首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of nematode-based pesticides involves the recovery of a viable nematode life stage known as the infective juvenile (IJ) from fermentation broth. In this paper we report the physical properties of mature liquid nematode cultures of P. hermaphrodita, S. feltiae and H. megidis. Properties determined were composition, IJ `shear' sensitivity, viscosity, particle size and component density. These measurements were then used to identify potential recovery procedures. Waste components in cultures included non-IJ life stages, dead nematodes, nematode debris, spent media and the nematodes' associated bacteria. Infective juveniles were very sensitive to `shear' compared to baker's yeast. The choice of recovery equipment will therefore be limited to that which produces a low level of stress. Comparison of IJ properties with those of waste components showed that differences in component size, density and settling rate can be used as a basis for separating fermentation waste. Predictions of IJ settling velocity using Stokes' Law and by experiment confirmed that IJs will need to be separated from culture liquid by centrifugation as opposed to gravity settling. The comparison of nematodes revealed a dependence of culture properties on species. This observation suggested that a flexible processing scheme will be required if different species are to be recovered using the same process equipment.  相似文献   

2.
New experimental data are reported that demonstrate the use of a novel vibrating membrane filter (VMF) for the combined recovery and concentration of two species of nematodes, S. feltiae and P. hermaphrodita, from mature liquid fermentation cultures. The disk membrane module had a working surface area of 0.2 m(2) and was operated at a constant flow rate of 0.2 m(3) h(-1). The recovery of the viable nematodes from the spent media and nonviable nematodes was assisted by an independently imposed oscillatory motion of the disk assembly, which produced an intense shear field at the membrane surface with calculated mean values on the order of 10(4) s(-1). Adult (nonviable) nematodes in the fermentation culture were preferentially dissolved in a detergent (sodium dodecylsulfate) and successfully separated from the juveniles using the VMF equipment. Permeate fluxes on the order of 15 to 30 L/m(2/)h were achieved for an operating transmembrane pressure of 800 mbar. Industrial-scale liquid fermentation for the manufacture of nematodes as biopesticides produces the viable nematode life stages in low-concentration suspension containing large quantities of spent media and other waste material. The VMF equipment provided a flexible operation for separation, cleaning, and concentration of viable nematodes from the fermentation broths.  相似文献   

3.
Xenorhabdus nematophila engages in mutualistic associations with the infective juvenile (IJ) stage of specific entomopathogenic nematodes. Mannose-resistant (Mrx) chaperone-usher-type fimbriae are produced when the bacteria are grown on nutrient broth agar (NB agar). The role of Mrx fimbriae in the colonization of the nematode host has remained unresolved. We show that X. nematophila grown on LB agar produced flagella rather than fimbriae. IJs propagated on X. nematophila grown on LB agar were colonized to the same extent as those propagated on NB agar. Further, progeny IJs were normally colonized by mrx mutant strains that lacked fimbriae both when bacteria were grown on NB agar and when coinjected into the insect host with aposymbiotic nematodes. The mrx strains were not competitively defective for colonization when grown in the presence of wild-type cells on NB agar. In addition, a phenotypic variant strain that lacked fimbriae colonized as well as the wild-type strain. In contrast, the mrx strains displayed a competitive colonization defect in vivo. IJ progeny obtained from insects injected with comixtures of nematodes carrying either the wild-type or the mrx strain were colonized almost exclusively with the wild-type strain. Likewise, when insects were coinjected with aposymbiotic IJs together with a comixture of the wild-type and mrx strains, the resulting IJ progeny were predominantly colonized with the wild-type strain. These results revealed that Mrx fimbriae confer a competitive advantage during colonization in vivo and provide new insights into the role of chaperone-usher fimbriae in the life cycle of X. nematophila.  相似文献   

4.
The symbiotic interaction between Steinernema carpocapsae and Xenorhabdus nematophila was investigated by comparing the reproduction, morphology, longevity, behavior, and efficacy of the infective juvenile (IJ) from nematodes reared on mutant or wild-type bacterium. Nematodes reared on the mutant X. nematophila HGB151, in which an insertion of the bacterial gene, rpoS, eliminates the retention of the bacterium in the intestinal vesicle of the nematode, produced IJs without their symbiotic bacterium. Nematodes reared on the wild-type bacterium (HGB007) produced IJs with their symbiotic bacterium. One or the other bacterial strain injected into Galleria mellonella larvae followed by exposing the larvae to IJs that were initially symbiotic bacterium free produced progeny IJs with or without their Xenorhabdus-symbiotic bacterium. The two bacterial strains were not significantly different in their effect on IJ production, sex ratio, or IJ morphology. IJ longevity in storage was not influenced by the presence or absence of the bacterial symbiont at 5 and 15 °C, but IJs without their bacterium had greater longevity than IJs with their bacterium at 25 and 30 °C, suggesting that there was a negative cost to the nematode for maintaining the bacterial symbiont at these temperatures. IJs with or without their symbiotic bacterium were equally infectious to Spodoptera exigua larvae in laboratory and greenhouse and across a range of soil moistures, but the absence of the bacterial symbiont inhibited nematodes from producing IJ progeny within the host cadavers. In some situations, such as where no establishment of an alien entomopathogenic nematode is desired in the environment, the use of S. carpocapsae IJs without their symbiotic bacterium may be used to control some soil insect pests.  相似文献   

5.
In this work, we investigate the investment of entomopathogenic Steinernema nematodes (Rhabditidae) in their symbiotic association with Xenorhabdus bacteria (Enterobacteriaceae). Their life cycle comprises two phases: (1) a free stage in the soil, where infective juveniles (IJs) of the nematode carry bacteria in a digestive vesicle and search for insect hosts, and (2) a parasitic stage into the insect where bacterial multiplication, nematode reproduction, and production of new IJs occur. Previous studies clearly showed benefits to the association for the nematode during the parasitic stage, but preliminary data suggest the existence of costs to the association for the nematode in free stage. IJs deprived from their bacteria indeed survive longer than symbiotic ones. Here we show that those bacteria-linked costs and benefits lead to a trade-off between fitness traits of the symbiotic nematodes. Indeed IJs mortality positively correlates with their parasitic success in the insect host for symbiotic IJs and not for aposymbiotic ones. Moreover mortality and parasitic success both positively correlate with the number of bacteria carried per IJ, indicating that the trade-off is induced by symbiosis. Finally, the trade-off intensity depends on parental effects and, more generally, is greater under restrictive environmental conditions.  相似文献   

6.
Entomopathogenic nematode production in liquid fermentation still requires improvements to maximize efficiency, yield, and nematode quality. Therefore, this study was aimed at developing a more suitable liquid medium for mass production of Steinernema feltiae, by assessing the effects of nutrient concentration, thickeners (primarily agar), and agitation speed on infective juvenile (IJ) yield. Base medium (BM) contained yeast extract (2.3%), egg yolk (1.25%), NaCl (0.5%), and corn oil (4%). All media were inoculated with Xenorhabdus bovienii, and 2 d later, with 2-d-old S. feltiae juveniles. For the nutrient concentration experiment, we evaluated the base medium versus a modified base medium containing all the components, but with 3× concentrations of yeast extract (6.9%), egg yolk (3.75%), and corn oil (12%). The nematodes and bacteria were cultured in 150-ml Erlenmeyer flasks containing 50 ml of liquid medium at (25°C) and 180 rpm on a rotary shaker incubator. To assess the effect of thickeners, IJs were inoculated in BM with agar (0.2%), carrageen (0.2%), and carboxymethyl cellulose (0.2% and 0.5%). The addition of 3× more nutrients relative to the BM resulted in a significantly lower yield of nematodes. For agar and agitation speed experiments, five levels of agar in the BM (0%, 0.2%, 0.4%, 0.6%, and 0.8% agar) and two agitation speeds (180 and 280 rpm) were evaluated for production. Increasing agitation speed from 180 to 280 rpm and higher levels of agar in the medium (> 0.2%) significantly increased the yield of bacteria. At the lower agitation speed, media amended with 0.4% and 0.6% agar produced higher nematode yields compared to media without agar. Media with 0.2% and 0.8% agar resulted in intermediate levels of nematode production. At the higher agitation speed, media supplemented with 0.8% agar resulted in the lowest yield of nematodes when compared to the other media tested. Results indicated that increasing nutrient concentration levels was detrimental to nematode production. Also, media containing agar (0.4% and 0.6%) increased nematode yields when cultures were grown at low agitation speed. When IJs were used as the inoculum, 0.2% agar also enhanced recovery and nematode yield at the higher agitation speed.  相似文献   

7.
丘雪红  曹莉  韩日畴 《昆虫知识》2010,47(5):824-833
嗜线虫致病杆菌属Xenorhabdus和发光杆菌属Photorhabdus细菌隶属肠杆菌科Enterobacteriaceae,对多种害虫致病能力强,分别与斯氏属Steinernema和异小杆属Heterorhabditis昆虫病原线虫互惠共生。该两属共生细菌既存在对昆虫寄主的病原性,又存在与线虫寄主的共生性。共生细菌与其线虫寄主的共生性主要表现以下4方面:(1)细菌产生食物信号诱导滞育不取食的感染期线虫恢复;(2)细菌为线虫生长与繁殖提供营养;(3)细菌能于感染期线虫的肠道定殖与生长;(4)细菌产生杀线虫毒素杀死非共生线虫。本文综述了共生菌以上4方面的共生性及其相关的分子机制。  相似文献   

8.
The entomopathogenic nematodes Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema glaseri, and Steinernema feltiae were exposed to freezing while inside their hosts. Survival was assessed by observing live and dead nematodes inside cadavers and by counting the infective juveniles (IJs) that emerged after freezing. We (1) measured the effects of 24h of freezing at different times throughout the course of an infection, (2) determined the duration of freezing entomopathogenic nematodes could survive, (3) determined species differences in freezing survival. Highest stage-specific survival was IJs for S. carpocapsae, and adults for H. bacteriophora. When cadavers were frozen two or three days after infection, few IJs emerged from them. Freezing between five and seven days after infection had no negative effect on IJ production. No decrease in IJ production was measured for H. bacteriophora after freezing. H. bacteriophora also showed improved survival inside versus outside their host when exposed to freezing.  相似文献   

9.
Factors affecting the persistence and activity of the infective juveniles (IJs) of the nematode Steinernema carpocapsae ’Mexican’ strain on the foliage of bean plants were determined at 45, 60 and 80% relative humidity (RH). The rate of nematode mortality was related to the RH. A gradual reduction in nematode survival was recorded during a 6 h exposure period at 80% and 60% RH, whereas at 45% RH high mortality was observed within 2 h. Addition of the antidesiccant ‘Folicote’ (6% w/w) to the nematode suspension was most effective in ensuring IJ survival at 60% RH, resulting in 38–60% increase in viability during 6 h of exposure. At 80% RH ‘Folicote’ treatment resulted in only 10–20% increase in IJs viability, as compared with non‐treated IJs. At 45% RH, ‘Folicote’ treatment did not significantly increase IJ survival (P>0.05). Survival of the IJs on tomato and soybean leaves was 30–35% higher than of those recovered from leaves of cotton, pepper and bean as well as from filter paper. At 60% RH, IJ movement ceased within 45–60 min of exposure and the nematode body shrank. However, nematode pathogenicity remained almost unaltered up to 4 h of exposure, resulting in 75% mortality of larvae of the Egyptian cotton worm Spodoptera littoralis. A drastic reduction in the nematodes’ efficacy was recorded when the insects were introduced 6 and 8 h after nematode application.  相似文献   

10.
Abstract  Effects of the critical parameters (spray pressure, the distance between a sprayer and the sprayed plant, the concentration of infective juveniles (Us), volumes of the sprayed suspension of IJs, the temperature and humidity combinations) and the addition of various adjuvants on the survival and persistence of entomopathogenic nematode Steinernema carpocapsae All strain on leaf surfaces of the Chinese cabbage Brassica pekingensis were determined. The results showed that (1) The pressure of a sprayer had negative influence on the persistence of IJs on the leaf. (2) The numbers of the living IJs collected on the leaf significantly increased with the IJ dosages applied on the leaf when the dosage was over 2 000 IJs per mL. (3) More IJs (from 10.1 IJs/cm2 to 45.5 IJs/cm2) were collected on the leaf when more volumes of IJ suspension (from 3.3 mL to 19.8 mL) were sprayed. However, when the highest volume of IJ suspension was used, the IJ numbers collected did not increase. (4) In general, the survival of the IJs on the leaf decreased with the exposure time. (5) The formulation of IJs by adding xanthan gum, a sticker and detergent surfactant enhanced the survival and persistence of IJs. The number of living IJs on the leaf with 0.3 % of xanthan gum was 150 times higher than that of the IJs with water alone. IJ suspensions with different concentrations of glycerin and with 0.5 % molasses and 0.01 % detergent surfactant showed similar effects.  相似文献   

11.
Limited shelf life of entomopathogenic nematodes severely restricts their use in biological control programs. In a series of experiments, the dehydration and rehydration response of Heterorhabditis bacteriophora infective juveniles (IJs) was investigated under a range of glycerol concentrations, temperatures and incubation periods. Based on the outcome of these initial studies, nematodes dehydrated using the optimal process were formulated in alginate granules to understand how these nematodes would undergo survival formulation in a model carrier. The highest rate of osmotically arrested IJs occurred in the 22% glycerol solution (98.06%). IJ recovery was considerably improved when dehydration was processed at 10% glycerol solution and 15°C. By trapping IJs in calcium alginate, depending on the adjuvants, the survival rate of IJs differed significantly. IJ state (dehydrated or non-dehydrated) and the addition of formaldehyde had a profound effect on IJ viability, though the severity of the effect varied was dependent on whether the IJs were alginate formulated. Among different formulations, the highest viability (84.18%) was observed where dehydrated IJs were formulated in alginate granules containing formaldehyde. The results showed that the concentration of osmotic solution not only determines the percentage of dehydrated IJs but also affect their subsequent recovery in an aqueous environment. Overall, the results indicate that the shelf life of formulated IJs is significantly affected by combination effects of a broad range of factors. Then understanding the interactive mode of actions of involved factors in formulation play a critical role in developing and introducing more efficient formulations.  相似文献   

12.
Nonfeeding infective juvenile (IJ) entomopathogenic nematodes (EPNs) are used as biological agents to control soil-dwelling insects, but poor storage stability remains an obstacle to their widespread acceptance by distributors and growers as well as a frustration to researchers. Age is one factor contributing to variability in EPN efficacy. We hypothesized that age effects on the infectiousness of IJs would be evident within the length of time necessary for IJs to infect a host. The penetration behavior of "young" (<1-wk-old) and "old" (2- to 4-wk-old) Heterorhabditis bacteriophora (GPS 11 strain), Steinernema carpocapsae (All strain), and Steinernema feltiae (UK strain) IJs was evaluated during 5 "exposure periods" to the larvae of the wax moth, Galleria mellonella. Individual larvae were exposed to nematode-infested soil for exposure periods of 4, 8, 16, 32, and 64 hr. Cadavers were dissected after 72 hr, and the IJs that penetrated the larvae were counted. Larval mortality did not differ significantly between 72- and 144-hr "observation periods," or points at which larval mortality was noted, for any age class or species. However, age and species effects were noted in G. mellonella mortality and nematode penetration during shorter time periods. Initial mortality caused by S. carpocapsae and H. bacteriophora IJs declined with nematode age but increased with S. feltiae IJ age. Young S. carpocapsae IJs penetrated G. mellonella larvae at higher rates than old members of the species (27-45% vs. 1-4%). Conversely, old S. feltiae IJs had higher penetration rates than young IJs (approximately 8 to 57% vs. 4 to approximately 31%), whereas H. bacteriophora IJs had very low penetration rates regardless of age (3-5.6%). Our results show that the effect of age on IJ infectiousness can be detected in IJs aged only 2 wk by a 4-hr exposure period to G. mellonella. These results have important implications for storage and application of EPNs and suggest the possibility of shortening the time required to detect nematodes in the soil.  相似文献   

13.
测定了叶面应用参数(喷雾压力、高度、线虫悬浮液浓度、线虫悬液量、温度和湿度)以及辅助剂对昆虫病原线虫S.carpocapsaeAll于小白菜叶面的存活率和叶面黏附数量的影响。结果显示:(1)喷雾压力对线虫于叶面的黏附数量有负影响;(2)线虫悬浮液浓度高于2000IJs/mL时,随着线虫浓度的增加,叶面上黏附的线虫数量也明显提高;(3)喷洒的线虫悬液量越多(从3.3mL到19.8mL),叶面上黏附的线虫数量也就越多(从10.1IJs/cm^2到45.5IJs/cm^2),但是当线虫悬液量超出19.8mL时,叶面上黏附的线虫数量不再提高;(4)感染期线虫在叶面存活率随着暴露时间的增长而下降;(6)加入黄原胶和表面活性剂可以提高线虫在叶面的存活率和黏附数量,其中加入0.3%黄原胶的线虫悬浮液在叶面存活的线虫数量是清水对照的150倍。线虫喷洒叶面停留24小时后,2%甘油的线虫悬浮液的线虫在叶面上的存活率大约是清水对照液的62倍,叶面上存活线虫数量也是清水对照液的53倍。  相似文献   

14.
Many animals and plants have symbiotic relationships with beneficial bacteria. Experimentally tractable models are necessary to understand the processes involved in the selective transmission of symbiotic bacteria. One such model is the transmission of the insect-pathogenic bacterial symbionts Photorhabdus spp. by Heterorhabditis bacteriophora infective juvenile (IJ)-stage nematodes. By observing egg-laying behavior and IJ development, it was determined that IJs develop exclusively via intrauterine hatching and matricide (i.e., endotokia matricida). By transiently exposing nematodes to fluorescently labeled symbionts, it was determined that symbionts infect the maternal intestine as a biofilm and then invade and breach the rectal gland epithelium, becoming available to the IJ offspring developing in the pseudocoelom. Cell- and stage-specific infection occurs again in the pre-IJ pharyngeal intestinal valve cells, which helps symbionts to persist as IJs develop and move to a new host. Synchronous with nematode development are changes in symbiont and host behavior (e.g., adherence versus invasion). Thus, Photorhabdus symbionts are maternally transmitted by an elaborate infectious process involving multiple selective steps in order to achieve symbiont-specific transmission.  相似文献   

15.
Steinernema carpocapsae infective juvenile (IJ) nematodes are intestinally colonized by mutualistic Xenorhabdus nematophila bacteria. During IJ development, a small number of ingested X. nematophila cells initiate colonization in an anterior region of the intestine termed the vesicle and subsequently multiply within this host niche. We hypothesize that efficient colonization of a high percentage of S. carpocapsae individuals (typically>85%) is facilitated by bacterial adherence to a site(s) in the nematode intestine. We provide evidence that the adherence site is a structure in the lumen of the IJ vesicle that we have termed the intravesicular structure (IVS). The IVS is an untethered cluster of anucleate spherical bodies that co-localizes with colonizing X. nematophila cells, but does not require X. nematophila for its formation. Colocalization with the IVS is readily apparent in IJs colonized by X. nematophila mutants that initiate intestinal colonization but fail to proliferate normally, suggesting that bacterial-IVS interaction occurs early in the colonization process. Treatment with insect haemolymph induces anal release of X. nematophila from colonized IJs and induces release of the IVS from uncolonized S. carpocapsae IJs. Released IVS were probed with several carbohydrate-specific lectins. One lectin, wheat-germ agglutinin, reacts strongly with a mucus-like substance that is present around individual spheres in the aggregate IVS. Potential roles for the IVS in mediating X. nematophila colonization of the nematode intestine are discussed.  相似文献   

16.
The infectivity, time to first emergence of infective juveniles (IJs), total number of IJs per insect and IJs body length of the entomopathogenic nematode Heterorhabditis megidis (strain NLH-E87.3) after development in larvae of two insect hosts, Galleria mellonella (greater wax moth) and Otiorhynchus sulcatus (vine weevil) was studied. At a dose of 30 IJs, larvae of G. mellonella show to be significantly more susceptible than O. sulcatus larvae. At a dose of one IJ, vine weevil larvae were more susceptible. The number of invading infective juveniles (IJs) increased with host size while the host mortality at a dose of one IJ decreased with the increase of host size. Time to first emergence was longer at a dose of one IJ per larva and increased with the increase of host size in both insect species. Reproduction of IJs differed between host species, host sizes and doses of nematodes. Generally, the IJs body size increased with an increasing host size. The longest infective juveniles were produced at the lowest IJ doses. Results are discussed in relation to the influence of different host species and their different sizes on the performance of H. megidis (strain NLH-E87.3) as a biological control agent.  相似文献   

17.
More than a quarter of the world's population is infected with nematode parasites, and more than a hundred species of nematodes are parasites of humans [1-3]. Despite extensive morbidity and mortality caused by nematode parasites, the biological mechanisms of host-parasite interactions are poorly understood, largely because of the lack of genetically tractable model systems. We have demonstrated that the insect parasitic nematode Heterorhabditis bacteriophora, its bacterial symbiont Photorhabdus luminescens, and the fruit fly Drosophila melanogaster constitute a tripartite model for nematode parasitism and parasitic infection. We find that infective juveniles (IJs) of Heterorhabditis, which contain Photorhabdus in their gut, can infect and kill Drosophila larvae. We show that infection activates an immune response in Drosophila that results in the temporally dynamic expression of a subset of antimicrobial peptide (AMP) genes, and that this immune response is induced specifically by Photorhabdus. We also investigated the cellular and molecular mechanisms underlying IJ recovery, the developmental process that occurs in parasitic nematodes upon host invasion and that is necessary for successful parasitism. We find that the chemosensory neurons and signaling pathways that control dauer recovery in Caenorhabditis elegans also control IJ recovery in Heterorhabditis, suggesting conservation of these developmental processes across free-living and parasitic nematodes.  相似文献   

18.
Anhydrobiosis is considered to be an important means of achieving storage stability of entomopathogenic nematodes that are used in biological control. This study explored the effects of anhydrobiosis on longevity and infectivity of infective juveniles (IJs) of three species of entomopathogenic nematodes Steinernema carpocapsae, Steinernema feltiae, and Steinernema riobrave at 5 and 25 degrees C. Anhydrobiosis was induced in water-dispersible granules (WG) at 0.966-0.971 water activity and 25 degrees C following a 7-day preconditioning of IJs at 5 degrees C in tap water. Survival and infectivity of the desiccated (anhydrobiotic) IJs was compared with non-desiccated IJs stored in water for different periods. Anhydrobiosis increased longevity of S. carpocapsae IJs by 3 months and of S. riobrave by 1 month in WG at 25 degrees C as compared with IJs stored in water. However, desiccation decreased S. feltiae longevity at 25 degrees C and of all three species at 5 degrees C. These results demonstrate a shelf-life of 5 months for S. carpocapsae at 25 degrees C and 9 months at 5 degrees C in WG with over 90% IJ survival. For S. feltiae, over 90% survival occurred only for 2 months at 25 degrees C and 5 months at 5 degrees C in WG. Steinernema riobrave had over 90% survival only for 1 month at 25 degrees C and the survival dropped below 85% within 1 month at 5 degrees C. Induction of anhydrobiosis in WG resulted in 85, 79 and 76% reduction in oxygen consumption by S. carpocapsae, S. feltiae, and S. riobrave IJs, respectively. Differences in IJ longevity among three species in water at 25 degrees C were related both to the initial lipid content and the rate of lipid utilisation, but not at 5 degrees C. The one-on-one infection bioassays indicated that desiccation had no negative effect on the infectivity of any of the nematode species suggesting no harmful effect on the IJs and/or their symbiotic bacteria. The species differences in IJ longevity and desiccation survival at different temperatures are discussed in relation to their foraging strategy and temperature adaptation.  相似文献   

19.
20.
In two concurrent field experiments, the effects of three types of soil cultivation and two patterns of nematode application were studied in order to investigate their effects on damage to winter wheat by slugs (assessed at Zadoks Growth Stage 12). In experiment 1, infective juveniles (IJs) of the nematode Phasmarhabditis hermaphrodita were applied to soil as an overall spray or as a band spray (8-cm wide), centred on the drill rows (16.7-cm apart). Nematodes were either left undisturbed on the soil surface or harrowed into the soil immediately after application. The control provided by nematodes was compared with that provided by metaldehyde and methiocarb pellets broadcast at the recommended rate immediately after drilling. In this experiment, winter wheat on plots treated with IJs showed significantly less slug damage than on wheat plots treated with metaldehyde or methiocarb pellets or untreated plots. There was no significant difference in plant damage between plots treated with band and overall spray applications of IJs, nor was there any significant difference between plots with and without harrowing. There was also no significant difference between untreated plots and plots treated with metaldehyde or methiocarb pellets, probably because rainfall shortly after treatment rendered the pellets ineffective. In experiment 2, nematodes were applied as an overall spray or plots were not treated with nematodes before soil was cultivated with tines, Roterra or Dutzi cultivators. Nematode application before soil cultivation using tines or Roterra reduced the number of plants damaged significantly. However, nematodes applied before Dutzi cultivation appeared to be rendered ineffective. Damage to winter wheat was lowest in plots that had been sprayed with nematodes and subsequently cultivated with tines or Roterra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号