首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the conifer Abies grandis (grand fir), a secreted oleoresin rich in mono-, sesqui-, and diterpenes serves as a constitutive and induced defense against insects and pathogenic fungi. Geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) synthase, two enzymes which form the principal precursors of the oleoresin mono- and sesquiterpenes, were isolated from the stems of 2-year-old grand fir saplings. These enzymes were partially purified by sequential chromatography on DEAE-Sepharose, Mono-Q, and phenyl-Sepharose to remove competing phosphohydrolase and isopentenyl diphosphate (IPP) isomerase activities. GPP and FPP synthase formed GPP and E,E-FPP, respectively, as the sole products of the enzymatic condensation of IPP and dimethylallyl diphosphate (DMAPP). The properties of both enzymes are broadly similar to those of other prenyltransferases. The apparent native molecular masses are 54 +/- 3 kDa for GPP synthase and 110 +/- 6 kDa fo  相似文献   

2.
Squalene synthase (SQS) is a bifunctional enzyme that catalyzes the condensation of two molecules of farnesyl diphosphate (FPP) to give presqualene diphosphate (PSPP) and the subsequent rearrangement of PSPP to squalene. These reactions constitute the first pathway-specific steps in hopane biosynthesis in Bacteria and sterol biosynthesis in Eukarya. The genes encoding SQS were isolated from the hopane-producing bacteria Thermosynechococcus elongatus BP-1, Bradyrhizobium japonicum, and Zymomonas mobilis and cloned into an Escherichia coli expression system. The expressed proteins with a His(6) tag were found exclusively in inclusion bodies when no additives were used in the buffer. After extensive optimization, soluble recombinant T. elongatus BP-1 SQS was obtained when cells were disrupted and purified in buffers containing glycerol. The recombinant B. japonicum and Z. mobilis SQSs could not be solubilized under any of the expression and purification conditions used. Purified T. elongatus His(6)-SQS gave a single band at 42 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and molecular ion at m/z 41886 by electrospray mass spectrometry. Incubation with FPP and NADPH gave squalene as the sole product. Incubation of the enzyme with [(14)C]FPP in the absence of NADPH gave PSPP. The enzyme requires Mg(2+) for activity, has an optimum pH of 7.6, and is strongly stimulated by detergent. Under optimal conditions, the K(m) of FPP is 0.97 +/- 0.10 microM and the k(cat) is 1.74 +/- 0.04 s(-1). Zaragozic acid A, a potent inhibitor of mammalian, fungal, and Saccharomyces cerevisiae SQSs, also inhibited recombinant T. elongatus BP-1 SQS, with a 50% inhibitory concentration of 95.5 +/- 13.6 nM.  相似文献   

3.
Biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP) proceeds via two distinct pathways. Sequence comparisons and microbiological data suggest that multidrug-resistant strains of gram-positive cocci employ exclusively the mevalonate pathway for IPP biosynthesis. Bacterial mevalonate pathway enzymes therefore offer potential targets for development of active site-directed inhibitors for use as antibiotics. We used the PCR and Enterococcus faecalis genomic DNA to isolate the mvaS gene that encodes 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase, the second enzyme of the mevalonate pathway. mvaS was expressed in Escherichia coli from a pET28 vector with an attached N-terminal histidine tag. The expressed enzyme was purified by affinity chromatography on Ni(2+)-agarose to apparent homogeneity and a specific activity of 10 micromol/min/mg. Analytical ultracentrifugation showed that the enzyme is a dimer (mass, 83.9 kDa; s(20,w), 5.3). Optimal activity occurred in 2.0 mM MgCl(2) at 37(o)C. The DeltaH(a) was 6,000 cal. The pH activity profile, optimum activity at pH 9.8, yielded a pK(a) of 8.8 for a dissociating group, presumably Glu78. The stoichiometry per monomer of acetyl-CoA binding was 1.2 +/- 0.2 and that of covalent acetylation was 0.60 +/- 0.02. The K(m) for the hydrolysis of acetyl-CoA was 10 microM. Coupled conversion of acetyl-CoA to mevalonate was demonstrated by using HMG-CoA synthase and acetoacetyl-CoA thiolase/HMG-CoA reductase from E. faecalis.  相似文献   

4.
Open reading frame sll1556 in the cyanobacterium Synechocystis sp. strain 6803 encodes a putative type II isopentenyl diphosphate (IPP) isomerase. The His(6)-tagged protein was produced in Escherichia coli and purified by Ni(2+) chromatography. The homotetrameric enzyme required NADPH, flavin mononucleotide, and Mg(2+) for activity; K(m)(IPP) was 52 microM, and k(cat)(IPP) was 0.23 s(-1).  相似文献   

5.
Using oligonucleotide primers designed to the known gene sequence of an (E)-beta-farnesene (EbetaF) synthase, two cDNA sequences (MxpSS1 and MxpSS2) were cloned from a black peppermint (Menthaxpiperita) plant. MxpSS1 encoded a protein with 96% overall amino acid sequence identity with the EbetaF synthase. Recombinant MxpSS1 produced in Escherichia coli, after removal of an N-terminal thioredoxin fusion, had a K(m) for FPP of 1.91+/-0.1 microM and k(cat) of 0.18 s(-1), and converted farnesyl diphosphate (FPP) into four products, the major two being cis-muurola-3,5-diene (45%) and cis-muurola-4(14),5-diene (43%). This is the first cis-muuroladiene synthase, to be characterised. MxpSS2 encoded a protein with only two amino acids differing from EbetaF synthase. Recombinant MxpSS2 protein showed no activity towards FPP. One of the two mutations, at position 531 (leucine in MxpSS2 and serine in EbetaF synthase) was shown, by structural modelling to occur in the J-K loop, an element of the structure of sesquiterpene synthases known to be important in the reaction mechanism. Reintroduction of the serine at position 531 into MxpSS2 by site-directed mutagenesis restored EbetaF synthase activity (K(m) for FPP 0.98+/-0.12 microM, k(cat) 0.1 s(-1)), demonstrating the crucial role of this residue in the enzyme activity. Analysis, by GC-MS, of the sesquiterpene profile of the plant used for the cloning, revealed that EbetaF was not present, confirming that this particular mint chemotype had lost EbetaF synthase activity due to the observed mutations.  相似文献   

6.
Undecaprenyl diphosphate (UPP) synthase catalyzes the sequential cis-condensation of isopentenyl diphosphate (IPP) onto (E,E)-farnesyl diphosphate (FPP). In our previous reports on the Micrococcus luteus B-P 26 UPP synthase, we have shown that the conserved residues in the disordered region from Ser-74 to Val-85 is crucial for the binding of FPP and the catalytic function [Fujikura, K., et al. (2000) J. Biochem. (Tokyo) 128, 917-922] and the existence of a structural P-loop motif for the FPP binding site [Fujihashi, M., et al. (2001) Proc. Natl. Acad. Sci. U.S.A., 98, 4337-4342]. To elucidate the allylic substrate binding site in more detail, we prepared eight mutant enzymes and examined their kinetic behavior. The mutant with respect to the two complementarily conserved Arg residues among the structural P-loop motif, G32R-R42G, retained the activity and showed product distribution pattern exactly similar to that of the wild-type, indicating that the complementarily conserved Arg is important for maintaining the catalytic function. Substitutions of Asp-29, Arg-33, or Arg-80 with Ala resulted in a large loss of enzyme activity, suggesting that these residues are essential for catalytic function. However, the K(m) values of these mutant enzymes for Z-GGPP, which is the first intermediate during the enzymatic cis-condensations of IPP onto FPP, were only moderately different or little changed from those of the wild type. These results suggest that the binding site for the intermediate Z-GGPP having a cis double bond is different to that for the intrinsic allylic substrate, FPP, whose diphosphate moiety is recognized by the structural P-loop.  相似文献   

7.
Comparison of the farnesyl diphosphate (FPP) synthase amino acid sequences from four species with amino acid sequences from the related enzymes hexaprenyl diphosphate synthase and geranylgeranyl diphosphate synthase show the presence of two aspartate rich highly conserved domains. The aspartate motif ((I, L, or V)XDDXXD) of the second of those domains has homology with at least 9 prenyl transfer enzymes that utilize an allylic prenyl diphosphate as one substrate. In order to investigate the role of this second aspartate-rich domain in rat FPP synthase, we mutated the first or third aspartate to glutamate, expressed the wild-type and mutant enzymes in Escherichia coli, and purified them to apparent homogeneity using a single chromatographic step. Approximately 12 mg of homogeneous protein was isolated from 120 mg of crude bacterial extract. The kinetic parameters of the purified wild-type recombinant FPP synthase containing the DDYLD motif were as follows: Vmax = 0.84 mumol/min/mg; GPP Km = 1.0 microM; isopentenyl diphosphate (IPP) Km = 2.7 microM. Substitution of glutamate for the first aspartate (EDYLD) decreased the Vmax by over 90-fold. The Km for IPP increased, whereas the Km for GPP remained the same in this D243E mutant. Substitution of glutamate for the third aspartate (DDYLE) did not result in altered enzyme kinetics in the D247E mutant. These results suggest that the first aspartate in the second domain is involved in the catalysis by FPP synthase.  相似文献   

8.
Undecaprenyl diphosphate synthase catalyzes the sequential condensation of eight molecules of isopentenyl diphosphate (IPP) in the cis-configuration into farnesyl diphosphate (FPP) to produce undecaprenyl diphosphate (UPP), which is indispensable for the biosynthesis of the bacterial cell wall. This cis-type prenyltransferase exhibits a quite different mode of binding of homoallylic substrate IPP from that of trans-type prenyltransferase [Kharel Y. et al. (2001) J. Biol. Chem. 276, 28459-28464]. In order to know the IPP binding mode in more detail, we selected six highly conserved residues in Regions III, IV, and V among nine conserved aromatic residues in Micrococcus luteus B-P 26 UPP synthase for substitution by site-directed mutagenesis. The mutant enzymes were expressed and purified to homogeneity, and then their effects on substrate binding and the catalytic function were examined. All of the mutant enzymes showed moderately similar far-UV CD spectra to that of the wild-type, indicating that none of the replacement of conserved aromatic residues affected the secondary structure of the enzyme. Kinetic analysis showed that the replacement of Tyr-71 with Ser in Region III, Tyr-148 with Phe in Region IV, and Trp-210 with Ala in Region V brought about 10-1,600-fold decreases in the kcat/Km values compared to that of the wild-type but the Km values for both substrates IPP and FPP resulted in only moderate changes. Substitution of Phe-207 with Ser in Region V resulted in a 13-fold increase in the Km value for IPP and a 1,000-2,000-fold lower kcat/Km value than those of the wild-type, although the Km values for FPP showed about no significant changes. In addition, the W224A mutant as to Region V showed 6-fold and 14-fold increased Km values for IPP and FPP, respectively, and 100-250-fold decreased kcat/Km values as compared to those of the wild-type. These results suggested that these conserved aromatic residues play important roles in the binding with both substrates, IPP and FPP, as well as the catalytic function of undecaprenyl diphosphate synthase.  相似文献   

9.
Geranylgeranyl diphosphate (GGPP) synthase catalyzes the condensation of isopentenyl diphosphate (IPP) with allylic diphosphates to give (all-E)-GGPP. GGPP is one of the key precursors in the biosynthesis of biologically significant isoprenoid compounds. In order to examine possible participation of the GGPP synthase in the enzymatic prenyl chain elongation in natural rubber biosynthesis, we cloned, overexpressed and characterized the cDNA clone encoding GGPP synthase from cDNA libraries of leaf and latex of Hevea brasiliensis. The amino acid sequence of the clone contains all conserved regions of trans-prenyl chain elongating enzymes. This cDNA was expressed in Escherichia coli cells as Trx-His-tagged fusion protein, which showed a distinct GGPP synthase activity. The apparent K(m) values for isopentenyl-, farnesyl-, geranyl- and dimethylallyl diphosphates of the GGPP synthase purified with Ni(2+)-affinity column were 24.1, 6.8, 2.3, and 11.5 microM, respectively. The enzyme shows optimum activity at approximately 40 degrees C and pH 8.5. The mRNA expression of the GGPP synthase was detected in all tissues examined, showing higher in flower and leaf than petiole and latex, where a large quantity of natural rubber is produced. On the other hand, expression levels of the Hevea farnesyl diphosphate synthase were significant in latex as well as in flower.  相似文献   

10.
Lobo S  Florova G  Reynolds KA 《Biochemistry》2001,40(39):11955-11964
Acetyl-CoA:acyl carrier protein (ACP) transacylase (ACT) activity has been demonstrated for the 3-ketoacyl-ACP synthase III (KASIII) which initiates fatty acid biosynthesis in the type II dissociable fatty acid synthases of plants and bacteria. Several lines of evidence have indicated the possibility of ACT activity being associated with proteins other than KASIII. Using a crude extract of Streptomyces collinus, we have resolved from KASIII an additional protein with ACT activity and subsequently purified it 85-fold in five chromatographic steps. The 45 kDa protein was shown by gel filtration to have a molecular mass of 185 +/- 35 kDa, consistent with a homotetrameric structure for the native enzyme. The corresponding gene (fadA) was cloned and sequenced and shown to encode a protein with amino acid sequence homology to type II thiolases. The fadA was expressed in Escherichia coli, and the resulting recombinant FadA enzyme purified by metal chelate chromatography was shown to have both ACT and thiolase activities. Kinetic studies revealed that in an ACT assay FadA had a substrate specificity for a two-carbon acetyl-CoA substrate (K(m) 8.7 +/- 1.4 microM) but was able to use ACPs from both type II fatty acid and polyketide synthases (Streptomyces glaucescens FabC ACP, K(m) 10.7 +/- 1.4 microM; E. coli FabC ACP, K(m) 8.8 +/- 2 microM; FrenN ACP, K(m) 44 +/- 12 microM). In the thiolase assay kinetic analyses revealed similar K(m) values for binding of substrates acetoacetyl-CoA (K(m) 9.8 +/- 0.8 microM) and CoA (K(m) 10.9 +/- 1.8 microM). A Cys92Ser mutant of FadA possessed virtually unchanged K(m) values for acetoacetyl-CoA and CoA but had a greater than 99% decrease in k(cat) for the thiolase activity. No detectable ACT activity was observed for the Cys92Ser mutant, demonstrating that both activities are associated with FadA and likely involve formation of the same covalent acetyl-S-Cys enzyme intermediate. An ACT activity with ACP has not previously been observed for thiolases and in the case of the S. collinus FadA is significantly lower (k(cat) 3 min(-1)) than the thiolase activity of FadA (k(cat) 2170 min(-1)). The ACT activity of FadA is comparable to the KAS activity and significantly higher than the ACT activity, reported for a streptomycete KASIII.  相似文献   

11.
Didehydrofarnesyl diphosphate (delta delta FPP), a fluorescent pentaene analogue of farnesyl diphosphate (FPP), was synthesized using stereoselective Wittig reactions. Although delta delta FPP was not an alternative substrate for yeast protein farnesyltransferase (FTase), the fluorescent analogue was a potent competitive inhibitor with a K(i) value of 8.8 microM (K (m) (FPP) = 27 microM).  相似文献   

12.
Chen L  Zhou C  Yang H  Roberts MF 《Biochemistry》2000,39(40):12415-12423
A gene putatively identified as the Archaeoglobus fulgidus inositol-1-phosphate synthase (IPS) gene was overexpressed to high level (about 30-40% of total soluble cellular proteins) in Escherichia coli. The recombinant protein was purified to homogeneity by heat treatment followed by two column chromatographic steps. The native enzyme was a tetramer of 168 +/- 4 kDa (subunit molecular mass of 44 kDa). At 90 degrees C the K(m) values for glucose-6-phosphate and NAD(+) were estimated as 0.12 +/- 0.04 mM and 5.1 +/- 0.9 microM, respectively. Use of (D)-[5-(13)C]glucose-6-phosphate as a substrate confirmed that the stereochemistry of the product of the IPS reaction was L-myo-inositol-1-phosphate. This archaeal enzyme, with the highest activity at its optimum growth temperature among all IPS reported (k(cat) = 9.6 +/- 0.4 s(-1) with an estimated activation energy of 69 kJ/mol), was extremely heat stable. However, the most unique feature of A. fulgidus IPS was that it absolutely required divalent metal ions for activity. Zn(2+) and Mn(2+) were the best activators with K(D) approximately 1 microM, while NH(4)(+) (a critical activator for all the other characterized IPS enzymes) had no effect on the enzyme. These properties suggested that this archaeal IPS was a class II aldolase. In support of this, stoichiometric reduction of NAD(+) to NADH could be followed spectrophotometrically when EDTA was present along with glucose-6-phosphate.  相似文献   

13.
Farnesyl diphosphate synthase (FPPS) is a key enzyme in isoprenoid biosynthesis, it catalyzes the head-to-tail condensation of dimethylallyl diphosphate (DMAPP) with two molecules of isopentenyl diphosphate (IPP) to generate farnesyl diphosphate (FPP), a precursor of juvenile hormone (JH). In this study, we functionally characterized an Aedes aegypti FPPS (AaFPPS) expressed in the corpora allata. AaFPPS is the only FPPS gene present in the genome of the yellow fever mosquito, it encodes a 49.6 kDa protein exhibiting all the characteristic conserved sequence domains on prenyltransferases. AaFPPS displays its activity in the presence of metal cofactors; and the product condensation is dependent of the divalent cation. Mg2+ ions lead to the production of FPP, while the presence of Co2+ ions lead to geranyl diphosphate (GPP) production. In the presence of Mg2+ the AaFPPS affinity for allylic substrates is GPP > DMAPP > IPP. These results suggest that AaFPPS displays “catalytic promiscuity”, changing the type and ratio of products released (GPP or FPP) depending on allylic substrate concentrations and the presence of different metal cofactors. This metal ion-dependent regulatory mechanism allows a single enzyme to selectively control the metabolites it produces, thus potentially altering the flow of carbon into separate metabolic pathways.  相似文献   

14.
Isopentenyl diphosphate isomerase catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In eukaryotes, archaebacteria, and some bacteria, IPP is synthesized from acetyl coenzyme A by the mevalonate pathway. The subsequent isomerization of IPP to DMAPP activates the five-carbon isoprene unit for subsequent prenyl transfer reactions. In Escherichia coli, the isoprene unit is synthesized from pyruvate and glyceraldehyde-3-phosphate by the recently discovered nonmevalonate pathway. An open reading frame (ORF696) encoding a putative IPP isomerase was identified in the E. coli chromosome at 65.3 min. ORF696 was cloned into an expression vector; the 20.5 kDa recombinant protein was purified in three steps, and its identity as an IPP isomerase was established biochemically. The gene for IPP isomerase, idi, is not clustered with other known genes for enzymes in the isoprenoid pathway. E. coli FH12 was constructed by disruption of the chromosomal idi gene with the aminoglycoside 3'-phosphotransferase gene and complemented by the wild-type idi gene on plasmid pFMH33 with a temperature-sensitive origin of replication. FH12/pFMH33 was able to grow at the restrictive temperature of 44 degrees C and FH12 lacking the plasmid grew on minimal medium, thereby establishing that idi is a nonessential gene. Although the V(max) of the bacterial protein was 20-fold lower than that of its yeast counterpart, the catalytic efficiencies of the two enzymes were similar through a counterbalance in K(m)s. The E. coli protein requires Mg(2+) or Mn(2+) for activity. The enzyme contains conserved cysteine and glutamate active-site residues found in other IPP isomerases.  相似文献   

15.
We have identified an omega,E,E-farnesyl diphosphate (omega,E,E-FPP) synthase, encoded by the open reading frame Rv3398c, from Mycobacterium tuberculosis that is unique among reported FPP synthases in that it does not contain the type I (eukaryotic) or the type II (eubacterial) omega,E,E-FPP synthase signature motif. Instead, it has a structural motif similar to that of the type I geranylgeranyl diphosphate synthase found in Archaea. Thus, the enzyme represents a novel class of omega,E,E-FPP synthase. Rv3398c was cloned from the M. tuberculosis H37Rv genome and expressed in Mycobacterium smegmatis using a new mycobacterial expression vector (pVV2) that encodes an in-frame N-terminal affinity tag fusion with the protein of interest. The fusion protein was well expressed and could be purified to near homogeneity, allowing facile kinetic analysis of recombinant Rv3398c. Of the potential allylic substrates tested, including dimethylallyl diphosphate, only geranyl diphosphate served as an acceptor for isopentenyl diphosphate. The enzyme has an absolute requirement for divalent cation and has a K(m) of 43 microM for isopentenyl diphosphate and 9.8 microM for geranyl diphosphate and is reported to be essential for the viability of M. tuberculosis.  相似文献   

16.
The isoprenoid pathway is a versatile biosynthetic network leading to over 23,000 compounds. Similar to other biosynthetic pathways, the production of isoprenoids in microorganisms is controlled by the supply of precursors, among other factors. To engineer a host that has the capability to supply geranylgeranyl diphosphate (GGPP), a common precursor of isoprenoids, we cloned and overexpressed isopentenyl diphosphate (IPP) isomerase (encoded by idi) from Escherichia coli and GGPP synthase (encoded by gps) from the archaebacterium Archaeoglobus fulgidus. The latter was shown to be a multifunctional enzyme converting dimethylallyl diphosphate (DMAPP) to GGPP. These two genes and the gene cluster (crtBIYZW) of the marine bacterium Agrobacterium aurantiacum were introduced into E. coli to produce astaxanthin, an orange pigment and antioxidant. This metabolically engineered strain produces astaxanthin 50 times higher than values reported before. To determine the rate-controlling steps in GGPP production, the IDI-GPS pathway was compared with another construct containing idi, ispA (encoding farnesyl diphosphate (FPP) synthase in E. coli), and crtE (encoding GGPP synthase from Erwinia uredovora). Results show that the conversion from FPP to GGPP is the first bottleneck, followed sequentially by IPP isomerization and FPP synthesis. Removal of these bottlenecks results in an E. coli strain providing sufficient precursors for in vivo synthesis of isoprenoids.  相似文献   

17.
Isopentenyl diphosphate (IPP):dimethylallyl diphosphate isomerase catalyzes the interconversion of the fundamental five-carbon homoallylic and allylic diphosphate building blocks required for biosynthesis of isoprenoid compounds. Two different isomerases have been reported. The type I enzyme, first characterized in the late 1950s, is widely distributed in eukaryota and eubacteria. The type II enzyme was recently discovered in Streptomyces sp. strain CL190. Open reading frame 48 (ORF48) in the archaeon Methanothermobacter thermautotrophicus encodes a putative type II IPP isomerase. A plasmid-encoded copy of the ORF complemented IPP isomerase activity in vivo in Salmonella enterica serovar Typhimurium strain RMC29, which contains chromosomal knockouts in the genes for type I IPP isomerase (idi) and 1-deoxy-D-xylulose 5-phosphate (dxs). The dxs gene was interrupted with a synthetic operon containing the Saccharomyces cerevisiae genes erg8, erg12, and erg19 allowing for the conversion of mevalonic acid to IPP by the mevalonate pathway. His6-tagged M. thermautotrophicus type II IPP isomerase was produced in Escherichia coli and purified by Ni2+ chromatography. The purified protein was characterized by matrix-assisted laser desorption ionization mass spectrometry. The enzyme has optimal activity at 70 degrees C and pH 6.5. NADPH, flavin mononucleotide, and Mg2+ are required cofactors. The steady-state kinetic constants for the archaeal type II IPP isomerase from M. thermautotrophicus are as follows: K(m), 64 microM; specific activity, 0.476 micromol mg(-1) min(-1); and k(cat), 1.6 s(-1).  相似文献   

18.
Undecaprenyl pyrophosphate synthase (UPPs) catalyzes the consecutive condensation reactions of a farnesyl pyrophosphate (FPP) with eight isopentenyl pyrophosphates (IPP), in which new cis-double bonds are formed, to generate undecaprenyl pyrophosphate that serves as a lipid carrier for peptidoglycan synthesis of bacterial cell wall. The structures of Escherichia coli UPPs were determined previously in an orthorhombic crystal form as an apoenzyme, in complex with Mg(2+)/sulfate/Triton, and with bound FPP. In a further search of its catalytic mechanism, the wild-type UPPs and the D26A mutant are crystallized in a new trigonal unit cell with Mg(2+)/IPP/farnesyl thiopyrophosphate (an FPP analogue) bound to the active site. In the wild-type enzyme, Mg(2+) is coordinated by the pyrophosphate of farnesyl thiopyrophosphate, the carboxylate of Asp(26), and three water molecules. In the mutant enzyme, it is bound to the pyrophosphate of IPP. The [Mg(2+)] dependence of the catalytic rate by UPPs shows that the activity is maximal at [Mg(2+)] = 1 mm but drops significantly when Mg(2+) ions are in excess (50 mm). Without Mg(2+), IPP binds to UPPs only at high concentration. Mutation of Asp(26) to other charged amino acids results in significant decrease of the UPPs activity. The role of Asp(26) is probably to assist the migration of Mg(2+) from IPP to FPP and thus initiate the condensation reaction by ionization of the pyrophosphate group from FPP. Other conserved residues, including His(43), Ser(71), Asn(74), and Arg(77), may serve as general acid/base and pyrophosphate carrier. Our results here improve the understanding of the UPPs enzyme reaction significantly.  相似文献   

19.
A series of analogues of isopentenyl diphosphate (IPP) having a dicarboxylate moiety in place of the diphosphate were synthesized and investigated as inhibitors of undecaprenyl diphosphate (UPP) synthase and protein farnesyltransferase (PFTase). PFTase is involved in control of cell proliferation and is known to be inhibited by certain maleic acid derivatives bearing long alkyl substituents (> or =12 carbons, e.g., chaetomellic acid). UPP synthase is a potential target for antimicrobial agents and utilizes isopentenyl diphosphate (IPP) as a substrate. A number of dicarboxylate-containing IPP analogues were prepared in 2-5 steps from commercially available starting materials with good overall yield (20-78%). These syntheses involved the conjugate addition of an organocuprate to dimethyl acetylenedicarboxylate (DMAD) followed by basic ester hydrolysis. The E-pentenylbutanedioic acid 32 showed inhibition of UPP synthase with an IC(50) of 135 microM. Compound 30 displays competitive inhibition of PFTase with a K(i) of 287 microM.  相似文献   

20.
Octaprenyl diphosphate synthase (OPPs) and undecaprenyl diphosphate synthases (UPPs) catalyze consecutive condensation reactions of farnesyl diphosphate (FPP) with 5 and 8 isopentenyl diphosphate (IPP) to generate C40 and C55 products with trans- and cis-double bonds, respectively. In this study, we used IPP analogue, 3-bromo-3-butenyl diphosphate (Br-IPP), in conjunction with radiolabeled FPP, to probe the reaction mechanisms of the two prenyltransferases. Using this alternative substrate with electron-withdrawing bromo group at the C3 position to slow down the condensation step, trapping of farnesol in the OPPs reaction from radiolabeled FPP under basic condition was observed, consistent with a sequential mechanism. In contrast, UPPs reaction yielded no farnesyl carbocation intermediate under the same condition with radiolabeled FPP and Br-IPP, indicating a concerted mechanism. Our data demonstrate the different reaction mechanisms for cis- and tran-prenyltransferases although they share the same substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号