共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundHytrosaviruses (SGHVs; Hytrosaviridae family) are double-stranded DNA (dsDNA) viruses that cause salivary gland hypertrophy (SGH) syndrome in flies. Two structurally and functionally distinct SGHVs are recognized; Glossina pallidipes SGHV (GpSGHV) and Musca domestica SGHV (MdSGHV), that infect the hematophagous tsetse fly and the filth-feeding housefly, respectively. Genome sizes and gene contents of GpSGHV (~ 190 kb; 160–174 genes) and MdSGHV (~ 124 kb; 108 genes) may reflect an evolution with the SGHV-hosts resulting in differences in pathobiology. Whereas GpSGHV can switch from asymptomatic to symptomatic infections in response to certain unknown cues, MdSGHV solely infects symptomatically. Overt SGH characterizes the symptomatic infections of SGHVs, but whereas MdSGHV induces both nuclear and cellular hypertrophy (enlarged non-replicative cells), GpSGHV induces cellular hyperplasia (enlarged replicative cells). Compared to GpSGHV’s specificity to Glossina species, MdSGHV infects other sympatric muscids. The MdSGHV-induced total shutdown of oogenesis inhibits its vertical transmission, while the GpSGHV’s asymptomatic and symptomatic infections promote vertical and horizontal transmission, respectively. This paper reviews the coevolution of the SGHVs and their hosts (housefly and tsetse fly) based on phylogenetic relatedness of immune gene orthologs/paralogs and compares this with other virus-insect models. ResultsWhereas MdSGHV is not vertically transmitted, GpSGHV is both vertically and horizontally transmitted, and the balance between the two transmission modes may significantly influence the pathogenesis of tsetse virus. The presence and absence of bacterial symbionts (Wigglesworthia and Sodalis) in tsetse and Wolbachia in the housefly, respectively, potentially contributes to the development of SGH symptoms. Unlike MdSGHV, GpSGHV contains not only host-derived proteins, but also appears to have evolutionarily recruited cellular genes from ancestral host(s) into its genome, which, although may be nonessential for viral replication, potentially contribute to the evasion of host’s immune responses. Whereas MdSGHV has evolved strategies to counteract both the housefly’s RNAi and apoptotic responses, the housefly has expanded its repertoire of immune effector, modulator and melanization genes compared to the tsetse fly. ConclusionsThe ecologies and life-histories of the housefly and tsetse fly may significantly influence coevolution of MdSGHV and GpSGHV with their hosts. Although there are still many unanswered questions regarding the pathogenesis of SGHVs, and the extent to which microbiota influence expression of overt SGH symptoms, SGHVs are attractive ‘explorers’ to elucidate the immune responses of their hosts, and the transmission modes of other large DNA viruses. 相似文献
3.
Mycobacterium tuberculosis is the causative agent of pulmonary tuberculosis which has infected one third of the mankind and causes 2-3 million deaths worldwide each year. The persistence of the infection ensues from the ability of M. tuberculosis to subvert host immune responses in favor of survival and growth of mycobacteria in macrophages. The mechanisms by which M. tuberculosis manipulates the host immune system have only recently come to light. These activities are attributed to lipoarabinomannans (LAM) and their precursors lipomannans (LM), two predominant glycolipids of M. tuberculosis cell wall. LM are able to skew anti-mycobacterial immune responses into un-protective ones, while LAM evoke immunosupression upon binding to macrophage and dendritic cell receptors specialized in binding to "self" host components. A newly emerging idea implicates plasma membrane rafts in LM and LAM signaling. Depending on acylation patterns, the glycolipids may either directly incorporate into the raft membrane via mannosylphosphatidylinositol anchors or interact with raft-associated proteins to affect the assembly of receptor signaling complexes. 相似文献
5.
Parasitic nematodes, living in the intestinal tract or within tissues of theirs hosts, are constantly exposed to an array of immune effector mechanisms. One strategy to cope with the immune response is the release of immunomodulatory components that block effector mechanisms or interact with the cytokine network. Among the secreted nematode immunomodulators, cysteine protease inhibitors (cystatins) are shown to be of major importance. Nematode cystatins inhibit, among others, proteases involved in antigen processing and presentation, which leads to a reduction of T cell responses. At the same time nematode cystatins modulate cytokine responses, the most prominent trait being the upregulation of IL-10, a Th2 cytokine, by macrophages. In this situation, IL-10 leads among others to downregulation of costimulatory surface molecules of macrophages. These properties contribute to induction of an anti-inflammatory environment, concomitant with a strong inhibition of cellular proliferation. This setting is believed to favour the survival of worms. An opposite activity of nematode cystatins is the upregulation of production of inducible nitric oxide by IFN-gamma activated macrophages, an intrinsic property of natural cysteine protease inhibitors. This shows that these proteins can act as proinflammatory molecules under certain circumstances. A comparison of the immunomodulatory effects of cystatins of filarial nematodes with homologous proteins of the free-living nematode Caenorhabditis elegans revealed distinct differences. Caenorhabditis elegans cystatins induce the production of the Th1 cytokine IL-12, in contrast to filarial cystatins that upregulate IL-10. Caenorhabditis elegans cystatins hardly inhibit cellular proliferation. These data suggest that cystatins of parasitic nematodes have multiple, specific capacities for immunomodulation, acting in parallel on different immune effector mechanisms. Elucidation of the mechanisms involved might be useful in the development of immunotherapeutic reagents in the future. 相似文献
6.
Helminth parasites bias host CD4(+) T helper (Th) cells toward Th2 responses, drive alternative activation of macrophages, and expand T regulatory cells. Helminth-expressed carbohydrates play critical roles in driving much of this immune cell biasing. Studies on helminth glycans have focused on Lewis X, LDN, LDN-DF, other fucosylated structures, chitin, tyvelose, and trehalose, which interact with host antigen presenting cells (APCs) minimally via C-type lectins and/or Toll-like receptors (TLR). Here, we review recent findings on helminth glycan activation of APCs via C-type lectin/TLRs and introduce the concept that glycosylated helminth molecules require endocytosis to function as immune modulators. Second, we describe unpublished data showing that in vivo glycoconjugates comprising multiple copies of glycans on carriers are directly immune modulatory. Lastly, we discuss the observation that CD14 negatively regulates alternative activation of APCs during helminth infection. We close with a discussion on the use of immune modulatory glycans as vaccine adjuvants and as antiinflammatory therapeutics. 相似文献
7.
Simple predator-prey type models have brought much insight into the dynamics of both nonspecific and antigen-specific immune
responses. However, until now most attention has been focused on examining how the dynamics of interactions between the parasite
and the immune system depends on the nature of the function describing the rate of activation or proliferation of immune cells
in response to the parasite. In this paper we focus on the term describing the killing of the parasite by cell-mediated immune
responses. This term has previously been assumed to be a simple mass-action term dependent solely on the product of the densities
of the parasite and the immune cells and does not take into account a handling time (which we define as the time of interaction
between an immune cell and its target, during which the immune cell cannot interact with and/or destroy additional targets).
We show how the handling time (i) can be incorporated into simple models of nonspecific and specific immunity and (ii) how
it affects the dynamics of both nonspecific and antigen-specific immune responses, and in particular the ability of the immune
response to control the infection. 相似文献
10.
Toll-like receptors (TLRs) are involved in host defence against invading pathogens, functioning as primary sensors of microbial products and activating signalling pathways that induce the expression of immune and pro-inflammatory genes. However, TLRs have also been implicated in several immune-mediated and inflammatory diseases. As the immune system needs to constantly strike a balance between activation and inhibition to avoid detrimental and inappropriate inflammatory responses, TLR signalling must be tightly regulated. Here, we discuss the various negative regulatory mechanisms that have evolved to attenuate TLR signalling to maintain this immunological balance. 相似文献
11.
We develop a mathematical framework for modeling regulatory mechanisms in the immune system. The model describes dynamics of key components of the immune network within two compartments: lymph node and tissue. We demonstrate using numerical simulations that our system can eliminate virus-infected cells, which are characterized by a tendency to increase without control (in absence of an immune response), while tolerating normal cells, which are characterized by a tendency to approach a stable equilibrium population. We experiment with different combinations of T cell reactivities that lead to effective systems and conclude that slightly self-reactive T cells can exist within the immune system and are controlled by regulatory cells. We observe that CD8+ T cell dynamics has two phases. In the first phase, CD8+ cells remain sequestered within the lymph node during a period of proliferation. In the second phase, the CD8+ population emigrates to the tissue and destroys its target population. We also conclude that a self-tolerant system must have a mechanism of central tolerance to ensure that self-reactive T cells are not too self-reactive. Furthermore, the effectiveness of a system depends on a balance between the reactivities of the effector and regulatory T cell populations, where the effectors are slightly more reactive than the regulatory cells. 相似文献
12.
抗生素在养殖业、医疗业及制药业的广泛应用导致环境中的细菌耐药性日益严重,环境中的抗生素及耐药细菌一旦进入人体肠道,将破坏肠道菌群稳态,对人体健康造成威胁,而残存于饮食中的环境污染物则加剧了细菌耐药造成的人体健康影响。文中在总结大量文献的基础上,阐述了细菌耐药对人体和动物肠道菌群的影响机制及其相关的机体免疫调控,以环境中影响人体肠道菌群获得耐药性的来源作为切入点,阐述抗生素和耐药细菌进入人体肠道后对人体肠道菌群结构和耐药基因组成的影响,以及与人体免疫和免疫调节相关疾病之间的相关机制,并对今后的研究方向进行了展望。 相似文献
13.
Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses. 相似文献
14.
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. ( Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis. 相似文献
15.
Although the intestinal epithelium is equipped with multiple defense systems that sense bacterial components, transmit alarms to the immune system, clear the bacteria, and renew the injured epithelial lining, mucosal bacterial pathogens are capable of efficiently colonizing the intestinal epithelium, because they have evolved systems that modulate the inflammatory and immune responses of the host and exploit the harmful environments as replicative niches. In this review we highlight current topics concerning Shigella's tactics that interfere with the innate immune systems. 相似文献
17.
C3a and C5a derived from the human complement components C3 and C5, respectively, were found to possess immunoregulatory activities. C3a was found to be capable of suppressing both antigen-specific and polyclonal antibody responses. In contrast, C3a was unable to suppress antigen- or mitogen-induced B or T cell proliferative responses. Helper T cells were found to be the target of C3a-mediated immunosuppression. Suppression occurred via the generation of suppressor T cells. In contrast to the results obtained with C3a, C5a was found to augment both antigen-specific and non-specific in vitro humoral immune responses. Moreover, C5a potentiated antigen- and alloantigen-induced T cell proliferative responses. As opposed to C3ades Arg-77, C5ades Arg retained all of the immunoregulatory activity associated with the intact molecule. Helper T cells are required for C5a-mediated potentiation of the Fc fragment-mediated polyclonal antibody response. Substitution for T cells by a soluble T cell-replacing factor rendered lymphocytes refractory to the enhancing properties of C5a. 相似文献
18.
Induction of mammalian heme oxygenase (HO)‐1 and exposure of animals to carbon monoxide (CO) ameliorates experimental colitis. When enteric bacteria, including Escherichia coli, are exposed to low iron conditions, they express an HO‐like enzyme, chuS, and metabolize heme into iron, biliverdin and CO. Given the abundance of enteric bacteria residing in the intestinal lumen, our postulate was that commensal intestinal bacteria may be a significant source of CO and those that express chuS and other Ho‐like molecules suppress inflammatory immune responses through release of CO. According to real‐time PCR, exposure of mice to CO results in changes in enteric bacterial composition and increases E. coli 16S and chuS DNA. Moreover, the severity of experimental colitis correlates positively with E. coli chuS expression in IL‐10 deficient mice. To explore functional roles, E. coli were genetically modified to overexpress chuS or the chuS gene was deleted. Co‐culture of chuS‐overexpressing E. coli with bone marrow‐derived macrophages resulted in less IL‐12p40 and greater IL‐10 secretion than in wild‐type or chuS‐deficient E. coli. Mice infected with chuS‐overexpressing E. coli have more hepatic CO and less serum IL‐12 p40 than mice infected with chuS‐deficient E. coli. Thus, CO alters the composition of the commensal intestinal microbiota and expands populations of E. coli that harbor the chuS gene. These bacteria are capable of attenuating innate immune responses through expression of chuS. Bacterial HO‐like molecules and bacteria‐derived CO may represent novel targets for therapeutic intervention in inflammatory conditions. 相似文献
20.
It has long been known that malaria infection causes host immune modulation by various mechanisms. However, the role of Toll-like receptors (TLRs) in mediating innate immune responses to parasite-derived components during the blood stages of malaria has only recently been described. TLRs might have an important role in pathogenesis during malaria infection, as supported by genetic analyses in mice and humans. Moreover, recent findings revealed that sporozoites can partially differentiate in lymph nodes and that liver stages induce the formation of previously unknown parasite-filled vesicles (merosomes) that could function as immune escape machinery. Elucidation of the mechanisms by which the host innate immune system responds to, and/or is manipulated by, Plasmodium infection will hopefully lead to discoveries of potential targets that will ultimately prevent and/or intervene in malaria infection. 相似文献
|