首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
Rpb9 is a small subunit of yeast RNA polymerase II participating in elongation and formed of two conserved zinc domains. rpb9 mutants are viable, with a strong sensitivity to nucleotide-depleting drugs. Deleting the C-terminal domain down to the first 57 amino acids has no detectable growth defect. Thus, the critical part of Rpb9 is limited to a N-terminal half that contacts the lobe of the second largest subunit (Rpb2) and forms a beta-addition motif with the "jaw" of the largest subunit (Rpb1). Rpb9 has homology to the TFIIS elongation factor, but mutants inactivated for both proteins are indistinguishable from rpb9 single mutants. In contrast, rpb9 mutants are lethal in cells lacking the histone acetyltransferase activity of the RNA polymerase II Elongator and SAGA factors. In a two-hybrid test, Rpb9 physically interacts with Tfa1, the largest subunit of TFIIE. The interacting fragment, comprising amino acids 62-164 of Tfa1, belongs to a conserved zinc motif. Tfa1 is immunoprecipitated by RNA polymerase II. This co-purification is strongly reduced in rpb9-Delta, suggesting that Rpb9 contributes to the recruitment of TFIIE on RNA polymerase II.  相似文献   

5.
6.
7.
8.
9.
10.
11.
A mammalian temperature-sensitive mutant tsAF8 shows cell cycle arrest at nonpermissive temperatures in mid-G1 phase. DNA sequence comparison of the largest subunit of RNA polymerase II (Rpb1) from the wild-type and the mutant shows that the mutant phenotype results from a (hemizygous) C-to-A variation at nucleotide 944 in one rpb1 allele, giving rise to an Ala-to-Asp substitution at residue 315 in the protein. This amino acid substitution was introduced into the Schizosaccharomyces pombe rpb1 gene. Whereas tsAF8 cells showed growth defects and altered Rpb1 distribution at nonpermissive temperatures, yeast cells harboring this amino acid substitution did not show apparent temperature sensitivity. The effect of another temperature-sensitive Rpb1 mutation was also small. These results suggest that mutation of the rpb1 gene, which is critical in mammalian cells, may not be deleterious in yeast cells.  相似文献   

12.
13.
A full-length cDNA of the rpb8+ gene encoding a common subunit Rpb8 of nuclear RNA polymerases I-III only specific for Eucarya was isolated from an expression library of the fission yeast Schizosaccharomyces pombe. The primary structure of the corresponding fragment of the Sz. pombe genome was also established. The rpb8+ gene contains two short introns, 59 and 48 bp long. Only short segments of homology were found upon comparing the Rpb8 subunit homologs from various eukaryotic species, and substantial differences exist between the corresponding proteins of unicellular and multicellular organisms. Subunit Rpb8 of Sz. pombe proved to be the smallest one among the known related proteins: it lacks the 21-aa fragment corresponding to amino acids residues 68-88 of the central part of the homologous subunit ABC14.5 of Saccharomyces cerevisiae. Accordingly, subunit Rpb8 of the fission yeast was not capable of substituting in vivo subunit ABC14.5 in nuclear RNA polymerases of the baker's yeast.  相似文献   

14.
15.
RNA polymerase II from the fission yeast Schizosaccharomyces pombe consists of 12 species of subunits, Rpb1–Rpb12. We expressed these subunits, except Rpb4, simultaneously in cultured insect cells with baculovirus expression vectors. For the isolation of subunit complexes formed in the virus-infected cells, a glutathione S-transferase (GST) sequence was fused to the rpb3 cDNA to produce GSTRpb3 fusion protein and a decahistidine-tag sequence was inserted into the rpb1 cDNA to produce Rpb1H protein. After successive affinity chromatography on glutathione and Ni2+ columns, complexes consisting of the seven subunits, Rpb1H, Rpb2, GSTRpb3, Rpb5, Rpb7, Rpb8 and Rpb11, were identified. Omission of the GST–Rpb3 expression resulted in reduced assembly of the Rpb11 into the complex. Direct interaction between Rpb3 and the other six subunits was detected by pairwise coexpression experiments. Coexpression of various combinations of a few subunits revealed that Rpb11 enhances Rpb3–Rpb8 interaction and consequently Rpb8 enhances Rpb1–Rpb3 interaction to some extent. We propose a mechanism in which the assembly of RNA poly-merase II is stabilized through multiple subunit–subunit contacts.  相似文献   

16.
17.
18.
《Gene》1998,221(1):11-16
Both the rpb9 gene and its cDNA encoding the subunit 9 of RNA polymerase II were cloned from the fission yeast Schizosaccharomyces pombe. From the DNA sequences, Rpb9 was predicted to consist of 113 amino acid residues with a molecular mass of 13 175. S. pombe Rpb9 is 47, 40 and 36% identical in amino acid sequence to the corresponding subunits from Saccharomyces cerevisiae, human and Drosophila melanogaster, respectively. Previously, we failed to detect Rpb9 in the purified RNA polymerase II by amino-terminal micro-sequencing of proteolytic fragments of subunits separated by SDS-gel electrophoresis. After Western blot analysis using antibodies raised against the protein product of the newly isolated rpb9 gene, we found that the purified RNA polymerase II contains Rpb9.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号