首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Understanding the relationships between cell cycle and protein expression is critical to the optimisation of media and environmental conditions for successful commercial operation of animal cell culture processes. Using flow cytometry for the analysis of the early phases of synchronised batch cultures, the dependency of product expression on cell cycle related events has been evaluated in a recombinant CHO cell line. Although the production of recombinant protein is initially found to be cell cycle related, the maximum specific protein productivity is only achieved at a later stage of the exponential phase which also sees a maximum in the intracellular protein concentration. Subsequent work suggests that it is the batch phase/medium composition of cultures which is the major determinant of maximum specific productivity in this cell line. Furthermore the effect of the positive association between S phase and specific productivity is subordinate to the effect of batch phase/medium composition on the specific productivity of batch cultures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Gu MB  Todd P  Kompala DS 《Cytotechnology》1995,18(3):159-166
Foreign protein production levels in two recombinant Chinese hamster ovary (CHO) cell lines were compared in cells transfected with different expression vectors. One vector pNL1 contained the gene for neomycin resistance (neo r ) and thelacZ gene which codes for intracellular -galactosidase, with both genes controlled by the constitutive simian virus (SV40) promoter. The other vector CDG contained the amplifiabledhfr gene andlacZ gene, controlled by the constitutive SV40 and cytomegalovirus (CMV) promoters, respectively. Cell growth and -galactosidase expression were compared quantitatively after cells were selected in different concentrations of the neomycin analog G418 and methotrexate, respectively. A 62% reduction in growth rate occurred in recombinant CHO cells in which thelacZ anddhfr genes were highly amplified and expressed. In contrast, the combined effects of the unamplifiedneo r gene andlacZ gene expression on the growth kinetics were small. Any metabolic burden caused bylacZ gene expression, which was evaluated separately from the effect ofneo r gene expression, must be negligible, as higher expression of -galactosidase (1.5×10–6 units/cell) occurred in unamplified cells compared to the cells in whichlacZ was amplified by thedhfr-containing vector (3×10–7 units/cell). Thus, the main factor causing severe growth reduction (metabolic burden) in cells containing the amplifieddhfr gene system was not overexpression of -galactosidase butdhfr andlacZ gene co-amplification anddhfr gene expression.  相似文献   

3.
Banik GG  Todd PW  Kompala DS 《Cytotechnology》1996,22(1-3):179-184
Foreign protein expression from the commonly used SV40 promoter has been found to be primarily during the S-phase of the cell cycle. Simple mathematical models with this cell cycle phase dependent expression of foreign protein suggest that the specific production rate will be proportional to the cell growth rate, which is particularly disadvantageous in high cell density fed-batch or perfusion bioreactors. In this study we investigate this predicted relationship between the production rate and growth rate by culturing recombinant CHO cells in a continuous suspension bioreactor. One CHO cell line, GS-26, has been stably transfected with the plasmid pSVgal, which contains the E. coli lac Z gene under the control of the SV40 promoter. This GS-26 cell line was grown in suspension cultures over a range of specific growth rates in batch and continuous modes. The intracellular -galactosidase activity was assayed using a standard spectrophotometric method after breaking the cells open and releasing the enzyme. A strong growth associated relationship is found between the intracellular -galactosidase content and the specific growth rate in batch and continuous cultures, as predicted.  相似文献   

4.
以表达人重组尿激酶原中国仓鼠卵巢 (CHO) 工程细胞系11G-S为研究对象,运用基因芯片技术比较了CHO工程细胞在批次及流加培养不同生长阶段基因表达水平的差异,在此基础上采用Genmapp软件,同时结合已知的细胞周期信号通路图,着重分析了批次及流加培养CHO工程细胞的细胞周期调控基因转录谱差异。在基因芯片涉及的19 191个目标基因中,批次和流加培养不同生长阶段CHO工程细胞的下调表达的基因数量多于上调表达基因数目;两种培养模式下的基因差异表达有着明显的不同,尤其是在细胞生长的衰退期,流加培养CHO工程细胞中下调表达的基因数量明显多于批次培养。有关调控细胞周期关键基因的转录谱分析表明,CHO工程细胞主要是通过下调表达CDKs、Cyclin及CKI家族中的Cdk6、Cdk2、Cdc2a、Ccne1、Ccne2基因及上调表达Smad4基因,来达到调控细胞增殖及维持自身活力的目的。  相似文献   

5.
A flow cytometric method was developed for the assay of beta-galactosidase in single Escherichia coli cells. A new fluorogenic substrate for beta-galactosidase, C(12)FDG, contains a lipophilic group that allows the substrate to penetrate through cell membranes under normal conditions. When the substrate is hydrolyzed by intracellular beta-galactosidase, a green fluorescent product is formed and retained inside the cell. Consequently, the stained beta-galactosidase-positive cells exhibit fluorescence, which is detected by flow cytometry. This new assay was used to analyze the segregational instability caused by a reduction in specific growth rate of the plasmid-bearing cells in the T7 expression system. Induction results in a substantial accumulation of intracellular beta-galactosidase along with a rapid increase in the fraction of plasmid-free cells. Once the cells lose the plasmid, they no longer produce beta-galactosidase, which is reduced by at least half every generation; thus, after staining, the fluorescent, plasmid-bearing cells can be distinguished from the nonfluorescent, plasmid-free cells using flow cytometry. This article describes the feasibility of the flow cytometric assay for single E. coli cells and reports the optimal assay conditions. A direct relationship between beta-galactosidase activity and green fluorescence intensity was found, and the fractions of recombinant cells in batch cultures were analyzed after various levels of induction.  相似文献   

6.
Differences in plasmid retention and expression are studied in both suspended and biofilm cultures of Escherichia coli DH5alpha(PMJR1750). An alternative mathematical model is proposed which allows the determination of plasmid loss probability in both suspended batch and continuously fed biofilm cultures. In our experiments, the average probability of plasmid loss of E. coli DH5alpha(pMJR1750) is 0.0022 in batch culture in the absence of antibiotic selection pressure and inducer. Under the induction of 0.17 MM IPTG, the maximum growth rate of plasmid-bearing cells in suspended batch culture dropped from 0.45 h(-1) to 0.35 h(-1) and the beta-galactosidase concentration reached an experimental maximum of 0.32. pg/cell 4 hours after the initiation of induction. At both 0.34 and 0.51 mM IPTG, growth rates in batch cultures decreased to 0.16 h(-1), about 36% of that without IPTG, and the beta-galactosidase concentration reached an experimental maximum of 0.47 pg/cell 3 hours after induction.In biofilm cultures, both plasmid-bearing and plasmid-free cells in increase with time reaching a plateau after 96 hours n the absence of both the inducer and any antibiotic selection pressure. Average probability of plasmid loss for biofilm-bound E. coli DH5beta(pMJR1750) population was 0.017 without antibiotic selection. Once the inducer IPTG was added, the concentration of plasmid-bearing cells in biofilm dropped dramatically while plasmid-free cell numbers maintained unaffected. The beta-galactosidase concentration reached a maximum in all biofilm experiments 24 hours after induction; they were 0.08, 0.1, and 0.12 pg/cel under 0.17, 0.34, and 0.51 mM IPTG, respectively. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
Heterogenous populations of recombinant cells (cell pools) stably expressing 1–4 transgenes were generated from Chinese hamster overy (CHO) cells with the piggyBac (PB) transposon system. The cell pools produced different combinations of three model proteins—enhanced green fluorescent protein (EGFP), secreted alkaline phosphatase (SEAP), and a monoclonal IgG1 antibody. Each transgene was present on a separate PB donor plasmid with either the same or a different selection gene. In both cases, we obtained PB‐derived cell pools with higher recombinant protein yields than from cell pools generated by conventional gene delivery. In PB‐derived cell pools generated using a single selection agent, both protein production and the number of integrated copies of each transgene declined as the number of transfected transgenes increased. However, the total number of integrated transgenes was similar regardless of the number of different transgenes transfected. For PB‐derived cell pools generated by selection of each transgene with a different selection agent, the total number of integrated transgenes increased with the number of transfected transgenes. The results suggest that the generation of cell pools producing multiple recombinant proteins is feasible and that the method is more efficient when each individual transgene is selected with a different marker. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1308–1317, 2016  相似文献   

8.
鼻咽癌细胞ClC-3在细胞周期中的表达   总被引:1,自引:0,他引:1  
用免疫荧光、激光共聚焦显微镜图像分析及膜片钳等技术研究了鼻咽癌上皮CNE-2Z细胞容积激活性氯通道候选基因C1C-3的表达及其在细胞周期中与容积激活性氯电流及细胞容积调节性回缩(regulatoryvolumedecrease,RVD)的关系.结果显示,CNE-2Z细胞表达ClC-3.ClC-3蛋白主要位于细胞内而不是在细胞膜上,其表达水平及其在细胞中的分布呈细胞周期依赖性.G1期细胞的ClC-3表达水平较低而S期则较高,M期细胞的表达水平中等.在细胞周期中,ClC-3表达水平与细胞RVD能力及容积激活性氯电流水平呈反比.上述观察结果提示,ClC-3可能参与细胞周期的调节,但CNE-2Z细胞中的ClC-3可能不是与RVD有关的氯通道.  相似文献   

9.
Regulation of histone gene expression during the cell cycle   总被引:6,自引:0,他引:6  
  相似文献   

10.
The dihydrofolate reductase-deficient Chinese hamster ovary cell line, DXB11-CHO, commonly used as a host cell for the production of recombinant proteins requires 7.5% serum-supplementation for optimal growth. Regulatory issues surrounding the use of serum in clinical production processes and the direct and indirect costs of using serum in large-scale production and recovery processes have triggered efforts to derive serum-independent host cell lines. We have successfully isolated a serum-free host that we named Veggie- CHO. Veggie-CHO was generated by adapting DXB11-CHO cells to growth in serum-free media in the absence of exogenous growth factors such as Transferrin and Insulin-like growth factor, which we have previously shown to be essential for growth and viability of DXB11- CHO cells. Veggie-CHO cells have been shown to maintain an average doubling time of 22 hr in continuous growth cultures over a period of three months and have retained the dihydrofolate reductase -deficient phenotype of their parental DXB11-CHO cells. These properties and the stability of its serum-free phenotype have allowed the use of Veggie- CHO as host cells for transfection and amplified expression of recombinant proteins. We describe the derivation a serum-free recombinant cell line with an average doubling time of 20 hr and specific productivity of 2.5 Units recombinant Flt-3L protein per 10e6 cells per day. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Both the macroheterogeneity of recombinant human IFN-gamma produced by CHO cells and intracellular levels of nucleotides and sugar nucleotides, have been characterized during batch and fed-batch cultures carried out in different media. Whereas PF-BDM medium was capable to maintain a high percentage of the doubly- glycosylated glycoforms all over the process, mono-glycosylated and non-glycosylated forms increased during the batch culture using SF-RPMI medium. Intracellular level of UTP was higher in PF-BDM all over the batch culture compared to the SF-RPMI process. UDP-Gal accumulated only during the culture performed in PF-BDM medium, probably as a consequence of the reduced UDP-Glc synthesis flux in SF-RPMI medium. When the recombinant CHO cells were cultivated in fed-batch mode, the UTP level remained at a relatively high value in serum-containing RPMI and its titer increased during the fed-phase indicating an excess of biosynthesis. Besides, an accumulation of UDP-Gal occurred as well. Those results all together indicate that UTP and UDP-Glc syntheses in CHO cells cultivated in SF-RPMI medium in batch process, could be limiting during the glycosylation processes of the recombinant IFN-gamma. At last, the determination of the energetic status of the cells over the three studied processes suggested that a relationship between the adenylate energy charge and the glycosylation macroheterogeneity of the recombinant IFN-gamma may exist.  相似文献   

12.
At 0°C, CHO cells efficiently incorporated [3H]thymidine into the nucleotide fraction, but not into DNA. Upon reincubation of asynchronous cultures at 37°C, 15–25% of the radioactivity contained in the cellular nucleotide fraction was released, in the form of thymidine, into the culture medium. At 0°C, however, radioactivity of the nucleotide fraction was retained within the cells. Similarly, dTMP phosphatase (EC 3.1.3.35) in cell extracts was active at 37°C, but not at 0°C, whereas thymidine kinase (EC 2.7.1.21) was active at both temperatures. If synchronous cultures in Gl phase were prelabeled at 0°C and reincubated at 37°C, almost all radioactivity in the nucleotide fraction was released into the medium, whereas in S-phase cultures nearly all radioactivity of the nucleotide fraction was incorporated into DNA. In synchronous S-phase cultures treated with hydroxyurea, radioactivity in the nucleotide fraction was released into the medium at a rate considerably lower than that observed for Gl-phase cells. Rates of endogenous synthesis of thymidine nucleotides were calculated from changes of cellular thymidine nucleotide content, incorporation of thymidine nucleotides into DNA and release of thymidine into the medium during reincubation of prelabeled cultures in thymidine-free medium. The results obtained (see Table III) reveal marked differences between Gl and S phases with respect to the determinants of thymidine nucleotide metabolism.  相似文献   

13.
鼻咽癌细胞CIC-3在细胞周期中的表达(英文)   总被引:1,自引:0,他引:1  
用免疫荧光、激光共聚焦显微镜图像分析及膜片钳等技术研究了鼻咽癌上皮cNE-2Z细胞容积激活性氯通道候选基因C1C-3的表达及其在细胞周期中与容积激活性氯电流及细胞容积调节性回缩(regulatorly volume decrease,RVD)的关系。结果显示,CNE-2Z细胞表达CIC-3。C1C-3蛋白主要位于细胞内而不是在细胞膜上,其表达水平及其在细胞中的分布呈细胞周期依赖性。G1期细胞的C1C-3表达水平较低而S期则较高,M期细胞的表达水平中等。在细胞周期中,C1C-3表达水平与细胞RVD能力及容积激活性氯电流水平呈反比。上述观察结果提示,C1C-3可能参与细胞周期的调节,但CNE-2Z细胞中的C1C-3可能不是与RVD有关的氯通道。  相似文献   

14.
The perception of environmental stress in animal cells engineered to produce heterologous protein leads to the induction of stress signaling pathways and ultimately apoptosis and cell death. Protein synthesis is regulated in response to various environmental stresses by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2). In this study we have utilized a model system of Chinese hamster ovary cells engineered to secrete recombinant TIMP-1 protein to investigate the relationship between the cellular rate of protein synthesis, eIF2alpha phosphorylation, cellular stress perception, and the rate of cell specific recombinant protein synthesis. The rate of total protein synthesis was maximal after 48 hours of culture, remaining relatively high until 96 hours of culture, after which a decline was observed. Towards the end of culture a marked increase in labeled secreted protein was observed. Total eIF2alpha expression levels were high during the exponential growth phase and decreased slightly towards the end of culture. On the other hand, the relative expression of phosphorylated eIF2alpha showed a bi-phasic response with a small increase in phosphorylated eIF2alpha observed at 48 hours of culture, and a significant increase at 120 hours post-inoculation. The large increase in phosphorylated eIF2alpha coincided with the observed increase in labeled secreted protein and the decline in total cellular protein synthesis. A marked increase in ubiquitination was also observed at 120 hours post-inoculation that coincided with reduced rates of cellular protein synthesis and mRNA translation attenuation. We suggest that eIF2alpha phosphorylation is an indicator of cellular stress perception, which could be exploited in recombinant protein manufacturing to commence feeding and engineering strategies.  相似文献   

15.
16.
17.
The human cytomegalovirus promoter (hCMV) is susceptible to gene silencing in CHO cells, most likely due to epigenetic events, such as DNA methylation and histone modifications. The core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene has been shown to prevent DNA methylation. A set of modified hCMV promoters was developed by inserting one or two copies of IE in either forward or reverse orientations either upstream of the hCMV enhancer, between the enhancer and core promoter (CP), or downstream of the CP. The modified hCMV with one copy of IE inserted between the enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability without compromising expression level when compared with the wild‐type (WT) hCMV. A third of 18 EGFP expressing clones generated using MR1 retained 70% of their starting expression level after 8 weeks of culture in the absence of selection pressure, while none of 18 WT hCMV generated clones had expression above 50%. MR1 also improved antibody expression stability of methotrexate (MTX) amplified CHO cell lines. Stably transfected pools generated using MR1 maintained 62% of their original monoclonal antibody titer after 8 weeks of culture in the absence of MTX, compared to only 37% for WT hCMV pools. Low levels of CpG methylation within both WT hCMV and MR1 were observed in all the analyzed cell lines and the methylation levels did not correlate to the expression stability, suggesting IE enhances expression stability by other mechanisms other than preventing methylation. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:523–534, 2014  相似文献   

18.
High-level expression of G-protein-coupled receptors (GPCRs) in functional form is required for structure-function studies. The main goal of the present work was to improve expression levels of beta2-adrenergic receptor (beta2-AR) so that biophysical studies involving EPR, NMR, and crystallography can be pursued. Toward this objective, the total synthesis of a codon-optimized hamster beta2-AR gene suitable for high-level expression in mammalian systems has been accomplished. Transient expression of the gene in COS-1 cells resulted in 18 +/- 3 pmol beta2-AR/mg of membrane protein, as measured by saturation binding assay using the beta2-AR antagonist [3H] dihydroalprenolol. Previously, we reported the development of an HEK293S tetracycline-inducible system for high-level expression of rhodopsin. Here, we describe construction of beta2-AR stable cell lines using the HEK293S-TetR-inducible system, which, after induction, express wild-type beta2-AR at levels of 220 +/- 40 pmol/mg of membrane protein corresponding to 50 +/- 8 microg/15-cm plate. This level of expression is the highest reported so far for any wild-type GPCR, other than rhodopsin. The yield of functional receptor using the single-step affinity purification is 12 +/- 3 microg/15-cm plate. This level of expression now makes it feasible to pursue structure-function studies using EPR. Furthermore, scale-up of beta2-AR expression using suspension cultures in a bioreactor should now allow production of enough beta2-AR for the application of biophysical techniques such as NMR spectroscopy and crystallography.  相似文献   

19.
20.
In this study, a continuous culture system was applied to mammalian cells on large scale, and polyethyleneimine (PEI) mediated transient gene expression (TGE). PEI MAX 40,000 was chosen as a superior reagent from three types of PEI. The cell cycle distribution of cells in batch and continuous cultures was determined, in which the effects of cell cycle distribution on transfection efficiency, post-transfection proliferation and recombinant prothrombin expression were evaluated. Compared with cells from end-log and plateau phase in batch culture, cells from mid-log phase possessed a larger fraction of S and G2/M phase cells and a smaller fraction of G1 phase cells. In the continuous culture, the fraction of cells in the S and G2/M phases increased and the fraction of cells in the G1/G0 phase decreased with increasing dilution rates. Cells from the continuous culture run at highest dilution rate had excellent proliferation, transfection efficiency and protein expression. These results were confirmed by transfecting cells synchronized to different phases. The G2/M arrested cells exhibited a nearly 10-fold increase in recombinant human prothrombin production relative to that of non-dividing cells. The use of continuous culture for large scale transfection demonstrated a better cell physiological state for TGE process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号