首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The primary objective of this study was to determine the effectiveness of isometric exercise (IE) as a countermeasure to hindlimb unloading (HU)-induced atrophy of the slow (soleus) and fast (plantaris and gastrocnemius) muscles. Rats were assigned to either weight-bearing control, 7-day HU (H7), H7 plus IE (I7), 14-day HU (H14), or H14 plus IE (I14) groups. IE consisted of ten 5-s maximal isometric contractions separated by 90 s, administered three times daily. Contractile properties of the soleus and plantaris muscles were measured in situ. The IE attenuated the HU-induced decline in the mass and fiber diameter of the slow-twitch soleus muscle, whereas the gastrocnemius and plantaris mass were not protected. These results are consistent with the mean electromyograph recordings during IE that indicated preferential recruitment of the soleus over the gastrocnemius and plantaris muscles. Functionally, the IE significantly protected the soleus from the HU-induced decline in peak isometric force (I14, 1.49 +/- 0.12 vs. H14, 1.15 +/- 0.07 N) and peak power (I14, 163 +/- 17 vs. H14, 75 +/- 11 mN.fiber length.s-1). The exercise protocol showed protection of the plantaris peak isometric force at H7 but not H14. The IE also prevented the HU-induced decline in the soleus isometric contraction time, which allowed the muscle to produce greater tension at physiological motoneuron firing frequencies. In summary, IE resulted in greater protection from HU-induced atrophy in the slow soleus than in the fast gastrocnemius or plantaris.  相似文献   

2.
Because optimal overload-induced skeletal muscle hypertrophy requires ANG II, we aimed to determine the effects of blocking ANG II production [via angiotensin-converting enzyme (ACE) inhibition] on potential mediators of hypertrophy in overloaded skeletal muscle, namely, myonuclear addition and fibroblast content. In a 2 x 2 design, adult (200-225 g) female Sprague-Dawley rats were placed into one of four groups (n = 8/group): 7-day skeletal muscle overload, sham operation, 7-day skeletal muscle overload with ACE inhibition, or sham operation with ACE inhibition. Functional overloads of the plantaris and soleus muscles were produced via bilateral surgical ablation of the synergistic gastrocnemius muscle, and ACE inhibition was accomplished by the addition of the ACE inhibitor enalapril maleate to the animals' daily drinking water (0.3 mg/ml). Myonuclear addition and extrasarcolemmal nuclear proliferation, as measured by in vivo 5-bromo-2'-deoxyuridine labeling, were significantly (P < or = 0.05) increased by overload in both the slow-twitch soleus and fast-twitch plantaris muscles. Furthermore, ACE inhibition attenuated these overload-induced increases in the soleus muscle but not in the plantaris muscle. However, the effect of ACE inhibition on soleus extrasarcolemmal nuclei was not likely due to differences in fibroblast content because overload elicited significant increases in vimentin-positive areas in soleus and plantaris muscles, and these areas were unaffected by ACE inhibition in either muscle. There was no effect of ACE inhibition on any measure in sham-operated muscles. Collectively, these data indicate that ANG II may mediate the satellite cell response to overload in slow-twitch soleus but not in fast-twitch plantaris muscles and that this effect may occur independently of changes in fibroblast content.  相似文献   

3.
4.
Both exercise and insulin-like growth factor I (IGF-I) are known to have major hypertrophic effects in skeletal muscle; however, the interactive effect of exogenous IGF-I and exercise on muscle protein turnover or the ubiquitin-proteasome pathway has not been reported. In the present study, we have examined the interaction between endurance exercise training and IGF-I treatment on muscle protein turnover and the ubiquitin-proteasome pathway in the postexercise period. Adult male rats (270-280 g) were randomized to receive 5 consecutive days of progressive treadmill exercise and/or IGF-I treatment (1 mg. kg body wt(-1). day(-1)). Twenty-four hours after the last bout of exercise, the rate of protein breakdown in incubated muscles was significantly reduced compared with that in unexercised rats. This was associated with a significant reduction in the chymotrypsin-like activity of the proteasome and the rate of ubiquitin-proteasome-dependent casein hydrolysis in muscle extracts from exercised compared with unexercised rats. In contrast, the muscle expression of the 20S proteasome subunit beta-1, ubiquitin, and the 14-kDa E2 ubiquitin-conjugating enzyme was not altered by exercise or IGF-I treatment 24 h postexercise. Exercise had no effect on the rates of total mixed muscle protein synthesis in incubated muscles 24 h postexercise. IGF-I treatment had no effect on muscle weights or the rates of protein turnover 24 h after endurance exercise. These results suggest that a suppression of the ubiquitin-proteasome proteolytic pathway after endurance exercise may contribute to the acute postexercise net protein gain.  相似文献   

5.
ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment 1) or both the gastrocnemius and plantaris muscles (experiment 2). In experiment 1 (n = 10/group), inhibiting endogenous ANG II production by oral administration of an angiotensin-converting enzyme (ACE) inhibitor during a 28-day overloading protocol attenuated plantaris and soleus muscle hypertrophy by 57 and 96%, respectively (as measured by total muscle protein content). ACE inhibition had no effect on nonoverloaded (sham-operated) muscles. With the use of new animals (experiment 2; n = 8/group), locally perfusing overloaded soleus muscles with exogenous ANG II (via osmotic pump) rescued the lost hypertrophic response in ACE-inhibited animals by 71%. Furthermore, orally administering an AT(1) receptor antagonist instead of an ACE inhibitor produced a 48% attenuation of overload-induced hypertrophy that could not be rescued by ANG II perfusion. Thus ANG II may be necessary for optimal overload-induced skeletal muscle hypertrophy, acting at least in part via an AT(1) receptor-dependent pathway.  相似文献   

6.
The ubiquitin-proteasome system is the primary proteolytic pathway implicated in skeletal muscle atrophy under catabolic conditions. Although several studies showed that proteasome inhibitors reduced proteolysis under catabolic conditions, few studies have demonstrated the ability of these inhibitors to preserve skeletal muscle mass and architecture in vivo. To explore this, we studied the effect of the proteasome inhibitor Velcade (also known as PS-341 and bortezomib) in denervated skeletal muscle in rats. Rats were given vehicle or Velcade (3 mg/kg po) daily for 7 days beginning immediately after induction of muscle atrophy by crushing the sciatic nerve. At the end of the study, the rats were euthanized and the soleus and extensor digitorum longus (EDL) muscles were harvested. In vehicle-treated rats, denervation caused a 33.5 +/- 2.8% and 16.2 +/- 2.7% decrease in the soleus and EDL muscle wet weights (% atrophy), respectively, compared to muscles from the contralateral (innervated) limb. Velcade significantly reduced denervation-induced atrophy to 17.1 +/- 3.3% in the soleus (P < 0.01), a 51.6% reduction in atrophy associated with denervation, with little effect on the EDL (9.8 +/- 3.2% atrophy). Histology showed a preservation of muscle mass and preservation of normal cellular architecture after Velcade treatment. Ubiquitin mRNA levels in denervated soleus muscle at the end of the study were significantly elevated 120 +/- 25% above sham control levels and were reduced to control levels by Velcade. In contrast, testosterone proprionate (3 mg/kg sc) did not alleviate denervation-induced skeletal muscle atrophy but did prevent castration-induced levator ani atrophy, while Velcade was without effect. These results show that proteasome inhibition attenuates denervation-induced muscle atrophy in vivo in soleus muscles. However, this mechanism may not be operative in all types of atrophy.  相似文献   

7.
8.
The goal of this study was to compare the effects of electrical stimulation using pulsed current (PC) and premodulated interferential current (IC) on prevention of muscle atrophy in the deep muscle layer of the calf. Rats were randomly divided into 3 treatment groups: control, hindlimb unloading for 2 weeks (HU), and HU plus electrical stimulation for 2 weeks. The animals in the electrical stimulation group received therapeutic stimulation of the left (PC) or right (IC) calf muscles twice a day during the unloading period. Animals undergoing HU for 2 weeks exhibited significant loss of muscle mass, decreased cross-sectional area (CSA) of muscle fibers, and increased expression of ubiquitinated proteins in the gastrocnemius and soleus muscles compared with control animals. Stimulation with PC attenuated the effects on the muscle mass, fiber CSA, and ubiquitinated proteins in the gastrocnemius muscle. However, PC stimulation failed to prevent atrophy of the deep layer of the gastrocnemius muscle and the soleus muscle. In contrast, stimulation with IC inhibited atrophy of both the gastrocnemius and soleus muscles. In addition, the IC protocol inhibited the HU-induced increase in ubiquitinated protein expression in both gastrocnemius and soleus muscles. These results suggest that electrical stimulation with IC is more effective than PC in preventing muscle atrophy in the deep layer of limb muscles.  相似文献   

9.
Hindlimb unloading (HU) in rats induces severe atrophy and a slow-to-fast phenotype transition in postural slow-twitch muscles, as occurs in human disuse conditions, such as spaceflight or bed rest. In rats, a reduction of soleus muscle weight and a decrease of cross-sectional area (CSA) were observed as signs of atrophy. An increased expression of the fast-isoform of myosin heavy chain (MHC) showed the phenotype transition. In parallel the resting cytosolic calcium concentration (restCa) was decreased and the resting chloride conductance (gCl), which regulates muscle excitability, was increased toward the values of the fast-twitch muscles. Here, we investigated the possible role of taurine, which is known to modulate calcium homeostasis and gCl, in the restoration of muscle impairment due to 14-days-HU. We found elevated taurine content and higher expression of the taurine transporter TauT in the soleus muscle as compared to the fast-twitch extensor digitorum longus (EDL) muscle of control rats. Taurine level was reduced in the HU soleus muscle, although, TauT expression was not modified. Taurine oral supplementation (5?g/kg) fully prevented this loss, and preserved resting gCl and restCa together with the slow MHC phenotype. Taurine supplementation did not prevent the HU-induced drop of muscle weight or fiber CSA, but it restored the expression of MURF-1, an atrophy-related gene, suggesting a possible early protective effect of taurine. In conclusion, taurine prevented the HU-induced phenotypic transition of soleus muscle and might attenuate the atrophic process. These findings argue for the beneficial use of taurine in the treatment of disuse-induced muscle dysfunction.  相似文献   

10.
1. Maximum compensatory hypertrophy of the soleus and plantaris muscle in male rats is attained seven days after tenotomy of the gastrocnemius muscle (39% and 9% respectively). When tenotomy of the gastrocnemius was performed seven days ater hypophysectomy, hypertrophy in these two muscles was aproximately half that found in control animals. 2. After 81-day castration of young male rats the weight of the saleus and plantaris was reduced and hypertrophy following tenotomy of the gastrocneumius muscle did not develop. 3. Chronically castrated rats received testosterone two weeks prior to tenotomy of the gastrocnemius and a week during the muscle hypertrophy phase. Hypertrophy of the soleus in castrated rats which had received testosterone seven days after tenotomy of the gastrocnemius was 25% as compared with muscles of castrated animals. The corresponding value in the plantaris muscle was 10%. 4. These results indicate that even calf muscles of the rat, namely the soleus and plantaris muscles, are significantly affected by testosterone under these conditions, although it is not, as yet, clear whether its action is direct or indirect.  相似文献   

11.
While it is well known that the slow-twitch muscles are vulnerable to microgravity conditions, the molecular and cellular mechanisms underlying this phenomenon remain unknown. Dystrophin, which constitutes an important link between the cytoskeleton and the extracellular matrix, is hypothesized to be involved in force generation and mechanical stabilization of the skeletal muscle. Here we have shown that after a 14-day hindlimb unloading (HU) of the C57BL/10 mice, the expression of dystrophin was significantly down-regulated in the fast-twitch myofibers, while in the slow-twitch myofibers, it was up-regulated. In order to investigate the role of dystrophin in HU-induced susceptibility to muscle atrophy, we compared the degradation signaling mechanisms of slow-twitch soleus muscle in dystrophin-deficient (mdx) and the wild-type (WT) mice. We found that mdx mice manifest less reduction of muscle mass and myofiber cross-sectional area than the control animals. Also, the expression of two ubiquitin ligases (MuRF1, Atrogin-1), which plays a crucial role in the ubiquitin–proteasome-mediated muscular degradation, was significantly down-regulated in soleus muscle of the hindlimb-unloaded mdx mice. In comparison, in the soleus muscle of unloaded WT mice, these ligases were significantly up-regulated. Whereas the hindlimb unloading reduced the expression of transforming growth factor β (TGF-β1)/Smad3 in mdx mice, in WT mice, the expression of this growth factor was augmented in response to unloading. Correspondingly, as a result of HU of the mdx mice, the expression of four subtypes of the myosin heavy chain and troponin I was reduced or it exhibited a delayed slow-to-fast transition. In summary, our results suggest that dystrophin exerts an intermediary and positive role in the disuse atrophy of the slow-twitch muscles. This effect is mediated through the activation of TGF-β1/Smad3 signaling and downstream ubiquitin–proteasome pathway.  相似文献   

12.
To determine whether hindlimb unloading (HU) alters the extracellular matrix of skeletal muscle, male Sprague-Dawley rats were subjected to 0 (n = 11), 1 (n = 11), 14 (n = 13), or 28 (n = 11) days of unloading. Remodeling of the soleus and plantaris muscles was examined biochemically for collagen abundance via measurement of hydroxyproline, and the percentage of cross-sectional area of collagen was determined histologically with picrosirius red staining. Total hydroxyproline content in the soleus and plantaris muscles was unaltered by HU at any time point. However, the relative proportions of type I collagen in the soleus muscle decreased relative to control (Con) with 14 and 28 days HU (Con 68 +/- 5%; 14 days HU 53 +/- 4%; 28 days HU 53 +/- 7%). Correspondingly, type III collagen increased in soleus muscle with 14 and 28 days HU (Con 32 +/- 5%; 14 days HU 47 +/- 4%; 28 days HU 48 +/- 7%). The proportion of type I muscle fibers in soleus muscle was diminished with HU (Con 96 +/- 2%; 14 days HU 86 +/- 1%; 28 days HU 83 +/- 1%), and the proportion of hybrid type I/IIB fibers increased (Con 0%; 14 days HU 8 +/- 2%; 28 days HU 14 +/- 2%). HU had no effect on the proportion of type I and III collagen or muscle fiber composition in plantaris muscle. The data demonstrate that HU induces a shift in the relative proportion of collagen isoform (type I to III) in the antigravity soleus muscle, which occurs concomitantly with a slow-to-fast myofiber transformation.  相似文献   

13.
β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P < 0.05) and soleus muscles (3.9% vs. 1.8%, P < 0.05). Although HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P < 0.05) in plantaris and soleus muscles, respectively. Cleaved caspase-3 was reduced by 12% and 9% (P < 0.05) in HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P < 0.05) in reloaded plantaris and soleus muscles, respectively, compared with vehicle-treated animals. Although, HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial-associated caspase signaling.  相似文献   

14.
Skeletal muscle mass declines with age, as does the potential for overload-induced fast-twitch skeletal muscle hypertrophy. Because 5'-AMP-activated protein kinase (AMPK) activity is thought to inhibit skeletal muscle protein synthesis and may therefore modulate muscle mass and hypertrophy, the purpose of this investigation was to examine AMPK phosphorylation status (a marker of AMPK activity) and its potential association with the attenuated overload-induced hypertrophy observed in aged skeletal muscle. One-week overload of fast-twitch plantaris and slow-twitch soleus muscles was achieved in young adult (8 mo; n = 7) and old (30 mo; n = 7) Fischer344 x Brown Norway male rats via unilateral gastrocnemius ablation. Significant (P < or = 0.05) age-related atrophy (as measured by total protein content) was noted in plantaris and soleus control (sham-operated) muscles. In fast-twitch plantaris muscles, percent hypertrophy with overload was significantly attenuated with age, whereas AMPK phosphorylation status as determined by Western blotting [phospho-AMPK (Thr172)/total AMPK] was significantly elevated with age (regardless of loading status). There was also a main effect of loading on AMPK phosphorylation status in plantaris muscles (overload > control). Moreover, a strong and significant negative correlation (r = -0.82) was observed between AMPK phosphorylation status and percent hypertrophy in the overloaded plantaris muscles of all animals. In contrast to the plantaris, overload-induced hypertrophy of the slow-twitch soleus muscle was similar between ages, and AMPK phosphorylation in this muscle was also unaffected by age or overload. These data support the possibility that an age-related elevation in AMPK phosphorylation may partly contribute to the attenuated hypertrophic response observed with age in overloaded fast-twitch plantaris muscle.  相似文献   

15.
A number of acute wasting conditions are associated with an upregulation of the ubiquitin-proteasome system in skeletal muscle. Eicosapentaenoic acid (EPA) is effective in attenuating the increased protein catabolism in muscle in cancer cachexia, possibly due to inhibition of 15-hydroxyeicosatetraenoic acid (15-HETE) formation. To determine if a similar pathway is involved in other catabolic conditions, the effect of EPA on muscle protein degradation and activation of the ubiquitin-proteasome pathway has been determined during acute fasting in mice. When compared with a vehicle control group (olive oil) there was a significant decrease in proteolysis of the soleus muscles of mice treated with EPA after starvation for 24 h, together with an attenuation of the proteasome "chymotryptic-like" enzyme activity and the induction of the expression of the 20S proteasome alpha-subunits, the 19S regulator and p42, an ATPase subunit of the 19S regulator in gastrocnemius muscle, and the ubiquitin-conjugating enzyme E2(14k). The effect was not shown with the related (n-3) fatty acid docosahexaenoic acid (DHA) or with linoleic acid. However, 2,3,5-trimethyl-6-(3-pyridylmethyl)1,4-benzoquinone (CV-6504), an inhibitor of 5-, 12- and 15-lipoxygenases also attenuated muscle protein catabolism, proteasome "chymotryptic-like" enzyme activity and expression of proteasome 20S alpha-subunits in soleus muscles from acute fasted mice. These results suggest that protein catabolism in starvation and cancer cachexia is mediated through a common pathway, which is inhibited by EPA and is likely to involve a lipoxygenase metabolite as a signal transducer.  相似文献   

16.
To investigate the plasticityof slow and fast muscles undergoing slow-to-fast transition, rat soleus(SOL), gastrocnemius (GAS), and extensor digitorum longus (EDL) muscleswere exposed for 14 days to 1) unweighting by hindlimbsuspension (HU), or 2) treatment with the2-adrenergic agonist clenbuterol (CB), or 3)a combination of both (HU-CB). In general, HU elicited atrophy, CBinduced hypertrophy, and HU-CB partially counteracted the HU-induced atrophy. Analyses of myosin heavy (MHC) and light chain (MLC) isoformsrevealed HU- and CB-induced slow-to-fast transitions in SOL (increasesof MHCIIa with small amounts of MHCIId and MHCIIb) and theupregulation of the slow MHCIa isoform. The HU- and CB-induced changesin GAS consisted of increases in MHCIId and MHCIIb("fast-to-faster transitions"). Changes in the MLC composition ofSOL and GAS consisted of slow-to-fast transitions and mainlyencompassed an exchange of MLC1s with MLC1f. In addition, MLC3f waselevated whenever MHCIId and MHCIIb isoforms were increased. Becausethe EDL is predominantly composed of type IID and IIB fibers, HU, CB,and HU-CB had no significant effect on the MHC and MLC patterns.

  相似文献   

17.
18.
There is evidence that immobilization causes a decrease in total collagen synthesis in skeletal muscle within a few days. In this study, early immobilization effects on the expression of prolyl 4-hydroxylase (PH) and the main fibrillar collagens at mRNA and protein levels were investigated in rat skeletal muscle. The right hindlimb was immobilized in full plantar flexion for 1, 3, and 7 days. Steady-state mRNAs for alpha- and beta-subunits of PH and type I and III procollagen, PH activity, and collagen content were measured in gastrocnemius and plantaris muscles. Type I and III procollagen mRNAs were also measured in soleus and tibialis anterior muscles. The mRNA level for the PH alpha-subunit decreased by 49 and 55% (P < 0.01) in gastrocnemius muscle and by 41 and 39% (P < 0.05) in plantaris muscle after immobilization for 1 and 3 days, respectively. PH activity was decreased (P < 0.05-0.01) in both muscles at days 3 and 7. The mRNA levels for type I and III procollagen were decreased by 26-56% (P < 0.05-0.001) in soleus, tibialis anterior, and plantaris muscles at day 3. The present results thus suggest that pretranslational downregulation plays a key role in fibrillar collagen synthesis in the early phase of immobilization-induced muscle atrophy.  相似文献   

19.
Interleukin-15 (IL-15) mRNA is constitutively expressed in skeletal muscle. Although IL-15 has proposed hypertrophic and anti-apoptotic roles in vitro, its role in skeletal muscle cells in vivo is less clear. The purpose of this study was to determine if skeletal muscle aging and unloading, two conditions known to promote muscle atrophy, would alter basal IL-15 expression in skeletal muscle. We hypothesized that IL-15 mRNA expression would increase as a result of both aging and muscle unloading and that muscle would express the mRNA for a functional trimeric IL-15 receptor (IL-15R). Two models of unloading were used in this study: hindlimb suspension (HS) in rats and wing unloading in quail. The absolute muscle wet weight of plantaris and soleus muscles from aged rats was significantly less when compared with muscles from young adult rats. Although 14 days of HS resulted in reduced muscle mass of plantaris and soleus muscles from young adult animals, this effect was not observed in muscles from aged animals. A significant aging times unloading interaction was observed for IL-15 mRNA in both rat soleus and plantaris muscles. Patagialis (PAT) muscles from aged quail retained a significant 12 and 6% of stretch-induced hypertrophy after 7 and 14 days of unloading, respectively. PAT muscles from young quail retained 15% hypertrophy at 7 days of unloading but regressed to control levels following 14 days of unloading. A main effect of age was observed on IL-15 mRNA expression in PAT muscles at 14 days of overload, 7 days of unloading, and 14 days of unloading. Skeletal muscle also expressed the mRNAs for a functional IL-15R composed of IL-15R, IL-2/15R-, and -c. Based on these data, we speculate that increases in IL-15 mRNA in response to atrophic stimuli may be an attempt to counteract muscle mass loss in skeletal muscles of old animals. Additional research is warranted to determine the importance of the IL-15/IL-15R system to counter muscle wasting. atrophy; interleukins; sarcopenia; gene signaling  相似文献   

20.
Metabolic consequences of direct muscle trauma are insufficiently defined. Their effects on the ubiquitin-proteasome pathway (UPP) of protein degradation in human skeletal muscles are as yet unknown. Thus, we investigated whether the UPP is involved in the metabolic response evoked in directly traumatized human skeletal muscles. Biopsies were obtained from contused muscles after fractures and from normal muscles during elective implant removal (control). As estimated by western blot analyses, concentrations of free ubiquitin and ubiquitin protein conjugates were similar in extracts from injured and uninjured muscles. Ubiquitin protein ligation rates were reduced after injury (1.5+/-0.2 vs. 1.0+/-0.15 fkat/microg; p=0.04). Chymotryptic-, tryptic- and caspase-like proteasome peptidase activities (total activity minus activity in the presence of proteasome inhibitors) increased significantly after trauma (p=0.04 - 0.001). Significant increases in total chymotryptic- and caspase-like activities were attributable to proteasome activation. Our results extend the possible role of the UPP in muscle wasting to direct muscle trauma. They further suggest that the effects of direct mechanical trauma are not limited to the proteasome and imply that ubiquitin protein ligase systems are also involved. Based on the potential role of the UPP in systemic diseases, it might also be a therapeutic target to influence muscle loss in critically ill blunt trauma patients, in which large proportions of muscle are exposed to direct trauma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号