ADP is a suitable photoaffinity label for beef-heart mitochondrial ATPase (F1). 2. Photolysis at 350 nm of 8-azido-ADP in the presence of isolated F1 leads to inactivation of ATPase activity. Both ATP and ADP (but not AMP) protect against the inactivation. 3. In the absence of Mg2+, 8-azido-ADP binds almost equally to the alpha and beta subunits of F1, whereas in the presence of Mg2+ the alpha subunits are predominantly labelled. 4. The ATPase activity is completely inhibited when two molecules of 8-azido-ADP are bound per molecule F1. 5. 8-Azido-ATP and ATP are competitive substrates for F1, indicating that in the presence of Mg2+ 8-azido-ATP binds to the same site as ATP. 6. The amount of tightly bound nucleotides in F1 is not significantly changed upon incubation with 8-azido-ATP either in the light or the dark. 7. 8-Azido-ATP is also a suitadrial particles, photolabelling leading to inactivation of ATPase activity. 9. Oxidative phosphorylation and the ATP-driven reduction of NAD+ by succinate are also inhibited by photolabelling Mg-ATP particles with 8-azido-ATP. 10. In contrast to the uncoupled ATPase activity, where the two ATP-binding sites do not interact, cooperation between the two sites is required for ATP hydrolysis coupled to reduction of NAD+ by succinate.  相似文献   

19.
J M Zhou  Z X Xue  Z Y Du  T Melese  P D Boyer 《Biochemistry》1988,27(14):5129-5135
Whether the tightly bound ADP that can cause a pronounced inhibition of ATP hydrolysis by the chloroplast ATP synthase and F1 ATPase (CF1) is bound at catalytic sites or at noncatalytic regulatory sites or both has been uncertain. We have used photolabeling by 2-azido-ATP and 2-azido-ADP to ascertain the location, with Mg2+ activation, of tightly bound ADP (a) that inhibits the hydrolysis of ATP by chloroplast ATP synthase, (b) that can result in an inhibited form of CF1 that slowly regains activity during ATP hydrolysis, and (c) that arises when low concentrations of ADP markedly inhibit the hydrolysis of GTP by CF1. The data show that in all instances the inhibition is associated with ADP binding without inorganic phosphate (Pi) at catalytic sites. After photophosphorylation of ADP or 2-azido-ADP with [32P]Pi, similar amounts of the corresponding triphosphates are present on washed thylakoid membranes. Trials with appropriately labeled substrates show that a small portion of the tightly bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling by an ADP moiety at a catalytic site. We also report the occurrence of a 1-2-min delay in the onset of the Mg2+-induced inhibition after addition of CF1 to solutions containing Mg2+ and ATP, and that this delay is not associated with the filling of noncatalytic sites. A rapid burst of Pi formation is followed by a much lower, constant steady-state rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Tight divalent metal binding sites in Escherichia coli F1-adenosinetriphosphatase (F1-ATPase) were studied. Native enzyme contained two Mg per F1, confirming previous results. All of the Mg may be replaced by Co or Mn using a dissociation-repolymerization procedure. The substituted enzymes are homogeneous and contain two Mn per F1 or two Co per F1. They are fully active as ATPases, they rebind to F1-depleted membranes, and they catalyze ATP-driven proton pumping. N,N'-Dicyclohexylcarbodiimide-(DCCD) inactivated F1 retains all the intrinsic tightly bound Mg. Evidence is presented that DCCD affects at least two beta subunits in E. coli F1, and therefore, the tightly bound metals appear not to be bound at the DCCD-reactive glutamate residue on the beta subunit. However, the nature of the tightly bound metal (Mg, Mn, or Co) as well as the presence of added (2 mM) MgSO4, MnSO4, or CoSO4 affected the rate of DCCD inactivation, showing that metal binding changes the beta-subunit conformation. Isolated F1 alpha subunit bound Mg, Mn, or Co stoichiometrically and independently of ATP binding. Isolated F1 beta subunit bound only small amounts of Mg, and no Co or Mn. Therefore, it is possible, although not conclusively shown, that the alpha subunit is the site of tight metal binding in the intact F1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号