首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge of structure and dynamics of proteins and protein complexes is important to unveil the molecular basis and mechanisms involved in most biological processes. Protein complex dynamics can be defined as the changes in the composition of a protein complex during a cellular process. Protein dynamics can be defined as conformational changes in a protein during enzyme activation, for example, when a protein binds to a ligand or when a protein binds to another protein. Mass spectrometry (MS) combined with affinity purification has become the analytical tool of choice for mapping protein-protein interaction networks and the recent developments in the quantitative proteomics field has made it possible to identify dynamically interacting proteins. Furthermore, hydrogen/deuterium exchange MS is emerging as a powerful technique to study structure and conformational dynamics of proteins or protein assemblies in solution. Methods have been developed and applied for the identification of transient and/or weak dynamic interaction partners and for the analysis of conformational dynamics of proteins or protein complexes. This review is an overview of existing and recent developments in studying the overall dynamics of in vivo protein interaction networks and protein complexes using MS-based methods.  相似文献   

2.
Knowledge of structure and dynamics of proteins and protein complexes is important to unveil the molecular basis and mechanisms involved in most biological processes. Protein complex dynamics can be defined as the changes in the composition of a protein complex during a cellular process. Protein dynamics can be defined as conformational changes in a protein during enzyme activation, for example, when a protein binds to a ligand or when a protein binds to another protein. Mass spectrometry (MS) combined with affinity purification has become the analytical tool of choice for mapping protein–protein interaction networks and the recent developments in the quantitative proteomics field has made it possible to identify dynamically interacting proteins. Furthermore, hydrogen/deuterium exchange MS is emerging as a powerful technique to study structure and conformational dynamics of proteins or protein assemblies in solution. Methods have been developed and applied for the identification of transient and/or weak dynamic interaction partners and for the analysis of conformational dynamics of proteins or protein complexes. This review is an overview of existing and recent developments in studying the overall dynamics of in vivo protein interaction networks and protein complexes using MS-based methods.  相似文献   

3.
Müller VS  Jungblut PR  Meyer TF  Hunke S 《Proteomics》2011,11(10):2124-2128
Membrane proteins are crucial for many essential cellular processes. As membrane proteins function in complexes, methods to detect and to characterize membrane protein-protein interactions are undoubtedly required. Therefore, we developed the "Membrane-Strep-tagged protein interaction experiment" (Membrane-SPINE) that combines the specific purification of a Strep-tagged membrane protein with the reversible fixation of protein complexes by formaldehyde cross-linking. In combination with MS analysis, we suggest Membrane-SPINE as a powerful tool to identify unknown interaction partners of membrane proteins in vivo.  相似文献   

4.
5.
Heat shock protein 70 (Hsp70) is an evolutionarily well-conserved molecular chaperone involved in several cellular processes such as folding of proteins, modulating protein-protein interactions, and transport of proteins across the membrane. Binding partners of Hsp70 (known as “clients”) are identified on an individual basis as researchers discover their particular protein of interest binds to Hsp70. A full complement of Hsp70 interactors under multiple stress conditions remains to be determined. A promising approach to characterizing the Hsp70 “interactome” is the use of protein epitope tagging and then affinity purification followed by mass spectrometry (AP-MS/MS). AP-MS analysis is a widely used method to decipher protein-protein interaction networks and identifying protein functions. Conventionally, the proteins are overexpressed ectopically which interferes with protein complex stoichiometry, skewing AP-MS/MS data. In an attempt to solve this issue, we used CRISPR/Cas9-mediated gene editing to integrate a tandem-affinity (TAP) epitope tag into the genomic locus of HSC70. This system offers several benefits over existing expression systems including native expression, no requirement for selection, and homogeneity between cells. This cell line, freely available to chaperone researchers, will aid in small and large-scale protein interaction studies as well as the study of biochemical activities and structure-function relationships of the Hsc70 protein.  相似文献   

6.
We developed an assay to directly measure the ligand binding properties of the cloned human erythropoietin receptor (EpoR). The cDNA encoding the extracellular domain of the human EpoR was amplified by polymerase chain reaction and ligated into the prokaryotic expression vector pGEX3X. Synthesis in Escherichia coli was induced and a soluble glutathione S-transferase fusion protein, EREx, was purified by erythropoietin affinity chromatography. Purified EREx was bound to GSH agarose beads and used in a solid phase ligand binding assay. Specific binding of 125I-erythropoietin to EREx beads was demonstrated. A single affinity class (Kd = 1.5 nM) of the binding site was evident on Scatchard analysis. The Kd of this site is quantitatively equivalent to that of the "low" affinity cellular binding site. Kinetic analysis of ligand binding to EREx revealed both the on and off rates to be rapid, with t1/2 of 60 and 40 s, respectively. EREx ligand binding exhibits no obvious metal ion dependence or cross-competition by other hemopoietins. Antibodies to EREx block the binding of erythropoietin to the cellular EpoR. We conclude that the 66-kDa EpoR protein is capable of specific ligand binding and that no covalent modifications or associated molecules are required for this interaction. We speculate that the "high" affinity cellular binding site (Kd less than 0.2 nM) results from the interaction of the EpoR with another molecule, either additional EpoR or associated subunits, that decreases the ligand off rate.  相似文献   

7.
The cellular prion protein (PrP(C)), a highly conserved glycoprotein predominantly expressed by neuronal cells, can convert into an abnormal isoform (PrP(Sc)) and provoke a transmissible spongiform encephalopathy. In spite of many studies, the physiological function of PrP(C) remains unknown. Recent findings suggest that PrP(C) is a multifunctional protein participating in several cellular processes. Using recombinant human PrP as a probe, we performed far-Western immunoblotting (protein overlay assay) to detect cellular PrP(C) interactors. Brain extracts of wild-type and PrP knockout mice were screened by far-Western immunoblotting for PrP-specific interactions. Subsequently, putative ligands were isolated by 2-DE and identified by MALDI-TOF MS, enabling identification of heterogeneous nuclear ribonucleoprotein A2/B1 and aldolase C as novel interaction partners of PrP(C). These data provide the first evidence of a molecule indicating a mechanism for the predicted involvement of PrP(C) in nucleic acid metabolisms. In summary, we have shown the successful combination of 2-DE with far-Western immunoblotting and MALDI-TOF MS for identification of new cellular binding partners of a known protein. Especially the application of this technique to investigate other neurodegenerative diseases is promising.  相似文献   

8.
Although Rho GTPases are essential molecular switches involved in many cellular processes, an unbiased experimental comparison of their interaction partners was not yet performed. Here, we develop quantitative GTPase affinity purification (qGAP) to systematically identify interaction partners of six Rho GTPases (Cdc42, Rac1, RhoA, RhoB, RhoC, and RhoD), depending on their nucleotide loading state. The method works with cell line or tissue-derived protein lysates in combination with SILAC-based or label-free quantification, respectively. We demonstrate that qGAP identifies known and novel binding partners that can be validated in an independent assay. Our interaction network for six Rho GTPases contains many novel binding partners, reveals highly promiscuous interaction of several effectors, and mirrors evolutionary relationships among Rho GTPases.  相似文献   

9.
10.
Nesvizhskii AI 《Proteomics》2012,12(10):1639-1655
Analysis of protein interaction networks and protein complexes using affinity purification and mass spectrometry (AP/MS) is among most commonly used and successful applications of proteomics technologies. One of the foremost challenges of AP/MS data is a large number of false-positive protein interactions present in unfiltered data sets. Here we review computational and informatics strategies for detecting specific protein interaction partners in AP/MS experiments, with a focus on incomplete (as opposite to genome wide) interactome mapping studies. These strategies range from standard statistical approaches, to empirical scoring schemes optimized for a particular type of data, to advanced computational frameworks. The common denominator among these methods is the use of label-free quantitative information such as spectral counts or integrated peptide intensities that can be extracted from AP/MS data. We also discuss related issues such as combining multiple biological or technical replicates, and dealing with data generated using different tagging strategies. Computational approaches for benchmarking of scoring methods are discussed, and the need for generation of reference AP/MS data sets is highlighted. Finally, we discuss the possibility of more extended modeling of experimental AP/MS data, including integration with external information such as protein interaction predictions based on functional genomics data.  相似文献   

11.

Background

We have previously reported a novel fungal galectin Agrocybe aegerita lectin (AAL) with apoptosis-induced activity and nuclear migration activity. The importance of nuclear localization for AAL's apoptosis-induced activity has been established by mutant study. However, the mechanism remains unclear.

Methods

We further investigated the mechanism using a previously reported carbohydrate recognition domain (CRD) mutant protein H59Q, which retained its nuclear localization activity but lost most of its apoptotic activity. The cell membrane-binding ability of recombinant AAL (rAAL) and H59Q was analyzed by FACS, and their cellular partners were identified by affinity chromatography and mass spectroscopy. Furthermore, the interaction of AAL and ligand was proved by mammalian two-hybrid and pull down assays. A knockdown assay was used to confirm the role of the ligand.

Results

The apoptotic activity of AAL could be blocked by lactose. Mutant H59Q retained comparable cell membrane-binding ability to rAAL. Four cellular binding partners of AAL in HeLa cells were identified: glucose-regulated protein 78 (GRP78); mortality factor 4-like protein 1 (MRG15); elongation factor 2 (EEF2); and heat shock protein 70 (Hsp70). CRD region of AAL was required for the interaction between AAL/mutant AAL and MRG15. MRG15 knockdown increased the cells' resistance to AAL treatment.

Conclusion

MRG15 was a nuclear ligand for AAL in HeLa cells. These data implied the existence of a novel nuclear pathway for the antitumor activity of fungal galectin AAL.

General significance

These findings provide a novel explanation of AAL bioactivity and contribute to the understanding of mushroom lectins' antitumor activity.  相似文献   

12.
In the post-genome era, functional annotation of the predicted gene-sets will be one of the most important upcoming challenges. So-called interactome analysis positions a protein in its subcellular environment by mapping its interaction partners. Such interaction maps are essential for an accurate insight into protein function since many cellular processes are organised to operate in protein complexes. These assemblies have dynamic structures and can interact with each other, two properties which are often controlled by regulated protein expression and modification. Various methods exist to unravel protein interaction circuitries, which can be roughly divided into biochemical and genetic strategies. In this review we focus on the different strategies to study protein-protein interactions in living mammalian cells. Recently developed analytical and screening methods are also addressed.  相似文献   

13.
Landscape of the hnRNP K protein-protein interactome   总被引:1,自引:0,他引:1  
The heterogeneous nuclear ribonucleoprotein K is an ancient RNA/DNA-binding protein that is involved in multiple processes that compose gene expression. The pleiotropic action of K protein reflects its ability to interact with different classes of factors, interactions that are regulated by extracellular signals. We used affinity purification and MS to better define the repertoire of K protein partners. We identified a large number of new K protein partners, some typically found in subcellular compartments, such as plasma membrane, where K protein has not previously been seen. Electron microscopy showed K protein in the nucleus, cytoplasm, mitochondria, and in vicinity of plasma membrane. These observations greatly expanded the view of the landscape of K protein-protein interaction and provide new opportunities to explore signal transduction and gene expression in several subcellular compartments.  相似文献   

14.
15.
Proteins controlling cellular networks have evolved distinct mechanisms to ensure specificity in protein-protein interactions. Raf kinase inhibitor protein (RKIP) is a multifaceted kinase modulator, but it is not well understood how this small protein (21 kDa) can coordinate its diverse signaling functions. Raf1 and G protein-coupled receptor kinase (GRK) 2 are direct interaction partners of RKIP and thus provide the possibility to untangle the mechanism of its target specificity. Here, we identify RKIP dimer formation as an important mechanistic feature in the target switch from Raf1 to GRK2. Co-immunoprecipitation and cross-linking experiments revealed RKIP dimerization upon phosphorylation of RKIP at serine 153 utilizing purified proteins as well as in cells overexpressing RKIP. A functional phosphomimetic RKIP mutant had a high propensity for dimerization and reproduced the switch from Raf1 to GRK2. RKIP dimerization and GRK2 binding, but not Raf1 interaction, were prevented by a peptide comprising amino acids 127-146 of RKIP, which suggests that this region is critical for dimer formation. Furthermore, a dimeric RKIP mutant displayed a higher affinity to GRK2, but a lower affinity to Raf1. Functional analyses of phosphomimetic as well as dimeric RKIP demonstrated that enhanced dimerization of RKIP translates into decreased Raf1 and increased GRK2 inhibition. The detection of RKIP dimers in a complex with GRK2 in murine hearts implies their physiological relevance. These findings represent a novel mechanistic feature how RKIP can discriminate between its different interaction partners and thus advances our understanding how specific inhibition of kinases can be achieved.  相似文献   

16.
Biochemical approaches for discovering protein-protein interactions   总被引:1,自引:0,他引:1  
Protein–protein interactions or protein complexes are integral in nearly all cellular processes, ranging from metabolism to structure. Elucidating both individual protein associations and complex protein interaction networks, while challenging, is an essential goal of functional genomics. For example, discovering interacting partners for a 'protein of unknown function' can provide insight into actual function far beyond what is possible with sequence-based predictions, and provide a platform for future research. Synthetic genetic approaches such as two-hybrid screening often reveal a perplexing array of potential interacting partners for any given target protein. It is now known, however, that this type of anonymous screening approach can yield high levels of false-positive results, and therefore putative interactors must be confirmed by independent methods. In vitro biochemical strategies for identifying interacting proteins are varied and time-honored, some being as old as the field of protein chemistry itself. Herein we discuss five biochemical approaches for isolating and characterizing protein–protein interactions in vitro : co-immunoprecipitation, blue native gel electrophoresis, in vitro binding assays, protein cross-linking, and rate-zonal centrifugation. A perspective is provided for each method, and where appropriate specific, trial-tested methods are included.  相似文献   

17.
Fibroblast growth factor receptors (FGFRs) are a family of four transmembrane (TM) receptor tyrosine kinases (RTKs) which bind to a large family of fibroblast growth factor (FGF) ligands with varying affinity and specificity. FGFR signaling regulates many physiological and pathological processes in development and tissue homeostasis. Understanding FGFR signaling processes requires the identification of partner proteins which regulate receptor function and biological outputs. In this study, we employ an epitope-tagged, covalently dimerized, and constitutively activated form of FGFR1 to identify potential protein partners by MS. By this approach, we sample candidate FGFR effectors throughout the life history of the receptor. Functional classification of the partners identified revealed specific subclasses involved in protein biosynthesis and folding; structural and regulatory components of the cytoskeleton; known signaling effectors and small GTPases implicated in endocytosis and vesicular trafficking. The kinase dependency of the interaction was determined for a subset of previously unrecognized partners by coimmunoprecipitation, Western blotting, and immunocytochemistry. From this group, the small GTPase Rab5 was selected for functional interrogation. We show that short hairpin (sh) RNA-mediated depletion of Rab5 attenuates the activation of the extracellular-regulated kinase (ERK) 1/2 pathway by FGFR signaling. The strategic approach adopted in this study has revealed bona fide novel effectors of the FGFR signaling pathway.  相似文献   

18.
Date hub proteins have 1 or 2 interaction interfaces but many interaction partners. This raises the question of whether all partner proteins compete for the interaction interface of the hub or if the cell carefully regulates aspects of this process? Here, we have used real-time rendering of protein interaction networks to analyse the interactions of all the 1 or 2 interface hubs of Saccharomyces cerevisiae during the cell cycle. By integrating previously determined structural and gene expression data, and visually hiding the nodes (proteins) and their edges (interactions) during their troughs of expression, we predict when interactions of hubs and their partners are likely to exist. This revealed that 20 out of all 36 one- or two- interface hubs in the yeast interactome fell within two main groups. The first was dynamic hubs with static partners, which can be considered as ‘competitive hubs’. Their interaction partners will compete for the interaction interface of the hub and the success of any interaction will be dictated by the kinetics of interaction (abundance and affinity) and subcellular localisation. The second was static hubs with dynamic partners, which we term ‘non-competitive hubs’. Regulatory mechanisms are finely tuned to lessen the presence and/or effects of competition between the interaction partners of the hub. It is possible that these regulatory processes may also be used by the cell for the regulation of other, non-cell cycle processes.  相似文献   

19.
20.
The mapping of protein networks and the establishment of thefunctional relationships between expressed proteins and theireffects on cellular processes represents a great challenge forfunctional or interaction proteomics. The combination of surfaceplasmon resonance (SPR)-based technology with mass spectrometry(MS) has created a unique analytical tool for functional proteomicsinvestigations. Proteins are affinity purified, quantified andcharacterised in terms of their interactions, while the massspectrometer identifies and structurally characterises the biomolecules.Recent developments have led to a closer integration of thesekey technologies, providing a combined approach which enablesidentification of proteins selected on the basis of their functionalbinding criteria. In addition to a historical overview of thisfield, some recent detailed examples of combined SPR-MS approacheswill be reviewed in a number of key application areas, includingligand fishing, peptide sequence and post-translational modificationanalysis by SPR-MS/MS and enzyme inhibitor screening.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号