首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
One prime feature of alcoholic liver disease (ALD) is iron accumulation in hepatic macrophages/Kupffer cells (KC) associated with enhanced NF-kappaB activation. Our recent work demonstrates a peroxynitrite-mediated transient rise in intracellular labile iron (ILI) as novel signaling for endotoxin-induced IKK and NF-kappaB activation in rodent KC. The present study investigated the mechanism of KC iron accumulation and its effects on ILI response in experimental ALD. We also tested ILI response in human blood monocytes. Chronic alcohol feeding in rats results in increased expression of transferrin (Tf) receptor-1 and hemochromatosis gene (HFE), enhanced iron uptake, an increase in nonheme iron content, and accentuated ILI response for NF-kappaB activation in KC. Ex vivo treatment of these KC with an iron chelator abrogates the increment of iron content, ILI response, and NF-kappaB activation. The ILI response is evident in macrophages derived from human blood monocytes by PMA treatment but not in vehicle-treated monocytes, and this differentiation-associated phenomenon is essential for maximal TNF-alpha release. PMA-induced macrophages load iron dextran and enhance ILI response and TNF-alpha release. These effects are reproduced in KC selectively loaded in vivo with iron dextran in mice and more importantly aggravate experimental ALD. Our results suggest enhanced iron uptake as a mechanism of KC iron loading in ALD and demonstrate the ILI response as a function acquired by differentiated macrophages in humans and as a priming mechanism for ALD.  相似文献   

3.
Iron regulation of hepatic macrophage TNFalpha expression   总被引:7,自引:0,他引:7  
  相似文献   

4.
5.
6.
7.
The molecular details of 1-->3-beta-glucans, a fungal cell wall component, induced inflammatory responses are not well understood. In the present study, we conducted a systematic analysis of the molecular events leading to tumor necrosis factor (TNF)-alpha production after glucan stimulation of macrophages. We demonstrated that activation of nuclear factor kappaB (NF-kappaB) is essential in zymosan A (a source of 1-->3-beta-glucans)-induced TNF-alpha production in macrophages (RAW264.7 cells). Zymosan A-induced TNF-alpha protein production was associated with an increase in the TNF-alpha gene promoter activity. Activation of the TNF-alpha gene promoter was dependent on activation of NF-kappaB. Time course studies indicated that DNA binding activity of NF-kappaB preceded TNF-alpha promoter activity. Inhibition of NF-kappaB activation led to a dramatic reduction in both TNF-alpha promoter activity and TNF-alpha protein production in the response to zymosan A. Mutation of a major NF-kappaB binding site (kappa3) in the gene promoter resulted in a significant decrease in the induction of the gene promoter by zymosan A, while mutation of Egr or CRE sites failed to inhibit the response to zymosan. Together, these results strongly suggest that NF-kappaB is involved in signal transduction of 1-->3-beta-glucans-induced TNF-alpha expression.  相似文献   

8.
Endotoxin tolerance is characterized by a decreased production of proinflammatory cytokines by cultured leukocytes in response to lipopolysaccharide (LPS) following a first exposure to the same stimulus. Gamma interferon (IFNgamma) and granulocyte/monocyte colony-stimulating factor (GM-CSF) are immunostimulatory cytokines that prime monocytes and prevent endotoxin tolerance. In this study, we show that the deactivating effects of LPS, as well as the priming effects of IFNgamma and GM-CSF or their capacity to restore tumor necrosis factor (TNF) production by LPS-tolerized human monocytes are independent of the modulation of TLR2, TLR4, or MD-2. In monocytes pretreated with IFNgamma or GM-CSF, interleukin-1 receptor-associated kinase (IRAK) expression is up-regulated. After LPS stimulation, an increased IRAK kinase activity, a higher MyD88/IRAK association, and a stronger NF-kappaB activation are observed. In contrast, in LPS-tolerized monocytes, IRAK expression and kinase activity, IRAK/MyD88 association, and NF-kappaB activation are inhibited. Furthermore, the prevention of tolerance by IFNgamma and GM-CSF was independent of IRAK kinase activity. Our results suggest that these cytokines prevent endotoxin tolerance induced by low but not by high doses of LPS by inhibiting IRAK degradation and by promoting its association with MyD88 after a second LPS stimulation, which in turn leads to NF-kappaB activation and TNF production.  相似文献   

9.
The mechanisms by which parenchymal cells interact with immune cells, particularly after removal of LPS, remain unknown. Lung explants from rats, mice deficient in the TNF gene, or human lung epithelial A549 cells were treated with LPS and washed, before naive alveolar macrophages, bone marrow monocytes, or PBMC, respectively, were added to the cultures. When the immune cells were cocultured with LPS-challenged explants or A549 cells, TNF production was greatly enhanced. This was not affected by neutralization of LPS with polymyxin B. The LPS-induced increase in the expression of ICAM-1 on A549 cells correlated with TNF production by PBMC. The cellular cross talk leading to the TNF response was blunted by an anti-ICAM-1 Ab and an ICAM-1 antisense oligonucleotide. In A549 cells, a persistent decrease in the concentration of intracellular cAMP was associated with colocalization of LPS into Toll-like receptor 4 and the Golgi apparatus, resulting in increased ICAM-1 expression. Inhibition of LPS internalization by cytochalasin D or treatment with dibutyryl cAMP attenuated ICAM-1 expression and TNF production by PBMC. In conclusion, lung epithelial cells are not bystanders, but possess memory of LPS through the expression of ICAM-1 that interacts with and activates leukocytes. This may provide an explanation for the failure of anti-LPS therapies in sepsis trials.  相似文献   

10.
The trace element zinc affects several aspects of immune function, such as the release of proinflammatory cytokines from monocytes. We investigated the role of cyclic nucleotide signaling in zinc inhibition of LPS-induced TNF-alpha and IL-1beta release from primary human monocytes and the monocytic cell line Mono Mac1. Zinc reversibly inhibited enzyme activity of phosphodiesterase-1 (PDE-1), PDE-3, and PDE-4 in cellular lysate. It additionally reduced mRNA expression of PDE-1C, PDE-4A, and PDE-4B in intact cells. Although these PDE can also hydrolyze cAMP, only the cellular level of cGMP was increased after incubation with zinc, whereas cAMP was found to be even slightly reduced due to inhibition of its synthesis. To investigate whether an increase in cGMP alone is sufficient to inhibit cytokine release, the cGMP analogues 8-bromo-cGMP and dibutyryl cGMP as well as the NO donor S-nitrosocysteine were used. All three treatments inhibited TNF-alpha and IL-1beta release after stimulation with LPS. Inhibition of soluble guanylate cyclase-mediated cGMP synthesis with LY83583 reversed the inhibitory effect of zinc on LPS-induced cytokine release. In conclusion, inhibition of PDE by zinc abrogates the LPS-induced release of TNF-alpha and IL-1beta by increasing intracellular cGMP levels.  相似文献   

11.
Rhinoviruses (RV) are the major cause of acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Rhinoviruses have been shown to activate macrophages, but rhinovirus replication in macrophages has not been reported. Tumor necrosis factor alpha (TNF-alpha) is implicated in the pathogenesis of acute exacerbations, but its cellular source and mechanisms of induction by virus infection are unclear. We hypothesized that rhinovirus replication in human macrophages causes activation and nuclear translocation of NF-kappaB, leading to TNF-alpha production. Using macrophages derived from the human monocytic cell line THP-1 and from primary human monocytes, we demonstrated that rhinovirus replication was productive in THP-1 macrophages, leading to release of infectious virus into supernatants, but was limited in monocyte-derived macrophages, likely due to type I interferon production, which was robust in monocyte-derived but deficient in THP-1-derived macrophages. Similar to bronchial epithelial cells, only small numbers of cells supported complete virus replication. We demonstrated RV-induced activation of NF-kappaB and colocalization of p65/NF-kappaB nuclear translocation with virus replication in both macrophage types. The infection induced TNF-alpha release in a time- and dose-dependent, RV serotype- and receptor-independent manner and was largely (THP-1 derived) or completely (monocyte derived) dependent upon virus replication. Finally, we established the requirement for NF-kappaB but not p38 mitogen-activated protein kinase in induction of TNF-alpha. These data suggest RV infection of macrophages may be an important source of proinflammatory cytokines implicated in the pathogenesis of exacerbations of asthma and COPD. They also confirm inhibition of NF-kappaB as a promising target for development of new therapeutic intervention strategies.  相似文献   

12.
13.
We have examined the roles of enzyme activity and the nontoxic AB complex of heat-labile toxin (LT) from Escherichia coli on its adjuvant and immunomodulatory properties. LTK63, an LT mutant that is completely devoid of enzyme activity, enhanced Th1 responses to coinjected Ags at low adjuvant dose. In contrast, LTR72, a partially detoxified mutant, enhanced Th2 responses and when administered intranasally to mice before infection with Bordetella pertussis suppressed Th1 responses and delayed bacterial clearance from the lungs. LTR72 or wild-type LT inhibited Ag-induced IFN-gamma production by Th1 cells, and LT enhanced IL-5 production by Th2 cells in vitro. Each of the toxins enhanced B7-1 expression on macrophages, but enhancement of B7-2 expression was dependent on enzyme activity. We also observed distinct effects of the nontoxic AB complex and enzyme activity on inflammatory cytokine production. LT and LTR72 suppressed LPS and IFN-gamma induced TNF-alpha and IL-12 production, but enhanced IL-10 secretion by macrophages in vitro and suppressed IL-12 production in vivo in a murine model of LPS-induced shock. In contrast, LTK63 augmented the production of IL-12 and TNF-alpha. Furthermore, LTK63 enhanced NF-kappaB translocation, whereas low doses of LTR72 or LT failed to activate NF-kappaB, but stimulated cAMP production. Thus, E. coli LT appears to be capable of suppressing Th1 responses and enhancing Th2 responses through the modulatory effects of enzyme activity on NF-kappaB activation and IL-12 production. In contrast, the nontoxic AB complex can stimulate acquired immune responses by activating components of the innate immune system.  相似文献   

14.
Cyclic nucleotide signaling functions as a negative modulator of inflammatory cell responses, and type 4 phosphodiesterases (PDE4) are important regulators of this pathway. In this study, we provide evidence that only one of the three PDE4 genes expressed in mouse peritoneal macrophages is involved in the control of TLR signaling. In these cells, LPS stimulation of TLR caused a major up-regulation of PDE4B but not the paralogs PDE4A or PDE4D. Only ablation of PDE4B impacted LPS signaling and TNF-alpha production. TNF-alpha mRNA and protein were decreased by >50% in PDE4B-/-, but not in PDE4A-/- or PDE4D-/- macrophages. The PDE4 selective inhibitors rolipram and roflumilast had no additional inhibitory effect in macrophages deficient in PDE4B, but suppressed the TNF-alpha response in the other PDE4 null cells. The inhibition of TNF-alpha production that follows either genetic ablation or acute inhibition of PDE4B is cAMP-dependent and requires protein kinase A activity. However, no global changes in cAMP concentration were observed in the PDE4B-/- macrophages. Moreover, ablation of PDE4B protected mice from LPS-induced shock, suggesting that altered TLR signaling is retained in vivo. These findings demonstrate the highly specialized function of PDE4B in macrophages and its critical role in LPS signaling. Moreover, they provide proof of concept that a PDE4 inhibitor with subtype selectivity retains useful pharmacological effects.  相似文献   

15.
C/EBPbeta plays a pivotal role in activation of human immunodeficiency virus type 1 (HIV-1) in monocytes/macrophages. However, mechanisms for functional regulation of C/EBPbeta remain uncharacterized. Previous studies indicated that NF-kappaB activation by tumor necrosis factor (TNF) receptor family, which activates TNF receptor associated factor (TRAF), induces HIV-1 expression. We found that TRAF signals activate HIV-1 LTR with mutations of NF-kappaB sites in promonocytic cell line U937, suggesting existence of an alternative HIV-1 activating pathway. In this study, we have characterized the signal transduction pathway of TRAF other than that leading to NF-kappaB, using U937 cell line, and its subline, U1, which is chronically infected by HIV-1. We show that signals downstream of TRAF2 and TRAF5 activate p38 MAPK, which directly phosphorylates C/EBPbeta, and that activation of p38 MAPK potently activates C/EBPbeta-mediated induction of HIV-1 gene expression. We also show TRAF2 and TRAF5 are expressed in monocytes/macrophages of spleen samples from HIV-1 infected patients. Identification of TRAF-p38 MAPK-CEBPbeta pathway provides a new target for controlling reactivation of latent HIV-1 in monocytes/macrophages.  相似文献   

16.
An understanding of the biochemical control of dendritic cell (DC) differentiation/activation is essential for improving T cell immunity by various immunotherapeutic approaches, including DC immunization. Ligation of CD40 enhances DC function, including conditioning for CTL priming. NF-kappaB, and particularly RelB, is an essential control pathway for myeloid DC differentiation. Furthermore, RelB regulates B cell Ag-presenting function. We hypothesized that CD40 ligand (CD40L) and TNF-alpha, which differ in their capacity to condition DC, would also differ in their capacity to activate NF-kappaB. DC differentiated for 2 days from monocytes in the presence of GM-CSF and IL-4 were used as a model, as NF-kappaB activity was constitutively low. The capacity of DC to activate T cells following CD40L treatment was enhanced compared with TNF-alpha treatment, and this was NF-kappaB dependent. Whereas RelB/p50 translocation induced by TNF-alpha was attenuated after 6 h, RelB/p50 nuclear translocation induced by CD40L was sustained for at least 24 h. The mechanism of this difference related to enhanced degradation of IkappaBalpha following CD40L stimulation. However, NF-kappaB activation induced by TNF-alpha could be sustained by blocking autocrine IL-10. These data indicate that NF-kappaB activation is essential for T cell activation by DC, and that this function is enhanced if DC NF-kappaB activation is prolonged. Because IL-10 moderates DC NF-kappaB activation by TNF-alpha, sustained NF-kappaB activation can be achieved by blocking IL-10 in the presence of stimuli that induce TNF-alpha.  相似文献   

17.
Hasan N  Yusuf N  Toossi Z  Islam N 《FEBS letters》2006,580(10):2517-2522
Chronic inflammation associated with tumor necrosis factor (TNF)-alpha and reactive oxygen species (ROS) is the hallmark of tuberculosis. Mycobacterium tuberculosis (MTB) directly stimulates human monocytes to secrete TNF-alpha. We show the augmented expression of TNF-alpha mRNA in MTB-infected monocytes by cellular activation and ROS was suppressed by allicin in a dose-dependent manner. Also, allicin enhanced the glutathione peroxidase activity, which correlated inversely with the downregulation of ROS and TNF-alpha in MTB-infected monocytes. Hence, allicin may prove to be a valuable natural antioxidant in combating tuberculosis.  相似文献   

18.
19.
Induction of NF-kappaB-mediated gene expression has been implicated in the pathogenesis of alcoholic liver disease (ALD). Curcumin, a phenolic antioxidant, inhibits the activation of NF-kappaB. We determined whether treatment with curcumin would prevent experimental ALD and elucidated the underlying mechanism. Four groups of rats (6 rats/group) were treated by intragastric infusion for 4 wk. One group received fish oil plus ethanol (FE); a second group received fish oil plus dextrose (FD). The third and fourth groups received FE or FD supplemented with 75 mg. kg(-1). day(-1) of curcumin. Liver samples were analyzed for histopathology, lipid peroxidation, NF-kappaB binding, TNF-alpha, IL-12, monocyte chemotactic protein-1, macrophage inflammatory protein-2, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nitrotyrosine. Rats fed FE developed fatty liver, necrosis, and inflammation, which was accompanied by activation of NF-kappaB and the induction of cytokines, chemokines, COX-2, iNOS, and nitrotyrosine formation. Treatment with curcumin prevented both the pathological and biochemical changes induced by alcohol. Because endotoxin and the Kupffer cell are implicated in the pathogenesis of ALD, we investigated whether curcumin suppressed the stimulatory effects of endotoxin in isolated Kupffer cells. Curcumin blocked endotoxin-mediated activation of NF-kappaB and suppressed the expression of cytokines, chemokines, COX-2, and iNOS in Kupffer cells. Thus curcumin prevents experimental ALD, in part by suppressing induction of NF-kappaB-dependent genes.  相似文献   

20.
Macrophage prostaglandin E2 (PGE2) production is important in cellular immune suppression and in affecting the potential development of sepsis after trauma. We hypothesized that macrophage PGE2 production after trauma is regulated by mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-kappaB). Mice were subjected to trauma and splenic macrophages isolated 7 days later. Macrophages from traumatized mice showed increased cyclooxygenase-2 (COX-2) mRNA, protein expression, and PGE2 production compared with controls. Increased phosphorylation of extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 kinase was observed in macrophages from traumatized mice. Pharmacologic inhibition of MAPK blocked trauma-induced COX-2 expression, and PGE2 production. Trauma macrophages showed increased IkappaBalpha phosphorylation and NF-kappaB binding to DNA. Inhibiting IkappaBalpha blocked trauma-induced NF-kappaB activity, COX-2 expression and PGE2 production. This suggests that trauma-induced PGE2 production is mediated through MAPK and NF-kappaB activation and offers potential for modifying the macrophages' responses following injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号