首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
From 1975 to 1978, 37 isolates of Pasteurella multocida, 1 of Salmonella enteriditis, and 5 of Francisella tularensis were recovered from 42 mammalian specimens and 1 flea pool submitted for examination for evidence of infection with Yersinia pestis. Most of the specimens were collected during investigations of either a human plague infection or a reported epizootic among rodent populations. All specimens were of species regularly or occasionally involved in plague or tularemia cycles in nature and most were collected in areas of known plague or tularemia activity.  相似文献   

3.
Francisella tularensis live vaccine strain infection of mice has been established as an experimental model of tularemia that is suitable for studies of immune mechanisms against the intracellular pathogen. In this study, the model was used to explore immunogenic repertoire of F. tularensis with the aim of identifying new molecules able to activate the host immune system, potential bacterial markers with vaccine, and diagnostic applications. Immunoproteomic approach based on the combination of two-dimensional gel electrophoresis, immunoblotting, and mass spectrometry was applied. Globally, 36 different proteins were identified, which strongly reacted with sera from experimentally infected mice, including several putative virulence markers of intracellular pathogens as nucleoside diphosphate kinase, isocitrate dehydrogenase, RNA-binding protein Hfq, and molecular chaperone ClpB. Of them, 27 proteins are described for the first time as immunorelevant Francisella proteins. When comparing murine immunoproteome of F. tularensis with our previous data from human patients, 25 of the total of 50 identified murine sera immunoreactive spots were recognized by human sera collected from patients suffering from tularemia, as well. Immune sera from two Lps gene congenic strains of mice, C3H/HeN (Lpsn) and C3H/HeJ (Lpsd), represented murine immunoproteome in this study. The spectrum of immunoreactive spots detected by two-dimensional immunoblotting varied throughout the course of infection depending on murine strain. Nevertheless, the antibody patterns of the two strains showed significant homogeneity in being directed against almost identical subset of antigens.  相似文献   

4.
Francisella tularensis, the causative agent of tularemia, is a category A biodefense agent. The examination of gene function in this organism is limited due to the lack of available controllable promoters. Here, we identify a promoter element of F. tularensis LVS that is repressed by glucose (termed the Francisella glucose-repressible promoter, or FGRp), allowing the management of downstream gene expression. In bacteria cultured in medium lacking glucose, this promoter induced the expression of a red fluorescent protein allele, tdtomato. FGRp activity was used to produce antisense RNA of iglC, an important virulence factor, which severely reduced IglC protein levels. Cultivation in glucose-containing medium restored IglC levels, indicating the usefulness of this promoter for controlling both exogenous and chromosomal gene expression. Moreover, FGRp was shown to be active during the infection of human macrophages by using the fluorescence reporter. In this environment, the FGRp-mediated expression of antisense iglC by F. tularensis LVS resulted in reduced bacterial fitness, demonstrating the applicability of this promoter. An analysis of the genomic sequence indicated that this promoter region controls a gene, FTL_0580, encoding a hypothetical protein. A deletion analysis determined the critical sites essential for FGRp activity to be located within a 44-bp region. This is the first report of a conditional promoter and the use of antisense constructs in F. tularensis, valuable genetic tools for studying gene function both in vitro and in vivo.  相似文献   

5.
Francisella tularensis is a highly virulent bacterium responsible for the zoonotic disease tularemia. It is a facultative intracellular pathogen that replicates in the cytoplasm of host cells, particularly in macrophages. Here we show that F. tularensis live vaccine strain (LVS) expresses a novel small RNA (sRNA), which modulates the virulence capacities of the bacterium. When this sRNA, designated FtrC (for Francisella tularensisRNA C), is expressed at high levels, F. tularensis replicates in macrophages less efficiently than the wild-type parent strain. Similarly, high expression of FtrC reduces the number of viable bacteria recovered from the spleen and liver of infected mice. Our data demonstrate that expression of gene FTL_1293 is regulated by FtrC. Furthermore, we show by in vitro gel shift assays that FtrC interacts specifically with FTL_1293 mRNA and that this happens independently of the RNA chaperone Hfq. Remarkably, FtrC interacts only with full-length FTL_1293 mRNA. These results, combined with a bioinformatic analysis, indicate that FtrC interacts with the central region of the mRNA and hence does not act by sterically hindering access of the ribosome to the mRNA. We further show that gene FTL_1293 is not required for F. tularensis virulence in vitro or in vivo, which indicates that another unidentified FtrC target modulates the virulence capacity of the bacterium.  相似文献   

6.
Interferon-gamma (IFN-γ) inhibits intracellular replication of Francisella tularensis in human monocyte-derived macrophages (HMDM) and in mice, but the mechanisms of this protective effect are poorly characterized. We used genome-wide RNA interference (RNAi) screening in the human macrophage cell line THP-1 to identify genes that mediate the beneficial effects of IFN-γ on F. tularensis infection. A primary screen identified ~200 replicated candidate genes. These were prioritized according to mRNA expression in IFN-γ-primed and F. tularensis-challenged macrophages. A panel of 20 top hits was further assessed by re-testing using individual shRNAs or siRNAs in THP-1 cells, HMDMs and primary human lung macrophages. Six of eight validated genes tested were also found to confer resistance to Listeria monocytogenes infection, suggesting a broadly shared host gene program for intracellular pathogens. The F. tularensis-validated hits included 'druggable' targets such as TNFRSF9, which encodes CD137. Treating HMDM with a blocking antibody to CD137 confirmed a beneficial role of CD137 in macrophage clearance of F. tularensis. These studies reveal a number of important mediators of IFN-γ activated host defense against intracellular pathogens, and implicate CD137 as a potential therapeutic target and regulator of macrophage interactions with Francisella tularensis.  相似文献   

7.
Francisella tularensis is a facultative intracellular pathogen that infects a wide variety of mammals and causes tularemia in humans. It is recognized as a potential agent of bioterrorism due to its low infectious dose and multiple routes of transmission. To date, genetic manipulation in Francisella spp. has been limited due to the inefficiency of DNA transformation, the relative lack of useful selective markers, and the lack of stably replicating plasmids. Therefore, the goal of this study was to develop an enhanced shuttle plasmid that could be utilized for a variety of genetic procedures in both Francisella and Escherichia coli. A hybrid plasmid, pFNLTP1, was isolated that was transformed by electroporation at frequencies of >1 x 10(7) CFU mug of DNA(-1) in F. tularensis LVS, Francisella novicida U112, and E. coli DH5alpha. Furthermore, this plasmid was stably maintained in F. tularensis LVS after passage in the absence of antibiotic selection in vitro and after 3 days of growth in J774A.1 macrophages. Importantly, F. tularensis LVS derivatives carrying pFNLTP1 were unaltered in their growth characteristics in laboratory medium and macrophages compared to wild-type LVS. We also constructed derivatives of pFNLTP1 containing expanded multiple cloning sites or temperature-sensitive mutations that failed to allow plasmid replication in F. tularensis LVS at the nonpermissive temperature. In addition, the utility of pFNLTP1 as a vehicle for gene expression, as well as complementation, was demonstrated. In summary, we describe construction of a Francisella shuttle plasmid that is transformed at high efficiency, is stably maintained, and does not alter the growth of Francisella in macrophages. This new tool should significantly enhance genetic manipulation and characterization of F. tularensis and other Francisella biotypes.  相似文献   

8.
9.
Following detection of putative Francisella species in aerosol samples from Houston, Texas, we surveyed soil and water samples from the area for the agent of tularemia, Francisella tularensis, and related species. The initial survey used 16S rRNA gene primers to detect Francisella species and related organisms by PCR amplification of DNA extracts from environmental samples. This analysis indicated that sequences related to Francisella were present in one water and seven soil samples. This is the first report of the detection of Francisella-related species in soil samples by DNA-based methods. Cloning and sequencing of PCR products indicated the presence of a wide variety of Francisella-related species. Sequences from two soil samples were 99.9% similar to previously reported sequences from F. tularensis isolates and may represent new subspecies. Additional analyses with primer sets developed for detection and differentiation of F. tularensis subspecies support the finding of very close relatives to known F. tularensis strains in some samples. While the pathogenicity of these organisms is unknown, they have the potential to be detected in F. tularensis-specific assays. Similarly, a potential new subspecies of Francisella philomiragia was identified. The majority of sequences obtained, while more similar to those of Francisella than to any other genus, were phylogenetically distinct from known species and formed several new clades potentially representing new species or genera. The results of this study revise our understanding of the diversity and distribution of Francisella and have implications for tularemia epidemiology and our ability to detect bioterrorist activities.  相似文献   

10.
The immune response to intracellular bacterium, Francisella tularensis, which causes tularemia and is proposed to be a potential bioterrorism pathogen, has been studied in mice using the attenuated live vaccine strain (LVS). Here we review this infection model, which provides a convenient means of studying protective immune mechanisms not only for Francisella, but also for the large and important class of intracellular pathogens.  相似文献   

11.
Studies of the molecular mechanisms of pathogenesis of Francisella tularensis, the causative agent of tularemia, have been hampered by a lack of genetic techniques for rapid targeted gene disruption in the most virulent subspecies. Here we describe efficient targeted gene disruption in F. tularensis utilizing mobile group II introns (targetrons) specifically optimized for F. tularensis. Utilizing a targetron targeted to blaB, which encodes ampicillin resistance, we showed that the system works at high efficiency in three different subspecies: F. tularensis subsp. tularensis, F. tularensis subsp. holarctica, and "F. tularensis subsp. novicida." A targetron was also utilized to inactivate F. tularensis subsp. holarctica iglC, a gene required for virulence. The iglC gene is located within the Francisella pathogenicity island (FPI), which has been duplicated in the most virulent subspecies. Importantly, the iglC targetron targeted both copies simultaneously, resulting in a strain mutated in both iglC genes in a single step. This system will help illuminate the contributions of specific genes, and especially those within the FPI, to the pathogenesis of this poorly studied organism.  相似文献   

12.
Francisella tularensis, the causative agent of tularemia, is a highly infectious intracellular pathogen with no licensed vaccine available today. The recent search for genome sequences involved in F. tularensis virulence mechanisms led to the identification of the 30-kb region defined as a Francisella pathogenicity island (FPI). In our previous iTRAQ study we described the concerted upregulation of some FPI proteins in different F. tularensis strains cultivated under stress conditions. Among them we identified the IglH protein whose role in Francisella virulence has not been characterized yet. In this work we deleted the iglH gene in a European clinical isolate of F. tularensis subsp. holarctica FSC200. We showed that the iglH gene is necessary for intracellular growth and escape of F. tularensis from phagosomes. We also showed that the iglH mutant is avirulent in a mouse model of infection and persists in the organs for about three weeks after infection. Importantly, mice vaccinated by infection with the iglH mutant were protected against subcutaneous challenge with the fully virulent parental FSC200 strain. This is the first report of a defined subsp. holarctica FPI deletion strain that provides protective immunity against subsequent subcutaneous challenge with a virulent isolate of F. tularensis subsp. holarctica.  相似文献   

13.
Francisella tularensis causes the zoonosis tularemia in humans and is one of the most virulent bacterial pathogens. We utilized a global proteomic approach to characterize protein changes in bronchoalveolar lavage fluid from mice exposed to one of three organisms, F. tularensis ssp. novicida, an avirulent mutant of F. tularensis ssp. novicida (F.t. novicida-ΔmglA), and Pseudomonas aeruginosa. The composition of bronchoalveolar lavage fluid (BALF) proteins was altered following infection, including proteins involved in neutrophil activation, oxidative stress, and inflammatory responses. Components of the innate immune response were induced including the acute phase response and the complement system; however, the timing of their induction varied. F. tularensis ssp. novicida infected mice do not appear to have an effective innate immune response in the first hours of infection; however, within 24 h, they show an upregulation of innate immune response proteins. This delayed response is in contrast to P. aeruginosa infected animals which show an early innate immune response. Likewise, F.t. novicida-ΔmglA infection initiates an early innate immune response; however, this response is diminished by 24 h. Finally, this study identifies several candidate biomarkers, including Chitinase 3-like-1 (CHI3L1 or YKL-40) and peroxiredoxin 1, that are associated with F. tularensis ssp. novicida but not P. aeruginosa infection.  相似文献   

14.
The presence of Francisella-like endosymbionts in tick species known to transmit tularemia poses a potential diagnostic problem for laboratories that screen tick samples by PCR for Francisella tularensis. Tick samples initially considered positive for F. tularensis based on standard 16S rRNA gene PCR were found to be positive only for Francisella-like endosymbionts using a multitarget F. tularensis TaqMan assay (ISFtu2, tul4, and iglC) and 16S rRNA gene sequencing. Specificity of PCR-based diagnostics for F. tularensis should be carefully evaluated with appropriate specimen types prior to diagnostic use.  相似文献   

15.
Tularemia, caused by the gram-negative bacterium Francisella tularensis, is a severe, sometimes fatal disease. Interest in tularemia has increased over the last decade due to its history as a biological weapon. In particular, development of novel vaccines directed at protecting against pneumonic tularemia has been an important goal. Previous work has demonstrated that, when delivered at very high inoculums, administration of live, highly attenuated strains of virulent F. tularensis can protect against tularemia. However, lower vaccinating inoculums did not offer similar immunity. One concern of using live vaccines is that the host may develop mild tularemia in response to infection and use of high inoculums may contribute to this issue. Thus, generation of a live vaccine that can efficiently protect against tularemia when delivered in low numbers, e.g. <100 organisms, may address this concern. Herein we describe the ability of three defined, attenuated mutants of F. tularensis SchuS4, deleted for FTT0369c, FTT1676, or FTT0369c and FTT1676, respectively, to engender protective immunity against tularemia when delivered at concentrations of approximately 50 or fewer bacteria. Attenuated strains for use as vaccines were selected by their inability to efficiently replicate in macrophages in vitro and impaired replication and dissemination in vivo. Although all strains were defective for replication in vitro within macrophages, protective efficacy of each attenuated mutant was correlated with their ability to modestly replicate and disseminate in the host. Finally, we demonstrate the parenteral vaccination with these strains offered superior protection against pneumonic tularemia than intranasal vaccination. Together our data provides proof of principle that low dose attenuated vaccines may be a viable goal in development of novel vaccines directed against tularemia.  相似文献   

16.
17.
Francisella tularensis is a highly infectious zoonotic agent causing the disease tularemia. The common hamster (Cricetus cricetus) is considered a pest in eastern Europe, and believed to be a source of human tularemia infections. We examined the role of the common hamster in the natural cycle of tularemia using serologic methods on 900 hamsters and real-time polymerase chain reaction (PCR) on 100 hamsters in an endemic agricultural area. We collected 374 Ixodes acuminatus ticks from the hamsters and tested them by real-time PCR. All tests were negative. To examine clinical signs, pathology, and histopathology of acute tularemia infection similar to the natural infection, two hamsters were infected with a large dose of a wild strain of F. tularensis ssp. holarctica. After a short period of apathy, the animals died on the eighth and ninth days postinfection. The pathologic, histopathologic, and immunohistochemical examination contributed to the diagnosis of septicemia in both cases. Our results confirmed previous findings that common hamsters are highly sensitive to F. tularensis. We conclude that although septicemic hamsters may pose substantial risk to humans during tularemia outbreaks, hamsters in interepizootic periods do not act as a main reservoir of F. tularensis.  相似文献   

18.
19.
《Autophagy》2013,9(1):125-128
The Gram-negative intracellular pathogen Francisella tularensis is known for its ability to dampen host immune responses. We recently performed a microarray analsyis comparing human monocyte responses to the highly virulent F. tularensis tularensis Schu S4 strain (F.t.) versus the less virulent F. tularensis novicida (F.n.).1 Many groups of genes were affected, including those involved with autophagy and with the regulation of autophagy. Here, we discuss the implications in the context of Francisella virulence and host cell response, then conclude with potential future experiments.  相似文献   

20.
The data on the epidemiological and epizootological manifestations of tularemia on the territory of the Ulyanovsk region are presented. The characteristics describing the process of the of Francisella tularensis circulation as well as the environmental objects, most important for the manifestations of tularemia infection, are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号