首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type I DnaJs comprise one type of Hsp70 cochaperones. Previously, we showed that two type I DnaJ cochaperones, DjA1 (HSDJ/Hdj-2/Rdj-1/dj2) and DjA2 (cpr3/DNAJ3/Rdj-2/dj3), are important for mitochondrial protein import and luciferase refolding. Another type I DnaJ homolog, DjA4 (mmDjA4/dj4), is highly expressed in heart and testis, and the coexpression of Hsp70 and DjA4 protects against heat stress-induced cell death. Here, we have studied the chaperone functions of DjA4 by assaying the refolding of chemically or thermally denatured luciferase, suppression of luciferase aggregation, and the ATPase of Hsp70s, and compared these activities with those of DjA2. DjA4 stimulates the hydrolysis of ATP by Hsp70. DjA2, but not DjA4, together with Hsp70 caused denatured luciferase to refold efficiently. Together with Hsp70, both DjA2 and DjA4 are efficient in suppressing luciferase aggregation. bag-1 further stimulates ATP hydrolysis and protein refolding by Hsp70 plus DjA2 but not by Hsp70 plus DjA4. Hsp70-2, a testis-specific Hsp70 family member, behaves very similarly to Hsp70 in all these assays. Thus, Hsp70 and Hsp70-2 have similar activities in vitro, and DjA2 and DjA4 can function as partner cochaperones of Hsp70 and Hsp70-2. However, DjA4 is not functionally equivalent in modulating Hsp70s.  相似文献   

2.
Regulation of Hsp70 function by a eukaryotic DnaJ homolog.   总被引:17,自引:0,他引:17  
We report that a purified cytoplasmic Hsp70 homolog from Saccharomyces cerevisiae, Hsp70SSA1, exhibits a weak ATPase activity, which is stimulated by a purified eukaryotic dnaJp homolog (YDJ1p). Stable complex formation between Hsp70SSA1 and the permanently unfolded protein carboxymethylated alpha-lactalbumin (CMLA) was assayed by native gel electrophoresis. The affinity of Hsp70SSA1 for CMLA appeared to be regulated by YDJ1p. Significant reduction in both CMLA-Hsp70SSA1 complex formation and the release of CMLA pre-bound to Hsp70SSA1 was observed only in the presence of both YDJ1p and ATP. Thus, Hsp70SSA1 and YDJ1p interact functionally in the execution of Hsp70SSA1 chaperone activities in the eukaryotic cell.  相似文献   

3.
4.
DnaJ is an essential cochaperone of mammalian heat shock cognate 70 (hsc70) protein. We previously found that dj2 (HSDJ/hdj-2/rdj1), rather than dj1 (hsp40/hdj-1), is a partner DnaJ for the hsc70-based chaperone system. Here, we compared the distribution of dj1, dj2, and the newly found dj3 (cpr3/DNJ3/HIRIP4/rdj2) in cultured cells. Both dj3 as well as dj2 were farnesylated and were ubiquitously expressed. In immunocytochemical and subfractionation studies, these two proteins colocalized with hsc70 under normal conditions. However, dj1 and hsc70 apparently colocalized in the nucleoli after heat shock. Simultaneous depletion of dj2 and dj3 from rabbit reticulocyte lysate markedly reduced mitochondrial import of pre-ornithine transcarbamylase and refolding of guanidine-denatured luciferase. Re-addition of either dj2 or dj3 led to recovery of these reactions. In a reconstituted system, both hsc70-dj2 and hsc70-dj3 were effective in protein refolding. Anti-apoptotic protein bag-1 further stimulated ATP hydrolysis and protein refolding by both pairs. Thus, dj2 and dj3 are the partner DnaJs of hsc70 within the cell, functionally similar and much more efficient than dj1, and bag-1 is a positive cochaperone of the hsc70-dj2 and hsc70-dj3 systems.  相似文献   

5.
DnaK/Hsp70 proteins are universally conserved ATP-dependent molecular chaperones that help proteins adopt and maintain their native conformations. DnaJ/Hsp40 and GrpE are co-chaperones that assist DnaK. CbpA is an Escherichia coli DnaJ homolog. It acts as a multicopy suppressor for dnaJ mutations and functions in vitro in combination with DnaK and GrpE in protein remodeling reactions. CbpA binds nonspecifically to DNA with preference for curved DNA and is a nucleoid-associated protein. The DNA binding and co-chaperone activities of CbpA are modulated by CbpM, a small protein that binds specifically to CbpA. To identify the regions of CbpA involved in the interaction of CbpA with CbpM and those involved in DNA binding, we constructed and characterized deletion and substitution mutants of CbpA. We discovered that CbpA interacted with CbpM through its N-terminal J-domain. We found that the region C-terminal to the J-domain was required for DNA binding. Moreover, we found that the CbpM interaction, DNA binding, and co-chaperone activities were separable; some mutants were proficient in some functions and defective in others.  相似文献   

6.
To elucidate the function of keratins 8 and 18 (K8/18), major components of the intermediate filaments of simple epithelia, we searched for K8/18-binding proteins by screening a yeast two-hybrid library. We report here that human Mrj, a DnaJ/Hsp40 family protein, directly binds to K18. Among the interactions between DnaJ/Hsp40 family proteins and various intermediate filament proteins that we tested using two-hybrid methods, Mrj specifically interacted with K18. Immunostaining with anti-Mrj antibody showed that Mrj colocalized with K8/18 filaments in HeLa cells. Mrj was immunoprecipitated not only with K18, but also with the stress-induced and constitutively expressed heat shock protein Hsp/c70. Mrj bound to K18 through its C terminus and interacted with Hsp/c70 via its N terminus, which contains the J domain. Microinjection of anti-Mrj antibody resulted in the disorganization of K8/18 filaments, without effects on the organization of actin filaments and microtubules. Taken together, these results suggest that Mrj may play an important role in the regulation of K8/18 filament organization as a K18-specific co-chaperone working together with Hsp/c70.  相似文献   

7.
Hepatitis B virus X (HBX) protein is required for the productive infection of hepatitis B virus (HBV) in vivo and implicated in the development of hepatocellular carcinoma. We have previously shown that hTid-1 and Hdj1, the human Hsp40/DnaJ chaperone proteins, bind the HBV core protein and inhibit viral replication in cell culture system. Here, we report evidences to suggest that HBX is the major target of Hdj1 in the inhibition of HBV replication. Expression of Hdj1 in cultured human hepatoma HepG2 cells facilitated degradation of HBX by the proteasome pathway, and thereby inhibited replication of the wild-type HBV as well as that of the HBX-deficient mutant virus rescued by HBX supplied in trans. Mutational analyses indicated that J domain of Hdj1 is required for the process. These results might provide a molecular basis for the antiviral effect of cellular chaperones.  相似文献   

8.
DnaJ homologues function in cooperation with hsp70 family members in various cellular processes including intracellular protein trafficking and folding. Three human DnaJ homologues present in the cytosol have been identified: dj1 (hsp40/hdj-1), dj2 (HSDJ/hdj-2), and neuronal tissue-specific hsj1. dj1 is thought to be engaged in folding of nascent polypeptides, whereas functions of the other DnaJ homologues remain to be elucidated. To investigate roles of dj2 and dj1, we developed a system of chaperone depletion from and readdition to rabbit reticulocyte lysates. Using this system, we found that heat shock cognate 70 protein (hsc70) and dj2, but not dj1, are involved in mitochondrial import of preornithine transcarbamylase. Bacterial DnaJ could replace mammalian dj2 in mitochondrial protein import. We also tested the effects of these DnaJ homologues on folding of guanidine-denatured firefly luciferase. Unexpectedly, dj2, but not dj1, together with hsc70 refolded the protein efficiently. We propose that dj2 is the functional partner DnaJ homologue of hsc70 in the mammalian cytosol. Bacterial DnaJ protein could replace mammalian dj2 in the refolding of luciferase. Thus, the cytosolic chaperone system for mitochondrial protein import and for protein folding is highly conserved, involving DnaK and DnaJ in bacteria, Ssa1–4p and Ydj1p in yeast, and hsc70 and dj2 in mammals.  相似文献   

9.
Temperate bacteriophage lytic development is intrinsically related to the stress response in particular at the DNA replication and virion maturation steps. Alternatively, temperate phages become lysogenic and integrate their genome into the host chromosome. Under stressful conditions, the prophage resumes a lytic development program, and the phage DNA is excised before being replicated. The KplE1 defective prophage of Escherichia coli K12 constitutes a model system because it is fully competent for integrative as well as excisive recombination and presents an atypical recombination module, which is conserved in various phage genomes. In this work, we identified the host-encoded stress-responsive molecular chaperone DnaJ (Hsp40) as an active participant in KplE1 prophage excision. We first show that the recombination directionality factor TorI of KplE1 specifically interacts with DnaJ. In addition, we found that DnaJ dramatically enhances both TorI binding to its DNA target and excisive recombination in vitro. Remarkably, such stimulatory effect by DnaJ was performed independently of its DnaK chaperone partner and did not require a functional DnaJ J-domain. Taken together, our results underline a novel and unsuspected functional interaction between the generic host stress-regulated chaperone and temperate bacteriophage lysogenic development.  相似文献   

10.
Yeast prions are protein-based genetic elements that propagate through cell populations via cytosolic transfer from mother to daughter cell. Molecular chaperone proteins including Hsp70, the Hsp40/J-protein Sis1, and Hsp104 are required for continued prion propagation, however the specific requirements of chaperone proteins differ for various prions. We recently reported that Swa2, the yeast homolog of the mammalian protein auxilin, is specifically required for the propagation of the prion [URE3].1 Troisi EM, Rockman ME, Nguyen PP, Oliver EE, Hines JK. Swa2, the yeast homolog of mammalian auxilin, is specifically required for the propagation of the prion variant [URE3-1]. Mol Microbiol 2015; 97:926-41; PMID:26031938; https://doi.org/10.1111/mmi.13076[Crossref], [PubMed], [Web of Science ®] [Google Scholar] [URE3] propagation requires both a functional J-domain and the tetratricopeptide repeat (TPR) domain of Swa2, but does not require Swa2 clathrin binding. We concluded that the TPR domain determines the specificity of the genetic interaction between Swa2 and [URE3], and that this domain likely interacts with one or more proteins with a C-terminal EEVD motif. Here we extend that analysis to incorporate additional data that supports this hypothesis. We also present new data eliminating Hsp104 as the relevant Swa2 binding partner and discuss our findings in the context of other recent work involving Hsp90. Based on these findings, we propose a new model for Swa2's involvement in [URE3] propagation in which Swa2 and Hsp90 mediate the formation of a multi-protein complex that increases the number of sites available for Hsp104 disaggregation.  相似文献   

11.
Plant steroid hormones, brassinosteroids, are essential for growth, development and responses to environmental stresses in plants. Although BR signaling proteins are localized in many organelles, i.e., the plasma membrane, nuclei, endoplasmic reticulum and vacuole, the details regarding the BR signaling pathway from perception at the cellular membrane receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) to nuclear events include several steps. Brz (Brz220) is a specific inhibitor of BR biosynthesis. In this study, we used Brz-mediated chemical genetics to identify Brz-insensitive-long hypocotyls 2-1D (bil2-1D). The BIL2 gene encodes a mitochondrial-localized DnaJ/Heat shock protein 40 (DnaJ/Hsp40) family, which is involved in protein folding. BIL2-overexpression plants (BIL2-OX) showed cell elongation under Brz treatment, increasing the growth of plant inflorescence and roots, the regulation of BR-responsive gene expression and suppression against the dwarfed BRI1-deficient mutant. BIL2-OX also showed resistance against the mitochondrial ATPase inhibitor oligomycin and higher levels of exogenous ATP compared with wild-type plants. BIL2 participates in resistance against salinity stress and strong light stress. Our results indicate that BIL2 induces cell elongation during BR signaling through the promotion of ATP synthesis in mitochondria.  相似文献   

12.
CbpA, an Escherichia coli DnaJ homolog, can function as a cochaperone for the DnaK/Hsp70 chaperone system, and its in vitro activity can be modulated by CbpM. We discovered that CbpM specifically inhibits the in vivo activity of CbpA, preventing it from functioning in cell growth and division. Furthermore, we have shown that CbpM interacts with CbpA in vivo during stationary phase, suggesting that the inhibition of activity is a result of the interaction. These results reveal that the activity of the E. coli DnaK system can be regulated in vivo by a specific inhibitor.  相似文献   

13.
14.
15.
To investigate the role of the prevacuolar secretion pathway in the trafficking of vacuolar proteins in Candida albicans, the C. albicans homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene VPS4 was cloned and analyzed. Candida albicans VPS4 encodes a deduced AAA-type ATPase that is 75.6% similar to S. cerevisiae Vps4p, and plasmids bearing C. albicans VPS4 complemented the abnormal vacuolar morphology and carboxypeptidase missorting in S. cerevisiae vps4 null mutants. Candida albicans vps4Delta null mutants displayed a characteristic class E vacuolar morphology and multilamellar structures consistent with an aberrant prevacuolar compartment. The C. albicans vps4Delta mutant degraded more extracellular bovine serum albumin than did wild-type strains, which implied that this mutant secreted more extracellular protease activity. These phenotypes were complemented when a wild-type copy of VPS4 was reintroduced into its proper locus. Using a series of protease inhibitors, the origin of this extracellular protease activity was identified as a serine protease, and genetic analyses using a C. albicans vps4Deltaprc1Delta mutant identified this missorted vacuolar protease as carboxypeptidase Y. Unexpectedly, C. albicans Sap2p was not detected in culture supernatants of the vps4Delta mutants. These results indicate that C. albicans VPS4 is required for vacuolar biogenesis and proper sorting of vacuolar proteins.  相似文献   

16.
To perform effectively as a molecular chaperone, DnaK (Hsp70) necessitates the assistance of its DnaJ (Hsp40) co-chaperone partner, which efficiently stimulates its intrinsically weak ATPase activity and facilitates its interaction with polypeptide substrates. In this study, we address the function of the conserved glycine- and phenylalanine-rich (G/F-rich) region of the Escherichia coli DnaJ in the DnaK chaperone cycle. We show that the G/F-rich region is critical for DnaJ co-chaperone functions in vivo and that despite a significant degree of sequence conservation among the G/F-rich regions of Hsp40 homologs from bacteria, yeast, or humans, functional complementation in the context of the E. coli DnaJ is limited. Furthermore, we found that the deletion of the whole G/F-rich region is mirrored by mutations in the conserved Asp-Ile/Val-Phe (DIF) motif contained in this region. Further genetic and biochemical analyses revealed that this amino acid triplet plays a critical role in regulation of the DnaK chaperone cycle, possibly by modulating a crucial step subsequent to DnaK-mediated ATP hydrolysis.  相似文献   

17.
The nuclear mas5 mutation causes temperature-sensitive growth and defects in mitochondrial protein import at the nonpermissive temperature in the yeast Saccharomyces cerevisiae. The MAS5 gene was isolated by complementation of the mutant phenotypes, and integrative transformation demonstrated that the complementing fragment encoded the authentic MAS5 gene. The deduced protein sequence of the cloned gene revealed a polypeptide of 410 amino acids which is homologous to Escherichia coli DnaJ and the yeast DnaJ log SCJ1. Northern (RNA blot) analysis revealed that MAS5 is a heat shock gene whose expression increases moderately at elevated temperatures. Cells with a deletion mutation in MAS5 grew slowly at 23 degrees C and were inviable at 37 degrees C, demonstrating that MAS5 is essential for growth at increased temperatures. The deletion mutant also displayed a modest import defect at 23 degrees C and a substantial import defect at 37 degrees C. These results indicate a role for a DnaJ cognate protein in mitochondrial protein import.  相似文献   

18.
Hsp105alpha and Hsp105beta are stress proteins found in various mammals including human, mouse, and rat, which belong to the Hsp105/Hsp110 protein family. To elucidate their physiological functions, we examined here the chaperone activity of these stress proteins. Hsp105alpha and Hsp105beta prevented the aggregation of firefly luciferase during thermal denaturation, whereas the thermally denatured luciferase was not reactivated by itself or by rabbit reticulocyte lysate (RRL). On the other hand, Hsp105alpha and Hsp105beta suppressed the reactivation of thermally denatured luciferase by RRL and of chemically denatured luciferase by Hsc70/Hsp40 or RRL. Furthermore, although Hsp105alpha and Hsp105beta did not show ATPase activity, the addition of Hsp105alpha or Hsp105beta to Hsc70/Hsp40 enhanced the amount of hydrolysis of ATP greater than that of the Hsp40-stimulated Hsc70 ATPase activity. These findings suggest that Hsp105alpha and Hsp105beta are not only chaperones that prevent thermal aggregation of proteins, but also regulators of the Hsc70 chaperone system in mammalian cells.  相似文献   

19.
We report the purification, molecular cloning, and characterization of a 40-kDa glycerophosphodiester phosphodiesterase homolog from Borrelia hermsii. The 40-kDa protein was solubilized from whole organisms with 0.1% Triton X-100, phase partitioned into the Triton X-114 detergent phase, and purified by fast-performance liquid chromatography (FPLC). The gene encoding the 40-kDa protein was cloned from a B. hermsii chromosomal DNA lambda EXlox expression library and identified by using affinity antibodies generated against the purified native protein. The deduced amino acid sequence included a 20-amino-acid signal peptide encoding a putative leader peptidase II cleavage site, indicating that the 40-kDa protein was a lipoprotein. Based on significant homology (31 to 52% identity) of the 40-kDa protein to glycerophosphodiester phosphodiesterases of Escherichia coli (GlpQ), Bacillus subtilis (GlpQ), and Haemophilus influenzae (Hpd; protein D), we have designated this B. hermsii 40-kDa lipoprotein a glycerophosphodiester phosphodiesterase (Gpd) homolog, the first B. hermsii lipoprotein to have a putative functional assignment. A nonlipidated form of the Gpd homolog was overproduced as a fusion protein in E. coli BL21(DE3)(pLysE) and was used to immunize rabbits to generate specific antiserum. Immunoblot analysis with anti-Gpd serum recognized recombinant H. influenzae protein D, and conversely, antiserum to H. influenzae protein D recognized recombinant B. hermsii Gpd (rGpd), indicating antigenic conservation between these proteins. Antiserum to rGpd also identified native Gpd as a constituent of purified outer membrane vesicles prepared from B. hermsii. Screening of other pathogenic spirochetes with anti-rGpd serum revealed the presence of antigenically related proteins in Borrelia burgdorferi, Treponema pallidum, and Leptospira kirschneri. Further sequence analysis both upstream and downstream of the Gpd homolog showed additional homologs of glycerol metabolism, including a glycerol-3-phosphate transporter (GlpT), a glycerol-3-phosphate dehydrogenase (GlpD), and a thioredoxin reductase (TrxB).  相似文献   

20.
Michimoto T  Aoki T  Toh-e A  Kikuchi Y 《Gene》2000,257(1):131-137
The deletion of the TOM1 gene encoding a putative ubiquitin ligase causes a temperature sensitive cellular growth in Saccharomyces cerevisiae. The arrested cells exhibit pleiotropic defects in nuclear division, maintenance of nuclear structure and heat stress responses. We previously identified a zuo1 mutation as an extragenic suppressor of the tom1 mutant. ZUO1 encodes a DnaJ-related Hsp40. Here we show that a recessive cold sensitive mutation in PDR13 coding for an Hsp70 suppressed the tom1 mutation. The pdr13 deletion mutant was sensitive to high osmolarity, just like the zuo1 deletion mutant. A zuo1 pdr13 double deletion mutant did not show additive phenotypes. Furthermore, a tagged-Zuo1p was co-immunoprecipitated with a tagged-Pdr13p. Taken together, we propose that Pdr13p and Zuo1p are a new pair of Hsp70:Hsp40 molecular chaperones. In addition, Pdr13p co-sedimented with translating ribosomes and this association was independent of the presence of Zuo1p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号