首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Bovine seminal ribonuclease (BS-RNase), a homodimeric protein displaying selective cytotoxicity towards tumor cells, is isolated as a mixture of two isoforms, a dimeric form in which the chains swap their N-termini, and an unswapped dimer. In the cytosolic reducing environment, the dimeric form in which the chains swap their N-termini is converted into a noncovalent dimer (termed NCD), in which the monomers remain intertwined through their N-terminal ends. The quaternary structure renders the reduced protein resistant to the ribonuclease inhibitor, a protein that binds most ribonucleases with very high affinity. On the other hand, upon selective reduction, the unswapped dimer is converted in two monomers, which are readily bound and inactivated by the ribonuclease inhibitor. On the basis of these considerations, it has been proposed that the cytotoxic activity of BS-RNase relies on the 3D structure and stability of its NCD derivative. Here, we report a comparison of the thermodynamic and chemical stability of the NCD form of BS-RNase with that of the monomeric derivative, together with an investigation of the thermal dissociation mechanism revealing the presence of a dimeric intermediate. In addition, we report that the replacement of of Arg80 by Ser significantly decreases the cytotoxic activity of BS-RNase and the stability of the NCD form with respect to the parent protein, but does not affect the ribonucleolytic activity or the dissociation mechanism. The data show the importance of Arg80 for the cytotoxicity of BS-RNase, and also support the hypothesis that the reduced derivative of BS-RNase is responsible for its cytotoxic activity.  相似文献   

2.
To assess the relative importance of backbone hydrogen bonding (H-bonding) vs. side chain hydrophobicity in protein structural formation, a method called side chain-backbone swap is proposed. Such a method swaps the side chain and backbone portions of certain amino acid residues, such as Asp, Glu, Asn, Gln, Lys, and Arg. Such a swap retains the sequence of a polypeptide and preserves the identity of the backbone linkage. On the other hand, the swap disrupts backbone H-bonding geometry because of the introduction of extra methylene groups into the peptide backbone. In this project, we chose the two-stranded alpha-helical coiled-coil to implement side chain-backbone swap. A pair of 36-residue peptides was designed. The two peptides have identical sequence with four residues in each heptad repeat occupied by glutamyl residues. Each glutamic acid was incorporated either as alpha-glutamyl residue (the peptide is denoted as alpha-Glu-36) or as gamma-glutamyl residue (the peptide is denoted as gamma-Glu-36). The inter-conversion between the two peptides constitutes a side chain-backbone swap. Residues constituting the hydrophobic core of the coiled-coil, however, are left unchanged. The peptide pair was characterized by circular dichroism spectroscopy, reversed-phase liquid chromatography (RPLC), and two-dimensional nuclear magnetic resonance (NMR). The results indicate that alpha-Glu-36 is a two-stranded alpha-helical coiled-coil while gamma-Glu-36 lacks stable structural elements. It is concluded that, at least for coiled-coils where hydrophobic interactions are predominantly long-range, local backbone H-bonding is a required for structural formation, consistent with a hierarchic folding mechanism. The methodological implication of side chain-backbone swap is also discussed.  相似文献   

3.
Three-dimensional domain swapping is a common phenomenon in pancreatic-like ribonucleases. In the aggregated state, these proteins acquire new biological functions, including selective cytotoxicity against tumour cells. RNase A is able to dislocate both N- and C-termini, but usually this process requires denaturing conditions. In contrast, bovine seminal ribonuclease (BS-RNase), which is a homo-dimeric protein sharing 80% of sequence identity with RNase A, occurs natively as a mixture of swapped and unswapped isoforms. The presence of two disulfides bridging the subunits, indeed, ensures a dimeric structure also to the unswapped molecule. In vitro, the two BS-RNase isoforms interconvert under physiological conditions. Since the tendency to swap is often related to the instability of the monomeric proteins, in these paper we have analysed in detail the stability in solution of the monomeric derivative of BS-RNase (mBS) by a combination of NMR studies and Molecular Dynamics Simulations. The refinement of NMR structure and relaxation data indicate a close similarity with RNase A, without any evidence of aggregation or partial opening. The high compactness of mBS structure is confirmed also by H/D exchange, urea denaturation, and TEMPOL mapping of the protein surface. The present extensive structural and dynamic investigation of (monomeric) mBS did not show any experimental evidence that could explain the known differences in swapping between BS-RNase and RNase A. Hence, we conclude that the swapping in BS-RNase must be influenced by the distinct features of the dimers, suggesting a prominent role for the interchain disulfide bridges.  相似文献   

4.
Bovine seminal ribonuclease (BS-RNase), the only dimeric protein among the pancreatic-like ribonucleases, is endowed with special structural features and with biological functions beyond enzymatic activity. In solution, the protein exists as an equilibrium mixture of two forms, with or without exchange (or swapping) of the N-terminal arms. After selective reduction and alkylation of the two intrachain disulfide bridges, the dimeric protein can be transformed into a monomeric derivative that has a ribonuclease activity higher than that of the parent dimeric protein but is devoid of the special biological functions. A detailed investigation of the structural features of this protein in solution, in comparison with those of other monomeric ribonucleases, may help unveil the structural details which induce swapping of the N-terminal arms of BS-RNase. The solution structure of the recombinant monomeric form of BS-RNase, as determined by 3D heteronuclear NMR, shows close similarity with that of bovine pancreatic ribonuclease (RNase A) in all regions characterized by regular elements of secondary structure. However, significant differences are present in the flexible regions, which could account for the different behavior of the two proteins. To characterize in detail these regions, we have measured H/D exchange rate constants, temperature coefficients and heteronuclear NOEs of backbone amides for both RNase A and monomeric BS-RNase. The results indicate a large difference in the backbone flexibility of the hinge peptide segment 16-22 of the two proteins, which could provide the molecular basis to explain the ability of BS-RNase subunits to swap their N-terminal arms.  相似文献   

5.
Sun JM  Li TH  Cong PS  Tang SN  Xiong WW 《Molecular & cellular proteomics : MCP》2012,11(7):M111.016808-M111.016808-8
Identification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space. The backbone string of a query can be accurately predicted by two innovative technologies: a knowledge-driven sequence alignment and encoding of a backbone string element profile. Then, the predicted backbone string is employed to align against a backbone string database and retrieve a set of backbone string neighbors. The backbone string neighbors were shown to be close to native structures of query proteins. BS-align was successfully employed to predict models of 10 membrane proteins with lengths ranging between 229 and 595 residues, and whose high-resolution structural determinations were difficult to elucidate both by experiment and prediction. The obtained TM-scores and root mean square deviations of the models confirmed that the models based on the backbone string neighbors retrieved by the BS-align were very close to the native membrane structures although the query and the neighbor shared a very low sequence identity. The backbone string system represents a new road for the prediction of protein structure from sequence, and suggests that the similarity of the backbone string would be more informative than describing a protein as belonging to a fold.  相似文献   

6.
Here we report the worldwide first results on long-term variability of marine phytoplankton taxonomic size structure based on traditional taxonomic size spectra (TTSS). The Plymouth Marine Laboratory monitoring database for station L4 was used to build annual TTSS patterns (1992-2005) and estimate their similarity with the help of hierarchical cluster analysis. Almost identical TTSS patterns were observed each year. While the height of the main peaks was slightly variable, their horizontal positions were unchanged. Whereas the above patterns resembled the phytoplankton TTSS established for the subtropical Lake Kinneret, the L4 spectrum size range was much broader and the distance between the main peaks approximately two times greater. The similarity level (Pearson r = 0.872-0.992) in TTSS pairs for station L4 was comparable to the estimates established at several lakes, while being much higher than in the inter-ecosystem (L4 and Kinneret) pairs (r = 0.317-0.578). Thus, the phenomenon of long-term consistency of phytoplankton taxonomic size structure, found previously at freshwater ecosystems, for the first time is confirmed for marine phytoplankton, which speaks in favor of much higher generality of this important structural property of aquatic communities. The TTSS multi-annual consistency can be helpful for long-term monitoring, environment protection and forecasting. The evident and permanent difference in the peak positions between ecosystems opens a way for additional analyses which can be helpful for the development of theoretical models. A set of plausible mechanisms, capable to produce and support the empirically obtained distribution patterns, is discussed.  相似文献   

7.
Sinorhizobium fredii USDA257 forms nitrogen-fixing nodules in association with the primitive soybean cultivar 'Peking' but fails to initiate nodules on many advanced soybean cultivars, including 'McCall'. This distinction is controlled by a set of nodulation genes termed nolXWBTUV. Inactivation of any of these genes enables USDA257 to nodulate McCall and many other improved soybean cultivars. Mutation in the nolXWBTUV locus also alters the Nod factor structure resulting in the production of a novel molecule with glucose incorporated into the chitin backbone. Some of the genes located in the nolXWBTUV locus reveal sequence homologies to known components of the type III secretion system (TTSS) of plant and animal pathogenic bacteria. Recent studies have demonstrated the presence of a complete TTSS in USDA257 and few other symbiotic bacteria. The TTSS cluster of USDA257 contains 27 open reading frames out of which 10 code for the structural components of the TTSS. USDA257, when grown in presence of flavonoids, secrete several proteins called Nops (Nodulation Outer Proteins) into the extracellular environment. Genes located in the TTSS of USDA257 encode some of the extracellular proteins, such as NopX, NopB, and NopL. These type III secreted proteins appear to play an important role in regulating nodulation in a host-dependent manner. Failure to elaborate the Nops results in a drastic phenotypic effect on soybean nodulation, indicating that these proteins may play a pivotal role in soybean cultivar specificity. The secretion of Nops appears to be facilitated by novel filamentous appendages (pili) that are produced by USDA257 upon induction by flavonoids. Biochemical studies have demonstrated the close association of several Nops with the purified pili. However, it remains to be seen if the filamentous appendages can function as conduits for delivery of Nops into the host cell. This review examines the current state of our knowledge on the molecular aspects of soybean cultivar-specific nodulation by USDA257.  相似文献   

8.
Bovine seminal ribonuclease is a unique case of protein dimorphism, since it exists in two dimeric forms, with different biological and kinetic behavior, which interconvert into one another through three-dimensional swapping. Here we report the crystal structure, at 2.2 A resolution, of the unswapped form of bovine seminal ribonuclease. Besides completing the structural definition of bovine seminal ribonuclease conformational dimorphism, this study provides the structural basis to explain the dependence of the enzyme cooperative effects on its swapping state.  相似文献   

9.
Gram-negative bacteria commonly interact with eukaryotic host cells using type III secretion systems (TTSSs or secretons), which comprise cytoplasmic, transmembrane and extracellular domains. The extracellular domain is a hollow needle-like structure protruding 60 nm beyond the bacterial surface. The TTSS is activated to transfer bacterial proteins directly into a host cell only upon physical contact with the target cell. We showed previously that the monomer of the Shigella flexneri needle, MxiH, assembles into a helical structure with parameters similar to those defining the architecture of the extracellular components of bacterial flagella. By analogy with flagella, which are known to exist in different helical states, we proposed that changes in the helical packing of the needle might be used to sense host cell contact. Here, we show that, on the contrary, mutations within MxiH that lock the TTSS into altered secretion states do not detectably alter the helical packing of needles. This implies that either: (1) host cell contact is signalled through the TTSS via helical changes in the needle that are significantly smaller than those linked to structural changes in the flagellar filament and therefore too small to be detected by our analysis methods or (2) that signal transduction in this system occurs via a novel molecular mechanism.  相似文献   

10.
Gram-negative bacteria commonly interact with animal and plant hosts using type III secretion systems (TTSSs) for translocation of proteins into eukaryotic cells during infection. 10 of the 25 TTSS-encoding genes are homologous to components of the bacterial flagellar basal body, which the TTSS needle complex morphologically resembles. This indicates a common ancestry, although no TTSS sequence homologues for the genes encoding the flagellum are found. We here present an approximately 16-A structure of the central component, the needle, of the TTSS. Although the needle subunit is significantly smaller and shares no sequence homology with the flagellar hook and filament, it shares a common helical architecture ( approximately 5.6 subunits/turn, 24-A helical pitch). This common architecture implies that there will be further mechanistic analogies in the functioning of these two bacterial systems.  相似文献   

11.
3D structure of EspA filaments from enteropathogenic Escherichia coli   总被引:4,自引:0,他引:4  
The type III secretion system (TTSS) is a modular apparatus assembled by many pathogenic Gram-negative bacteria and is designed to translocate proteins through the bacterial cell wall into the eukaryotic host cell. The conserved components of the TTSS comprise stacks of rings spanning the inner and outer bacterial membrane and a narrow, needle-like structure projecting outwards. The TTSS of enteropathogenic E. coli is unique in that one of the translocator proteins, EspA, polymerizes to form an extension to the needle complex which interacts with the host cell. In this study we present the 3D structure of EspA filaments to c. 26 A resolution determined from electron micrographs of negatively stained preparations by image processing. The structure comprises a helical tube with a diameter of 120 A enclosing a central channel of 25 A diameter through which effector proteins may be transported. The subunit arrangement corresponds to a one-start helix with 28 subunits present in five turns of the helix and an axial rise of 4.6 A per subunit. This is the first report of a 3D structure of a filamentous extension to the TTSS.  相似文献   

12.
The existence of a large number of proteins for which both nuclear magnetic resonance (NMR) and X-ray crystallographic coordinates have been deposited into the Protein Data Bank (PDB) makes the statistical comparison of the corresponding crystal and NMR structural models over a large data set possible, and facilitates the study of the effect of the crystal environment and other factors on structure. We present an approach for detecting statistically significant structural differences between crystal and NMR structural models which is based on structural superposition and the analysis of the distributions of atomic positions relative to a mean structure. We apply this to a set of 148 protein structure pairs (crystal vs NMR), and analyze the results in terms of methodological and physical sources of structural difference. For every one of the 148 structure pairs, the backbone root-mean-square distance (RMSD) over core atoms of the crystal structure to the mean NMR structure is larger than the average RMSD of the members of the NMR ensemble to the mean, with 76% of the structure pairs having an RMSD of the crystal structure to the mean more than a factor of two larger than the average RMSD of the NMR ensemble. On average, the backbone RMSD over core atoms of crystal structure to the mean NMR is approximately 1 A. If non-core atoms are included, this increases to 1.4 A due to the presence of variability in loops and similar regions of the protein. The observed structural differences are only weakly correlated with the age and quality of the structural model and differences in conditions under which the models were determined. We examine steric clashes when a putative crystalline lattice is constructed using a representative NMR structure, and find that repulsive crystal packing plays a minor role in the observed differences between crystal and NMR structures. The observed structural differences likely have a combination of physical and methodological causes. Stabilizing attractive interactions arising from intermolecular crystal contacts which shift the equilibrium of the crystal structure relative to the NMR structure is a likely physical source which can account for some of the observed differences. Methodological sources of apparent structural difference include insufficient sampling or other issues which could give rise to errors in the estimates of the precision and/or accuracy.  相似文献   

13.
14.
The type III secretion system (TTSS) of Gram-negative bacterial pathogens delivers effector proteins required for virulence directly into the cytosol of host cells. Delivery of many effectors depends on association with specific cognate chaperones in the bacterial cytosol. The mechanism of chaperone action is not understood. Here we present biochemical and crystallographic results on the Yersinia SycE-YopE chaperone-effector complex that contradict previous models of chaperone function and demonstrate that chaperone action is isolated to only a small portion of the effector. This, together with evidence for stereochemical conservation between chaperone-effector complexes, which are otherwise unrelated in sequence, indicates that these complexes function as general, three-dimensional TTSS secretion signals and may endow a temporal order to secretion.  相似文献   

15.
Toward probing the influence of backbone structural variation in cationic lipid mediated gene delivery of α-tocopherol based lipids, two novel α-tocopherol based lipids 1 and 2 have been designed and synthesized. The only structural difference between the cationic amphiphiles 1 and 2 is the backbone structure, where lipid 1 has a non-glycerol backbone and lipid 2 has a glycerol backbone. The lipids 1 and 2 showed contrasting transfection efficiencies: lipid 1 showed high gene transfer efficacy in multiple cultured animals cell lines, whereas lipid 2 is transfection incompetent. In summary, the present findings demonstrate that in the case of α-tocopherol based lipids even minor structural variations like backbone can profoundly influence size, DNA binding characteristics, cellular uptake, and consequently gene delivery efficacies.  相似文献   

16.
Type III secretion systems (TTSSs) are essential mediators of the interaction of many Gram-negative bacteria with human, animal or plant hosts. Extensive sequence and functional similarities exist between components of TTSS from bacteria as diverse as animal and plant pathogens. Recent crystal structure determinations of TTSS proteins reveal extensive structural homologies and novel structural motifs and provide a basis on which protein interaction networks start to be drawn within the TTSSs, that are consistent with and help rationalize genetic and biochemical data. Such studies, along with electron microscopy, also established common architectural design and function among the TTSSs of plant and mammalian pathogens, as well as between the TTSS injectisome and the flagellum. Recent comparative genomic analysis, bioinformatic genome mining and genome-wide functional screening have revealed an unsuspected number of newly discovered effectors, especially in plant pathogens and uncovered a wider distribution of TTSS in pathogenic, symbiotic and commensal bacteria. Functional proteomics and analysis further reveals common themes in TTSS effector functions across phylogenetic host and pathogen boundaries. Based on advances in TTSS biology, new diagnostics, crop protection and drug development applications, as well as new cell biology research tools are beginning to emerge.  相似文献   

17.
Bovine seminal ribonuclease (BS-RNase) is a covalent homodimeric enzyme homologous to pancreatic ribonuclease (RNase A), endowed with a number of special biological functions. It is isolated as an equilibrium mixture of swapped (MxM) and unswapped (M=M) dimers. The interchanged N termini are hinged on the main bodies through the peptide 16-22, which changes conformation in the two isomers. At variance with other proteins, domain swapping in BS-RNase involves two dimers having a similar and highly constrained quaternary association, mainly dictated by two interchain disulfide bonds. This provides the opportunity to study the intrinsic ability to swap as a function of the hinge sequence, without additional effects arising from dissociation or quaternary structure modifications. Two variants, having Pro19 or the whole sequence of the hinge replaced by the corresponding residues of RNase A, show equilibrium and kinetic parameters of the swapping similar to those of the parent protein. In comparison, the x-ray structures of MxM indicate, within a substantial constancy of the quaternary association, a greater mobility of the hinge residues. The relative insensitivity of the swapping tendency to the substitutions in the hinge region, and in particular to the replacement of Pro19 by Ala, contrasts with the results obtained for other swapped proteins and can be rationalized in terms of the unique features of the seminal enzyme. Moreover, the results indirectly lend credit to the hypothesis that the major role of Pro19 resides in directing the assembly of the non-covalent dimer, the species produced by selective reduction of the interchain disulfides and considered responsible for the special biological functions of BS-RNase.  相似文献   

18.
Structural genomics (or proteomics) activities are critically dependent on the availability of high-throughput structure determination methodology. Development of such methodology has been a particular challenge for NMR based structure determination because of the demands for isotopic labeling of proteins and the requirements for very long data acquisition times. We present here a methodology that gains efficiency from a focus on determination of backbone structures of proteins as opposed to full structures with all sidechains in place. This focus is appropriate given the presumption that many protein structures in the future will be built using computational methods that start from representative fold family structures and replace as many as 70% of the sidechains in the course of structure determination. The methodology we present is based primarily on residual dipolar couplings (RDCs), readily accessible NMR observables that constrain the orientation of backbone fragments irrespective of separation in space. A new software tool is described for the assembly of backbone fragments under RDC constraints and an application to a structural genomics target is presented. The target is an 8.7 kDa protein from Pyrococcus furiosus, PF1061, that was previously not well annotated, and had a nearest structurally characterized neighbor with only 33% sequence identity. The structure produced shows structural similarity to this sequence homologue, but also shows similarity to other proteins, which suggests a functional role in sulfur transfer. Given the backbone structure and a possible functional link this should be an ideal target for development of modeling methods. This revised version was published online in March 2005 with corrections to the references.  相似文献   

19.
Bovine seminal ribonuclease exists in the native state as an equilibrium mixture of a swapped and an unswapped dimer. The molecular envelope and the exposed surface of the two isomers are practically indistinguishable and their diversity is almost completely buried in the interior of the protein. Surprisingly, the cytotoxic and antitumor activity of the enzyme is a peculiar property of the swapped dimer. This buried diversity comes into light in the reducing environment of the cytosol, where the unswapped dimer dissociates into monomers, whereas the swapped one generates a metastable dimeric form (NCD-BS) with a quaternary assembly that allows the molecule to escape the protein inhibitor of ribonucleases. The stability of this quaternary shape was mainly attributed to the combined presence of Pro19 and Leu28. We have prepared and fully characterized by X-ray diffraction the double mutant P19A/L28Q (PALQ) of the seminal enzyme. While the swapped and unswapped forms of the mutant have structures very similar to that of the corresponding wild-type forms, the non-covalent form (NCD-PALQ) adopts an opened quaternary structure, different from that of NCD-BS. Moreover, model building clearly indicates that NCD-PALQ can be easily sequestered by the protein inhibitor. In agreement with these results, cytotoxic assays have revealed that PALQ has limited activity, whereas the single mutants P19A and L28Q display cytotoxic activity against malignant cells almost as large as the wild-type enzyme. The significant increase in the antitumor activity, brought about by the substitution of just two residues in going from the double mutant to the wild-type enzyme, suggests a new strategy to improve this important biological property by strengthening the interface that stabilizes the quaternary structure of NCD-BS.  相似文献   

20.
Structural genomics (or proteomics) activities are critically dependent on the availability of high-throughput structure determination methodology. Development of such methodology has been a particular challenge for NMR based structure determination because of the demands for isotopic labeling of proteins and the requirements for very long data acquisition times. We present here a methodology that gains efficiency from a focus on determination of backbone structures of proteins as opposed to full structures with all sidechains in place. This focus is appropriate given the presumption that many protein structures in the future will be built using computational methods that start from representative fold family structures and replace as many as 70% of the sidechains in the course of structure determination. The methodology we present is based primarily on residual dipolar couplings (RDCs), readily accessible NMR observables that constrain the orientation of backbone fragments irrespective of separation in space. A new software tool is described for the assembly of backbone fragments under RDC constraints and an application to a structural genomics target is presented. The target is an 8.7 kDa protein from Pyrococcus furiosus, PF1061, that was previously not well annotated, and had a nearest structurally characterized neighbor with only 33% sequence identity. The structure produced shows structural similarity to this sequence homologue, but also shows similarity to other proteins, which suggests a functional role in sulfur transfer. Given the backbone structure and a possible functional link this should be an ideal target for development of modeling methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号