首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MER  C. L. 《Annals of botany》1957,21(1):13-22
Oat seedlings when grown in 5 per cent. CO2 show an increasedgrowth of the mesocotyl and a reduced growth of the coleoptile.To elucidate this effect the following data, for both treatedand control plants, have been obtained: (1) fresh and dry weightincreases in the whole plants and in the separate organs, (2)water contents, and (3) progressive depletion of the endosperm. The enhanced growth of the mesocotyl in CO2 was closely, correlatedwith dry-matter content but not with water content. The depletionof the endosperm was reduced by treatment with CO2, and of thesmaller amount of carbohydrate entering the embryo a higherproportion remained in the mesocotyl; coleoptile growth wasconsequently diminished. The distribution of dry matter betweenthe coleoptile and mesocotyl must be an important factor intheir reciprocal growth behaviour.  相似文献   

2.
MER  C. L. 《Annals of botany》1969,33(5):915-935
The effects of carbon dioxide, of phosphate, and of nitratenutrition on the growth of etiolated oat seedlings in relationto the amounts of reserves and of phosphorus translocated fromthe endosperm, have been studied in a 23 factorially arrangedexperiment. For each mg of translocate 4.37 µg of phosphorus weretransferred in the untreated seedlings, and this rate was slightlyincreased by nitrates, reduced by phosphates, and hardly changedby carbon dioxide, at the concentrations used. Under treatment with phosphates a high content of phosphoruswas quickly built up in the roots, but there was an initialreduction in the quantity found in the coleoptile and leaves.Apparently, upward transport from the roots took place onlyslowly; the phosphorus in the coleoptile and leaves may thereforehave come preferentially from the endosperm. Although nitrate supply increased the flow of phosphorus fromthe endosperm, it decreased the content in the plants. Thiseffect appears to be due to a smaller uptake of phosphorus inthe presence of nitrates.  相似文献   

3.
Sources of Free IAA in the Mesocotyl of Etiolated Maize Seedlings   总被引:7,自引:4,他引:3       下载免费PDF全文
Iino M  Carr DJ 《Plant physiology》1982,69(5):1109-1112
Sources of free indole-3-acetic acid (IAA) for the mesocotyl of intact etiolized maize ((Zea mays L.) seedlings are evaluated. The coleoptile unit, which includes the primary leaves and the coleoptilar node, is the main source of free IAA for the mesocotyl. The seed and the roots are not immediate sources of IAA supply. Dependence of the apical growing region of the mesocotyl on the coleoptile unit as a source of free IAA is almost total. One-half or more of the supply of IAA comes from the coleoptile tip, the rest mainly from the primary leaves. Removal of the coleoptile tip results in inhibition of mesocotyl elongation. The hypothesis that growth of the mesocotyl is regulated by auxin supplied by the coleoptile is supported. Conjugated forms of IAA appear to play little part in regulating the levels of free IAA in the shoot.  相似文献   

4.
A nutritive hypothesis is put forward to account for the inhibitoryeffect of carbon dioxide, and of sucrose, on the elongationof the coleoptile and leaves of etiolated oat seedlings. Growthdepends, it is assumed, on the availability of nitrogen, andthe way in which the supply is diminished by these treatmentshas been elucidated. Three factorially arranged experimentswere carried out to provide the necessary growth data and observationswere also made of the distribution throughout the seedlingsof dry-weight, of sugars and of nitrogen. Additionally, thequantity of reserves, and of nitrogen, flowing into the seedlingduring growth have been determined. The dependence of coleoptileand leaf growth on the supply of nitrogen has been demonstratedand also the dependence of the amount of nitrogen transferredon the total weight of translocate. The growth inhibition canthen be explained on the assumption that treatment with carbondioxide and sucrose decreases the weight of reserves translocatedfrom the endosperm and so reduces the amount of nitrogen passinginto the seedling. Consumption of nitrogen by the mesocotyland roots, however, is not correspondingly reduced; the coleoptilesand leaves, perforce, bear the entire shortage and their growthis checked. These results may also be utilized to explain the transientgrowth promotion of the coleoptile and leaves brought aboutby illumination and heating, so avoiding the need to postulatechanges in auxin metabolism. The importance of the nitrogen supply during germination isdiscussed.  相似文献   

5.
Partial inhibition of extension growth of the primary leaf occurswhen whole Triticum seedlings are immersed in aerated solutionsof IAA but is replaced by growth promotion when sucrose is addedto the external solution. In seedlings in which the coleoptilehas been excised, IAA increases the growth of the leaf bothwith and without additional sucrose. Inhibition of the leaf by moderate concentrations of IAA nolonger occurs when the seedling is detached from the endosperm.Sucrose added to the external solution raised the percentageelongation of the coleoptile almost to the level of that attainedin intact seedlings without additional carbohydrate. It alsoenabled the leaf to show a positive growth response with IAA. The results indicate that in intact seedlings treated with IAAthe growth of the primary leaf is markedly diminished owingto diversion of carbohydrate to the coleoptile if the growthof the latter is promoted as a result of the treatment. Whenthe competition of the coleoptile for carbohydrate is diminishedor eliminated, acceleration of the growth of the primary leafby IAA becomes apparent. In addition to the endogenous rhythm, with a period close to24 hours, induced in the growth-rate of the coleoptile whenseedlings of Avena are transferred from red light to darkness,a similar rhythm, with a slightly longer period, is inducedin the growth-rate of the primary leaf. This rhythm persistsin elongating leaves so long as they remain within the coleoptile.It can be recorded for at least 100 hours in deseeded seedlings. When intact seedlings of Avena are immersed for one hour inrelatively high concentrations of IAA and then transferred todistilled water for 18 hours, the elongation of the coleoptileis greater and the inhibition of the leaf is less than whenthey are transferred to humid air. Sections of the leaf of Triticum showed a slight increase inelongation in concentrations of IAA up to 5 mg./l., but no evidencewas obtained that sections of leaf and coleoptile exert any.influenceon each other's elongation when floated together on solutionsof IAA.  相似文献   

6.
The effects of applied ethylene on the growth of coleoptilesand mesocotyls of etiolated monocot seedlings (oat and maize)have been compared with those on the epicotyl of a dicot seedling(the etiolated pea). Significant inhibition of elongation by ethylene (10 µll–1for 24 h) was found in intact seedlings of all three species,but lateral expansion growth was observed only in the pea internodeand oat mesocotyl tissue. The sensitivity of the growth of seedlingparts to ethylene is in the decreasing order pea internode,oat coleoptile and oat mesocotyl, with maize exhibiting theleast growth response. Although excised segments of mesocotyland coleoptile or pea internode all exhibit enhanced elongationgrowth in IAA solutions (10–6–2 ? 10–5 moll–1), no consistent effects were found in ethylene. Ethyleneproduction in segments was significantly enhanced by applicationof auxin (IAA, 10–5 mol l–6 or less) in all tissuesexcept those of the eat mesocotyl. Segments of maize show a slow rate of metabolism of applied[2-14C]IAA (30 per cent converted to other metabolites within9 h) and a high capacity for polar auxin transport. Ethylene(10 µl l–1 for 24 h) has little effect on eitherof these processes. The oat has a smaller capacity for polartransport than maize and the rate ef metabolism of auxin isas fast as in the pea (90 per cent metabolized in 6 h). Althoughethylene pretreatment does not change the rate of auxin metabolismin oat, there is a marked reduction in auxin transport. It is proposed that the insensitivity of maize seedlings toethylene is related to the supply and persistence of auxin whichcould protect the seedling against the effects of applied orendogenously produced ethylene. Although the mesocotyl of oatis sensitive to applied ethylene it may be in part protectedagainst ethylene in vivo by the absence of an auxin-enhancedethylene production system. The results are discussed in relationto a model for the auxin and ethylene control of cell growthin the pea.  相似文献   

7.
Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.  相似文献   

8.
Moritoshi Iino 《Planta》1982,156(5):388-395
Brief irradiation of 3-d-old maize (Zea mays L.) seedlings with red light (R; 180 J m-2) inhibits elongation of the mesocotyl (70–80% inhibition in 8 h) and reduces its indole-3-acetic acid (IAA) content. The reduction in IAA content, apparent within a few hours, is the result of a reduction in the supply of IAA from the coleoptile unit (which includes the shoot apex and primary leaves). The fluence-response relationship for the inhibition of mesocotyl growth by R and far-red light closely resemble those for the reduction of the IAA supply from the coleoptile. The relationship between the concentration of IAA (1–10 M) supplied to the cut surface of the mesocotyl of seedlings with their coleoptile removed and the growth increment of the mesocotyl, measured after 4 h, is linear. The hypothesis that R inhibits mesocotyl growth mainly by reducing the IAA supply from the coleoptile is supported. However, mesocotyl growth in seedlings from which the coleoptiles have been removed is also inhibited by R (about 25% inhibition in 8 h). This inhibition is not related to changes in the IAA level, and not relieved by applied IAA. In intact seedlings, this effect may also participate in the inhibition of mesocotyl growth by R. Inhibition of cell division by R, whose mechanism is not known, will also result in reduced mesocotyl elongation especially in the long term (e.g. 24 h).Abbreviations FR far-red light - IAA indole-3-acetic acid - Pfr phytochrome in the far-red-absorbing form - Pr phytochrome in the red-absorbing form - R red light  相似文献   

9.
The growth (fresh weight), morphogenesis (leaves, roots and shoots) and essential oil composition of mint (Mentha sp. L.) and thyme (Thymus vulgaris L.) plants were determined after 8 weeks under 350, 1,500, 3,000, 10,000 and 30,000 µmol mol-1 CO2. Plants were grown in vitro on basal medium (BM) consisting of Murashige and Skoog salts and 0.8% agar that contained either 0 or 3% sucrose under a 16-h (day)/8-h (night) photoperiod at a light intensity of 180 µmol s-1 m-2 or in soil in a greenhouse under conditions of natural sunlight. Ultra-high CO2 levels (i.e. ́,000 µmol mol-1 CO2) substantially increased fresh weights, leaves, shoots and roots for all plants compared to plants grown under ambient air (350 µmol mol-1 CO2) both in vivo and in vitro. For both species, 10,000 µmol mol-1 CO2 was the optimum concentration to obtain the largest growth and morphogenesis responses under in vitro conditions, while the 3,000- to 10,000-µmol mol-1 CO2 range provided the largest yields for soil-grown plants. Essential oil composition (i.e. monoterpenes, piperitonone oxide and limonene from mint and aromatic phenol and thymol from thyme) from the shoot portion of plants grown at all CO2 levels was analyzed in CH2Cl2 extracts via gas chromatography. Higher levels of secondary compounds occurred in vitro when cultures were grown under ultra-high CO2 levels than in ambient air. The concentration of thymol, a major secondary compound in thyme plants grown on BM containing sucrose, was 317-fold higher at 10,000 µmol mol-1 CO2 than in plants grown under ambient air conditions with the same BM. The levels of secondary compound in in-vitro-grown plantlets exposed to ultra-high CO2 concentrations exceeded those occurring in plants grown in the greenhouse under the same CO2 levels. Substantially higher levels of secondary compound occurred in plants under ultra-high CO2 levels on BM containing sucrose than on BM lacking sucrose or in soil. Thymol levels in thyme plants grown on BM containing sucrose were 3.9-fold higher at 10,000 µmol mol-1 CO2 than in shoots grown on BM without sucrose under the same CO2 levels. High positive correlations occurred between thymol concentrations and CO2 levels, fresh weights, shoots, roots and leaves when thyme shoots were grown on BM with sucrose. High positive correlations for thyme shoots grown on BM without sucrose only occurred between thymol concentrations and CO2 levels, fresh weights, shoots and leaves. No positive correlations between thymol concentrations and CO2 levels or any growth or morphogenesis responses occurred for thyme shoots when grown in soil.  相似文献   

10.
KOUCHI  H.; YONEYAMA  T. 《Annals of botany》1984,53(6):883-896
Nodulated soya bean (Glycine max L.) plants at the early floweringstage were allowed to assimilate 13CO2 under steady-state conditions,with a constant 13C abundance, for 8 h in the light. The plantswere either harvested immediately or 2 d after the end of the13CO2 feeding, divided into young leaves (including flower buds),mature leaves, stems+petioles, roots and nodules; the 13C abundancein soluble carbohydrates, organic acids, amino acids, starchand poly-ß-hydroxybutyric acid was determined witha gas chromatography-mass spectrometry. The rapid turnover of 13C in the sucrose pools observed in allorgans of the plants showed that sucrose was the principal materialin the translocation stream of primary products of photosynthesis.At the end of the 13CO2 exposure, sucrose in the mature leavesas the major source organs and in the stems+petioles was labelledwith currently assimilated carbon to about 75 per cent, whereasa much higher labelling of sucrose was found in the roots andin the nodules. This suggests the existence of two or more compartmentedpools of sucrose in mature leaves and also in stems+petioles. The relative labelling patterns of individual organic acidsand amino acids were similar in various plant organs. However,the rapid turnover of succinate and glycine was characteristicof nodules. Treatment with a high concentration of nitrate inthe nutrient media increased the turnover rate of amino acidcarbon in shoot organs and roots, while it markedly decreasedthe labelling of amino acids in nodules. The cyclitols, exceptfor D-pinitol, were significantly labelled with assimilated13C in mature leaves, but in nodules, the labelling was verymuch less. In the nodules, which were actively fixing atmospheric nitrogen,a large proportion (80–90 per cent) of currently assimilatedcarbon was found as sucrose and starch at the end of the 13CO2feeding. This was also true of the roots. On the other hand,in young growing leaves, the distribution of currently assimilatedcarbon into sucrose, starch and other soluble compounds wasmuch less. This suggests that a large amount of carbon assimilatedby and translocated to young leaves was used to make up structuralmaterials, mainly protein and cell wall polymers synthesis,during the light period. Glycine max L., soya bean, 13CO2 assimilation, carbon metabolism in nodules  相似文献   

11.
Pitch pine seedlings were grown at constant temperature andphotoperiod. Net CO2-uptake h–1 g–1 leaves decreasedsteadily during ontogeny until leaf production ceased. Thereafter,there was no change or a slight increase. Though the ontogeneticpattern was the same in populations native to different geographicareas, there were differences among populations in the rateof CO2-uptake. Root respiration, calculated from the differencebetween CO2-uptake and net assimilation rate, accounted for6 to 69 per cent of diurnal assimilation. Growth of shoots and roots was episodic and out of phase. Spurtsof growth could be forecast by high rates of respiration 4 weeksearlier, probably because high-energy syntheses precede theprocesses of cell elongation and cell wall formation. Maintenanceand constructive respiration were substantially higher for theshoots (85 per cent leaf tissue) than for the roots. Constructiverespiration was proportional to photosynthesis.  相似文献   

12.
Effects of abscisic acid and its related compounds on rice seedling growth   总被引:3,自引:0,他引:3  
Rice seedlings with the mesocotyl and coleoptile (the undeveloped leaves enclosed in the coleoptile) are here referred to as MC type seedlings and are considered to be suitable for deep sowing. We investigated the effects of abscisic acid (ABA) and several of its related compounds on the occurrence of MC type seedlings and on rice mesocotyl growth. Rice (Oryza sativa L. cv. JC 91) seedlings were grown on 0.8% agar medium in the presence or absence of various kinds of ABAs under aseptic conditions at 30 °C in the dark for 14 days. The activity of the R isomer of ABA (R-ABA) was slightly less than that of the naturally occurring S form (S-ABA) concerning the occurrence of MC type rice seedlings and the growth of the rice mesocotyl. In addition, the racemate of R-and S-ABA (RS-ABA) is less effective than R-ABA and S-ABA alone.Trans-ABA had no activity in relation to both percent occurrence of MC type seedlings and mesocotyl growth. The results of the present study suggest that the occurrence of MC type rice seedlings and the growth of rice mesocotyls were closely related to structure-activity relationships with analogs of ABA.  相似文献   

13.
Shoots of normal cotton seedlings rapidly fixed a pulse of 14CO2from the ambient atmosphere and translocated some of the resultinglabeled sucrose to the roots. Roots of these plants assimilatedmost of the radioactivity from a 10-min labeling pulse intoinsoluble cell wall materials and other stable metabolites within4 to 6 hr after the pulse. However, roots of cotton seedlingswhich had been exposed to 1 ppm of Al3$ for 24 hr before labelingtended to accumulate the 14C-label as free sucrose. Histologicand microautoradiographic evidence suggested that Al3$ impairedthe root's capacity to utilize sucrose in further metabolicproducts so that 14C-labeled sucrose was not polymerized intocell wall materials as it was in the roots of control plants. (Received July 7, 1971; )  相似文献   

14.
Regulation of growth in rice seedlings   总被引:1,自引:0,他引:1  
Etiolated rice seedlings (Oryza sativa L.) exhibited marked morphological differences when grown in sealed containers or in containers through which air was passed continuously. Enhancement of coleoptile and mesocotyl growth and inhibition of leaf and root growth in the sealed containers (“enclosure syndrome”) were accompanied by accumulation of CO2 and C2H4 in and depletion of O2 from the atmosphere. Ethylene (1 μl 1?1), high levels of CO2, and reduced levels of O2 contributed equally to the increase in coleoptile and mesocotyl growth. The effect of enclosure could be mimicked by passing a gas mixture of 3% O2, 82% N2, 15% CO2 (all v/v), and 1 μl l?1) C2H4 through the vials containing the etiolated seedlings. The effects of high CO2 and low O2 concentrations were not mediated through increased C2H4 production. The enclosure syndrome was also observed in rice seedlings grown under water either in darkness or in light. The length of the rice coleoptile was positively correlated with the depth of planting in water-saturated vermiculite. The length of coleoptiles of wheat, barley, and oats was not affected by the depth of planting. In rice, the length of coleoptile was determined by the levels of O2, CO2, and ethylene, rather than by light. This regulatory mechanism allows rice seedlings to grow out of shallow water in which the concentration of O2 is limiting.  相似文献   

15.
The volume and composition of the endosperm apoplast of thedeveloping wheat grain, comprising endosperm cavity and intercellularfree-space, was examined in relation to kernel growth rate andsize. Samples of the cavity sap were collected by centrifugationof kernels during the linear phase of grain growth. The cavitysap contained 10–50 mM sucrose, a small amount of hexosesbut a high concentration of oligosaccharides (up to 9 timesthat of sucrose). In comparing cvs Yandilla King and Cleveland,high growth rate was associated with high cavity sap sucroseconcentration but with low K+ concentration. K+ concentrationin the endosperm cells (124 mM) was about 5 times higher thanin the cavity sap (10–40 mM). Cavity sap pH was 6.3–6.6.The uptake of sucrose by endosperm cells was partly inhibitedby PCMBS, an inhibitor of membrane-bound carriers. Several necessaryconditions for proton cotransport during sucrose uptake by endospermcells were met. The volume of the intercellular free-space, estimated by membranepermeating (14C-mannitol, 14C-sucrose) or non-permeating (3H-PEG900)markers averaged 2.2 µl or 5–7% of the water ingrains of cvs Yandilla King, Cleveland and SUN 9E. The cavityvolume was highly variable but tended to be larger in largergrains. Pulse labelling of 14CO2 to flag leaves showed that 14C-sucrosewas the principal 14C-assimilate in the cavity sap and was convertedto insoluble compounds in the endosperm while the cavity sapoligosaccharides acquired negligible label in 6 h. Key words: Wheat, Endosperm apoplast, Sugars  相似文献   

16.
MER  C. L. 《Annals of botany》1951,15(2):179-208
A method of growing Avena seedlings is described, which allowsthem to be handled individually in darkness. Mesocotyls of seedlinge from which the tip of the coleoptileis repeatedly removed are as long as those of control plantsnot so decapitated. Mesocotyls of seedlings which are deseeded on the 3rd day ofgrowth, followed by decapitation of the cleoptile tip on the4th day, are, at 7 days old, as long as those of controls notso decapitated. When deseeded plants are decapitated, regeneration of auxinproduction occurs at the tip of the coleoptile stump. Where a reduction in the length of the mesocotyl results fromdecapitation, a wound reaction is probably concerned in additionto any auxin changes. Removal of the coleoptilar node causes a sharp decrease in thefinal length of the mesocotyl. Heating intact seedlings at 40° C. for 3 hours causes areduction in the length of the mesocotyl but not of the coleoptile.The effect of heating is not reversed by subsequent treatmentat low temperature, which instead appears to augment these effects. When seedlings are exposed to the action of KCN, iodoacetate,or anaerobic conditions, and illuminated while so exposed, perceptionof light takes place, resulting in a reduction in the lengthof the mesocotyl. Perception of light takes place in seedlings germinated at normaltemperatures, but maintained at low temprature during illuminationand also in seedlings grown for 6 weeks at 2° C. withoutany previous growth at normal temperature. Light perception takes place in embryos excised from dry grainand grown on a culture medium. No difference in free amino-acid content is apparent betweendark grown and illuminated seedlings. The effects of illumination survive a period of drying downand become apparent upon subsequent germination of the grainin darkness. The drying process itself causes an additionalreduction in mesocotyl length. It is concluded that auxin itself is not the primary reactantin the perception process, and that the growth of the mesocotylis probably controlled by the coleoptilar node and plumulargrowing point, rather than by auxin diffusing downward fromthe tip of the coleoptile.  相似文献   

17.
14CO2 was assimilated by single leaves (presentation leaves)of tobacco plants for periods of 2–3 hours. The plantswere then kept in air in continuous light and the redistributionof radioactivity determined at various times up to 96 hours.There was a complete turnover of sucrose in the presentationleaf in about 24 hours without change in amount. Starch turnedover more slowly and simultaneously increased in amount. 20–30per cent. of the radioactivity appeared to be irreversibly incorporatedinto the presentation leaf. Of the material exported from thepresentation leaf some 3 per cent. reached the upper leavesand stem apex. Import into leaves above the presentation leafwas completed in about 6 hours. No activity appeared in leavesbelow the presentation leaf, therefore the balance of the exportedactivity was retained in the stem and roots. The distribution of radioactivity in the leaves followed a well-definedpattern determined by the vascular interconnexions. Radioautographs of stem sections provided some information concerningdistribution of radioactivity in the stem.  相似文献   

18.
Seeds of 201 species of 83 genera in the Gramineae were collected from the tropical and subtropical regions of Australia, and the temperate region of China. Pure live seeds of each species were sown in plastic pots, which were filled with the mixture of sand and bits of rotted wood (4:1). Seeded pots were kept in greenhouse at temperature of 20—25°C , and were arranged at random with four replications in each of the two treatments of sowing depth, 10 mm and 0 mm. The seedlings were taken as samples for examining 60 morphological and microscopic characters (Appendix), when they grew to the three-leaved stage. Cluster analysis was made using 60 seedling characters with the 201 species as OTUs. As a result, four clusters are recognized as follows. Cluster 1. Festucoid: The group consisted of all the species of the subfamily Festucoideae, the species of the genera Stipa, Achnatherum, Danthonia and Aristida in the subfamily Arundinoideae, and those of the genus Microlaena in the subfamily Bambusoideae. The seedling mesocotyl elongated or not, but not elongated when grew under light. Mesocotyl roots absent. Scutellum and coleorhiza node roots or coleoptile node roots dominant. The first leaf narrowly linear, erect, acute at the apex, twisting clockwise or counterclockwise; blade and sheath 3—5-nerved, with the blade length/width ratio 61.65 on an average; The second and third leaves narrowly linear, acute or acuminate at the apex. The coleoptile 13.04mm long on an average. The first tiller appeared when the third leaf emerged. Cluster 2. Panicoid: All the species of the subfamily Panicoideae, the species of the genera Eriachne and Monachather in the subfamily Arundinoideae, and the genus Enneapogon in the subfamily Eragrostidoideae were included in this group. The seedling mesocotyl elongated, even if growing under light. Mesocotyl roots present and dominant. Scutellum and coleorhiza node roots absent. The first leaf oblong-lanceolate, oblong-oblanceolate or spathulate, ascendent or horizontal, acuminate or obtuse at apex, not twisting; blade and sheath over 7-nerved, with the blade length/width ratio 8.95 on an average. The second and third leaves linear-lanceolate, lanceolate or oblong-lanceolate, acuminate at the apex. Coleoptile 5.29mm long on an average. The first tiller appeared when the fifth leaf emerged. Cluster 3. Bambusoideae: This group included the species in the subfamily Bambusoideae except those in the genus Microlaena. The first and second leaves without blade in the supertribe Bambusanae. The mesocotyl not elongated. Scutellum and coleorhiza node roots, and coleoptile node roots completely absent, only primary root developed. The mesocotyl elongated, mesocotyl roots absent and coleoptile roots dominant in the supertribe Oryzanae. The blade of the first leaf suppresed, but the second and third leaves both with blade and sheath. Cluster 4. Eragrostidoid: The cluster contained the species in the subfamily Eragrostidoideae except those in the genus Enneapogon. The seedling mesocotyl elongated, but not elongated when grew under light. The mesocotyl roots mostly absent, while the coleoptile node roots dominant. The first leaf linear, almost ascendent, acute at the apex, not twisting, blade and sheath 5—7 (9)-nerved, with the blade length/width ratio 11.69 on an average. The second and third leaves linear, linear-lanceolate or lanceolate, acuminate at the apex. The coleoptile 2.60 mm long on an average. The first tiller appeared when the fifth leaf emerged. The species of the subfamily Arundinoideae were divided into four clusters. The results showed that the Arundinoideae could be considered as primitive member of the family, from which the subfamilies Panicoideae, Eragrostidoideae and Festucoideae are derived and specialized. With exception of a few cases, species in a genus were generally clustered into one unit and grouped into a subcluster unit. Seedling characters, like other taxonomic characters, are of importanttaxonomic significance, and could be used in classification of the Gramineae.  相似文献   

19.
Diffusible auxin levels were measured in coleoptiles and mesocotyls of dark-grown seedlings ofavena sativa (cv. Spear) andZea mays (cv. Golden Cross Bantam) using theAvena curvature bioassay. The coleoptile tip was confirmed as the major auxin source in etiolated seedlings. Auxin levels were found to decrease basipetally in sequent sections of theAvena coleoptile but not to decrease in apical sections of increasing length. An inhibitor capable of inducing positive curvatures ofAvena test coleoptiles was discovered in diffusates from the mesocotyls of oat and corn seedlings. The amount of this inhibitor was correlated with the cessation of mesocotyl growth of oat seedlings grown in darkness, and with the inhibition of mesocotyl growth of corn seedlings exposed to red light.  相似文献   

20.
When solutions of [14C]glycollate, glycine, serine, glycerate,or glucose were supplied to segments of wheat leaves throughtheir cut bases in the light, most of the 14C was incorporatedinto sucrose in air but in CO2-free air less sucrose was made.The synthesis of sucrose was decreased because metabolism ofserine was partly blocked. Sucrose synthesis from glucose andglycerate in CO2-free air was decreased but to a smaller extent;relatively more CO2 was evolved and serine accumulated. Theeffects of DCMU and light of different wavelengths on metabolismby leaves of L-[U-14C]serine confirmed that simultaneous photosyntheticassimilation of carbon was necessary for the conversion of serineto sucrose. Of various products of photosynthesis fed exogenouslyto the leaves -keto acids were the most effective in promotingphotosynthesis of sucrose and release of 14CO2 from 14C-labelledserine. This suggests that in CO2-free air the metabolism ofserine may be limited by a shortage of -keto acid acceptorsfor the amino group. In CO2-free air added glucose stimulatedproduction of CO2 and sucrose from D-[U-14C]- glycerate andno competitive effects were evident even though glucose is convertedrapidly to sucrose under these conditions. In addition to asupply of keto acid, photosynthesis may also provide substratesthat can be degraded and provide energy in the cytoplasm forthe conversion of glycerate to sugar and phosphates and sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号