首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims:  To examine plant terpenoids as inducers of TCE (trichloroethylene) biotransformation by an indigenous microbial community originating from a plume of TCE-contaminated groundwater.
Methods and Results:  One-litre microcosms of groundwater were spiked with 100 μmol 1−1 of TCE and amended weekly for 16 weeks with 20 μl 1−1 of the following plant monoterpenes: linalool, pulegone, R-(+) carvone, S-(−) carvone, farnesol, cumene. Yeast extract-amended and unamended control treatments were also prepared. The addition of R-carvone and S-carvone, linalool and cumene resulted in the biotransformation of upwards of 88% of the TCE, significantly more than the unamendment control (61%). The aforementioned group of terpenes also significantly ( P  < 0·05) allowed more TCE to be degraded than the remaining two terpenes (farnesol and pulegone), and the yeast extract treatment which biotransformed 74–75% of the TCE. The microbial community profile was monitored by denaturing gradient gel electrophoresis and demonstrated much greater similarities between the microbial communities in terpene-amended treatments than in the yeast extract or unamended controls.
Conclusions:  TCE biotransformation can be significantly enhanced through the addition of selected plant terpenoids.
Significance and Impact of the Study:  Plant terpenoid and nutrient supplementation to groundwater might provide an environmentally benign means of enhancing the rate of in situ TCE bioremediation.  相似文献   

2.
A series of chiral pyridazin-3(2H)-ones was synthesized, separated as pure enantiomers, and evaluated for N-formyl peptide receptor (FPR) agonist activity. Characterization of the purified enantiomers using combined chiral HPLC and chiroptical studies (circular dichroism, allowed unambiguous assignment of the absolute configuration for each pair of enantiomers). Evaluation of the ability of racemic mixtures and purified enantiomers to stimulate intracellular Ca(2+) flux in FPR-transfected HL-60 cells and human neutrophils and to induce β-arrestin recruitment in FPR-transfected CHO-K1 cells showed that many enantiomers were potent agonists, inducing responses in the sub-micromolar to nanomolar range. Furthermore, FPRs exhibited enantiomer selectivity, generally preferring the R-(-)-forms over the S-(+)-enantiomers. Finally, we found that elongation of the carbon chain in the chiral center of the active compounds generally increased biological activity. Thus, these studies provide important new information regarding molecular features involved in FPR ligand preference and report the identification of a novel series of FPR agonists.  相似文献   

3.
Gu X  Wang P  Liu D  Lv C  Lu Y  Zhou Z 《Chirality》2008,20(2):125-129
The stereoselective degradation of the racemic benalaxyl in vegetables such as tomato, tobacco, sugar beet, capsicum, and the soil has been investigated. The two enantiomers of benalaxyl in the matrix were extracted by organic solvent and determined by validated chiral high-performance liquid chromatography with a cellulose-tris-(3, 5-dimethylphenylcarbamate)-based chiral column. Rac-benalaxyl was fortified into the soil and foliar applied to vegetables. The assay method was linear over a range of concentrations (0.5-50 microg ml(-1)) and the mean recoveries in all the samples were more than 70% for the two enantiomers. The limit of detection for both enantiomers was 0.05 microg g(-1). The results in soil showed that R-(-)-enantiomer dissipated faster than S-(+)-enantiomer and the stereoselectivity might be caused by microorganisms. In tomato, tobacco, sugar, beet, and capsicum plants, there was significantly stereoselective metabolism. The preferential absorption and degradation of S-(+)-enantiomer resulted an enrichment of the R-(-)-enantiomer residue in all the vegetables.  相似文献   

4.
Seasonal patterns of groundwater and sediment microbial communities were explored in a hydrologically dynamic alpine oligotrophic porous aquifer, characterized by pronounced groundwater table fluctuations. Rising of the groundwater level in consequence of snow melting water recharge was accompanied by a dramatic drop of bacterial Shannon diversity in groundwater from H' = 3.22 ± 0.28 in autumn and winter to H' = 1.31 ± 0.35 in spring and summer, evaluated based on T-RFLP community fingerprinting. Elevated numbers of bacteria in groundwater in autumn followed nutrient inputs via recharge from summer rains and correlated well with highest concentrations of assimilable organic carbon. Sterile sediments incubated to groundwater in monitoring wells were readily colonized reaching maximum cell densities within 2 months, followed by a consecutive but delayed increase and leveling-off of bacterial diversity. After 1 year of incubation, the initially sterile sediments exhibited a similar number of bacteria and Shannon diversity when compared to vital sediment from a nearby river incubated in parallel. The river bed sediment microbial communities hardly changed in composition, diversity, and cell numbers during 1 year of exposure to groundwater. Summing up, the seasonal hydrological dynamics were found to induce considerable dynamics of microbial communities suspended in groundwater, while sediment communities seem unaffected and stable in terms of biomass and diversity.  相似文献   

5.
Using a conditioning paradigm, the olfactory sensitivity of six CD-1 mice for the enantiomers of carvone and of limonene as well as for their racemic mixtures was investigated. With all six stimuli, the animals significantly discriminated concentrations 相似文献   

6.
Abstract

The study of microbial communities in river sediments contaminated by thallium (Tl) is necessary to achieve the information for in-situ microbially mediated bioremediation. However, little is known about the microbial community in Tl-contaminated river sediments. In the present study, we characterized the microbial community and their responses to Tl pollution in river sediments from the Tl-mineralized Lanmuchang area, Southwest Guizhou, China. Illumina sequencing of 16S rRNA amplicons revealed that over 40 phyla belong to the domain bacteria. In all samples, Proteobacteria, Cyanobacteria, and Actinobacteria were the most dominant phyla. Based on the UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree and PCoA (Principal Coordinates Analysis) analysis, microbial composition of each segment was distinct, indicating in-situ geochemical parameters (including Tl, sulfate, TOC, Eh, and pH) had influenced on the microbial communities. Moreover, canonical correspondence analysis (CCA) was employed to further elucidate the impact of geochemical parameters on the distribution of microbial communities in local river sediments. The results indicated that a number of microbial communities including Cyanobacteria, Spirochaete, Hydrogenophaga, and Acinetobacter were positively correlated with total Tl, suggesting potential roles of these microbes to Tl tolerance or to biogeochemical cycling of Tl. Our results suggested a reliable location for the microbial community’s diversity in the presence of high concentrations of Tl and might have a potential association for in-situ bioremediation strategies of Tl-contaminated river. Overall, in situ microbial community could provide a useful tool for monitoring and assessing geo-environmental stressors in Tl-polluted river sediments.  相似文献   

7.
Intraperitoneally administered R-(?)- and S-(+)- enantiomers of 2,5-dimethoxy-4-bromoamphetamine were evaluated for their ability to induce head-body shake, limb flick and abortive grooming behaviors in cats. The R-(?)-enantiomer was consistently more effective than the S-(+)-isomer in all three behavioral measures. Dose-response relationships were evident for head-body shakes and limb flicks for both enantiomers, but reliable abortive grooming responses appeared only after the higher doses of R-(?)-DOB. Cinanserin and methysergide pretreatments effectively antagonized the induction of head-body shakes and limb flicks by 0.1 mg/kg R-(?)-DOB. In addition, haloperidol pretreatment significantly antagonized the appearance of these behaviors suggesting that dopaminergic as well as serotonergic stimulation is involved in the elicitation of these cat behaviors by R-(?)-DOB.  相似文献   

8.
Microbial communities are essential for a healthy soil ecosystem. Metals and radionuclides can exert a persistent pressure on the soil microbial community. However, little is known on the effect of long-term co-contamination of metals and radionuclides on the microbial community structure and functionality. We investigated the impact of historical discharges of the phosphate and nuclear industry on the microbial community in the Grote Nete river basin in Belgium. Eight locations were sampled along a transect to the river edge and one location further in the field. Chemical analysis demonstrated a metal and radionuclide contamination gradient and revealed a distinct clustering of the locations based on all metadata. Moreover, a relation between the chemical parameters and the bacterial community structure was demonstrated. Although no difference in biomass was observed between locations, cultivation-dependent experiments showed that communities from contaminated locations survived better on singular metals than communities from control locations. Furthermore, nitrification, a key soil ecosystem process seemed affected in contaminated locations when combining metadata with microbial profiling. These results indicate that long-term metal and radionuclide pollution impacts the microbial community structure and functionality and provides important fundamental insights into microbial community dynamics in co-metal-radionuclide contaminated sites.  相似文献   

9.
A sensitive and enantioselective method was developed and validated for the determination of ondansetron enantiomers in human plasma using enantioselective liquid chromatography-tandem mass spectrometry. The enantiomers of ondansetron were extracted from plasma using ethyl acetate under alkaline conditions. HPLC separation was performed on an ovomucoid column using an isocratic mobile phase of methanol-5 mM ammonium acetate-acetic acid (20:80:0.02, v/v/v) at a flow rate of 0.40 mL/min. Acquisition of mass spectrometric data was performed in multiple reaction monitoring mode, using the transitions of m/z 294-->170 for ondansetron enantiomers, and m/z 285-->124 for tropisetron (internal standard). The method was linear in the concentration range of 0.10-40 ng/mL for each enantiomer using 200 microL of plasma. The lower limit of quantification (LLOQ) for each enantiomer was 0.10 ng/mL. The intra- and inter-assay precision was 3.7-11.6% and 5.6-12.3% for R-(-)-ondansetron and S-(+)-ondansetron, respectively. The accuracy was 100.4-107.1% for R-(-)-ondansetron and 103.3-104.9% for S-(+)-ondansetron. No chiral inversion was observed during the plasma storage, preparation and analysis. The method was successfully applied to characterize the pharmacokinetic profiles of ondansetron enantiomers in healthy volunteers after an intravenous infusion of 8 mg racemic ondansetron.  相似文献   

10.
Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA). Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling microbial community composition and function.  相似文献   

11.
Investigating biological control over soil carbon temperature sensitivity   总被引:2,自引:0,他引:2  
Understanding the temperature sensitivity of soil respiration is critical for predicting the response of ecosystems to climate change, yet the microbial communities responsible are rarely considered explicitly in studies or models. In this study, we assessed total microbial community composition, quantified bacterial respiration temperature response, and investigated the temperature dependence of bacterial carbon substrate utilization in tropical, temperate, and taiga soils (from Puerto Rico, California, and Alaska). Microbial community composition was characterized using phospholipid fatty acid analysis. Bacterial community respiration on a standardized set of substrates was ascertained using the BiOLOG substrate utilization assay incubated at four temperatures: 4, 12, 28, and 40 °C. First, we found that microbial communities from the three latitudes were compositionally distinct and that the bacterial component of the three communities had markedly different respiration temperature–response curves corresponding with their experienced temperature regimes. We use these data to highlight limitations of widely used temperature–response equations and investigate temperature-dependent patterns of substrate utilization. We found that temperature response, in terms of both respiration rates and substrate use, varied for these bacterial communities independent of substrate quality or quantity interactions such as labile depletion. In contrast to the common assumption of heterotrophic microbial ubiquity, we found that bacterial community differences from these diverse systems appeared to determine both rates of respiration and patterns of carbon substrate usage. We suggest that microbial community composition-specific responses to changing climate may be important in predicting the long-term role of ecosystems in atmospheric CO2 dynamics.  相似文献   

12.
The occurrence of pharmaceuticals in the environment represents a challenge of emerging concern. Many pharmaceuticals are chiral compounds; however, few studies have examined the relative toxicity of pharmaceutical enantiomers to wildlife. Further, our understanding of stereospecific pharmacokinetics remains largely informed by research on humans and a few well‐studied laboratory test animals, and not by studies conducted with environmentally relevant species, including fish. The objective of this study was to investigate whether rainbow trout display stereospecific in vitro metabolism of three common chiral pharmaceuticals. Metabolism by trout liver S9 fractions was evaluated using a substrate depletion approach, which provides an estimate of intrinsic hepatic clearance (CLIN VITRO,INT). No biotransformation was observed for rac‐, R‐, or S‐fluoxetine. Ibuprofen, including both enantiomers and the racemic mixture, appeared to undergo slow metabolism, but the resulting substrate depletion curves did not differ significantly from those of inactive controls. Contrary to relative clearance rates in humans, S(?)‐propranolol was more rapidly cleared than the R(+)‐ enantiomer. This work demonstrates that relative clearance rates and the effects of racemic mixtures in trout could not have been predicted based on human data. Additional research describing species differences and exploring tools for species extrapolation in biomedical and environmental studies is needed. Chirality 25:763–767, 2013, © 2013 Wiley Periodicals, Inc.  相似文献   

13.
The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic food web based on the consumption of organic carbon entrained from downwelling surface water or from upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these heterotrophic food webs and perform essential functions in lotic ecosystems. Using a suite of methods (denaturing gradient gel electrophoresis, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct microscopic enumeration, and quantitative PCR), we compared the microbial communities inhabiting the hyporheic zone of six different river sites that encompass a wide range of sediment metal loads resulting from large base-metal mining activity in the region. There was no correlation between sediment metal content and the total hyporheic microbial biomass present within each site. However, microbial community structure showed a significant linear relationship with the sediment metal loads. The abundances of four phylogenetic groups (groups I, II, III, and IV) most closely related to α-, β-, and γ-proteobacteria and the cyanobacteria, respectively, were determined. The sediment metal content gradient was positively correlated with group III abundance and negatively correlated with group II abundance. No correlation was apparent with regard to group I or IV abundance. This is the first documentation of a relationship between fluvially deposited heavy-metal contamination and hyporheic microbial community structure. The information presented here may be useful in predicting long-term effects of heavy-metal contamination in streams and provides a basis for further studies of metal effects on hyporheic microbial communities.  相似文献   

14.
The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic food web based on the consumption of organic carbon entrained from downwelling surface water or from upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these heterotrophic food webs and perform essential functions in lotic ecosystems. Using a suite of methods (denaturing gradient gel electrophoresis, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct microscopic enumeration, and quantitative PCR), we compared the microbial communities inhabiting the hyporheic zone of six different river sites that encompass a wide range of sediment metal loads resulting from large base-metal mining activity in the region. There was no correlation between sediment metal content and the total hyporheic microbial biomass present within each site. However, microbial community structure showed a significant linear relationship with the sediment metal loads. The abundances of four phylogenetic groups (groups I, II, III, and IV) most closely related to alpha-, beta-, and gamma-proteobacteria and the cyanobacteria, respectively, were determined. The sediment metal content gradient was positively correlated with group III abundance and negatively correlated with group II abundance. No correlation was apparent with regard to group I or IV abundance. This is the first documentation of a relationship between fluvially deposited heavy-metal contamination and hyporheic microbial community structure. The information presented here may be useful in predicting long-term effects of heavy-metal contamination in streams and provides a basis for further studies of metal effects on hyporheic microbial communities.  相似文献   

15.
The capacity to utilize carbon substrates is fundamental to the functioning of heterotrophic microbial communities in aquatic environments. Carbon-source utilization within the water column, however, is not a bulk property because microbial communities are patchily distributed on suspended organic aggregates (i.e., marine snow, marine aggregates, river aggregates, organic detritus, and bioflocs). In this study, Biolog Ecoplates were used to evaluate the metabolic capacity of heterotrophic bacterial communities associated with aggregates compared to communities in the surrounding water. Overall, aggregate-associated microbial communities demonstrated higher levels of metabolism, metabolic versatility, and functional redundancy, and a more consistent pattern of carbon-source utilization compared with water-associated communities. In addition, aggregate-associated communities more effectively exploited available resources, including representatives from several biochemical guilds and nitrogen-containing carbon sources. Within the aggregate-associated microbial community, metabolic activity was significantly higher in the presence of polymers, amino acids, and carbohydrates relative to amines and carboxylic acids. In comparison, metabolic activity of water-associated communities exceeded a threshold value for only two of the five guilds (polymers and carbohydrates) evaluated. These results suggest that compared with their free-living counterparts, aggregate-associated communities have a greater capacity to respond to a wider array of carbon inputs. Results also underscore the importance of targeting organic aggregates to better understand the role of microbial processes in ecosystem functioning.  相似文献   

16.
The heterogeneous nature of lotic habitats plays an important role in the complex ecological and evolutionary processes that structure the microbial communities within them. Due to such complexity, our understanding of lotic microbial ecology still lacks conceptual frameworks for the ecological processes that shape these communities. We explored how bacterial community composition and underlying ecological assembly processes differ between lotic habitats by examining community composition and inferring community assembly processes across four major habitat types (free-living, particle-associated, biofilm on benthic stones and rocks, and sediment). This was conducted at 12 river sites from headwater streams to the main river in the River Thames, UK. Our results indicate that there are distinct differences in the bacterial communities between four major habitat types, with contrasting ecological processes shaping their community assembly processes. While the mobile free-living and particle-associated communities were consistently less diverse than the fixed sediment and biofilm communities, the latter two communities displayed higher homogeneity across the sampling sites. This indicates that the relative influence of deterministic environmental filtering is elevated in sediment and biofilm communities compared with free-living and particle-associated communities, where stochastic processes play a larger role.  相似文献   

17.
Denitrification by the sessile microbial community of the River Tamagawa was studied in laboratory experiments. Inorganic nitrogen loss was observed when river water was incubated with sessile microbial community of the river in a continuously circulating system. It was confirmed by the 15N tracer technique that both sessile microbial communities of unpolluted and polluted areas had denitrifying activity, even though they were incubated in oxygenated river water. The denitrification rate of the sessile microbial community taken from a polluted area, measured by the 15N tracer technique, was 8–16 mg N/m2/day in October and December, 1977, and it was enhanced 10-fold by raising the water temperature from 14 to 30° C. Denitrification in the river was also suggested by determining the N2: Ar ratio of gases evolved from the river bed.  相似文献   

18.
Fenoldopam (SK&F 82526) is a potent and selective dopamine DA-1 agonist with demonstrated renal vasodilator and antihypertensive activities in experimental animals and humans. Fenoldopam is a racemic mixture of two enantiomers, SK&F R-82526 and SK&F S-82526. The R-enantiomer is uniformly reported to be more potent than the racemate; in contrast, there is controversy regarding potency of the S-enantiomer. In these studies, the renal and systemic hemodynamic activities of fenoldopam and its enantiomers are characterized in anesthetized, phenoxybenzamine-treated dogs. The results show that the renal and systemic vasodilator activities of fenoldopam are properties of the R-enantiomer; the S-enantiomer is essentially inactive. The renal and systemic vasodilator properties of SK&F R-82526 are antagonized in a competitive fashion by the DA-1 antagonist, SK&F R-83566, but not the DA-2 antagonist, domperidone. Ganglionic blockade did not attenuate renal vasodilation associated with SK&F R-82526. Thus, the mechanism of SK&F R-82526-associated vasodilation, like that previously established for fenoldopam, is via stimulation of postganglionic DA-1 receptors.  相似文献   

19.
Here, we evaluated stereoselectivity in monoterpenes (MTs) ability to disturb membrane dynamics. Correlations between molecular structure and physicochemical properties of pinenes, menthols, and carvones enantiomers were investigated through cluster and principal component analysis. Therefore, MTs' concentration‐dependent changes in light scattering and diphenylhexatriene (DPH) fluorescence polarization induced by MTs were measured on large unilamellar vesicles (LUVs) of dipalmitoylphosphatidylcholine. The behavior of the less polar compounds (hydrocarbons) was characterized by a membrane expansion (increase in light scattering), detectable within the low‐concentration range. They remained in the membrane up to the highest concentrations tested exhibiting a concentration‐dependent anisotropy decrease. Within the more polar terpenes (alcohols) prevailed a budding phenomenon with the production of small LUVs with roughly constant curvature (more evident at medium and high concentrations), which explains the slight change in microviscosity (DPH fluorescence anisotropy). These behaviors were compatible with the deeper localization within the membrane core of the formers compared with the latters as predicted from the corresponding polar charge distribution in their molecular structures. The enantioselectivity was expressed by neomenthol at low concentration and carvone at medium concentration. Inhibition and potentiation were evidenced, within the low‐concentration range, by the racemic mixtures in neomenthol and β‐pinenes, respectively. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

20.
Ma X  Chen T  Zhang G  Wang R 《Folia microbiologica》2004,49(2):105-111
The microbial community structure along an altitude gradient was investigated in different localities, in Kalasi lake, Urumqi river and Sangong river, Xingjiang (China). The mean numbers of DAPI (4',6-diamidino-2-phenylindole)-stained cells were lower in Kalasi lake than that in Urumqi river and Sangong river; these differences were attributed to increasing environmental harshness including lower soil organic carbon and nitrogen content, more acidic pH and lower annual temperature. In each locality, the numbers of bacteria and archaea measured with two fluorescence-labeled 16S rRNA oligonucleotide probes (EUB338 and ARCH915) were higher in a coniferous forest and lower in desert vegetation. A significant and positive relationship was found between microbial and soil organic carbon and total nitrogen along the altitudinal gradient, indicating that plant communities and soil nutrients influence the soil microbial structure. The results show that the microbial population in higher latitudinal site was fewer than lower latitudinal one, soil microorganisms were positively correlated to soil organic carbon and total nitrogen, and plant communities had an obviously impact on soil microbes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号