首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
The origin and early evolution of sex chromosomes are currently poorly understood. The Neurospora tetrasperma mating-type (mat) chromosomes have recently emerged as a model system for the study of early sex chromosome evolution, since they contain a young (<6 million years ago [Mya]), large (>6.6-Mb) region of suppressed recombination. Here we examined preferred-codon usage in 290 genes (121,831 codon positions) in order to test for early signs of genomic degeneration in N. tetrasperma mat chromosomes. We report several key findings about codon usage in the region of recombination suppression, including the following: (i) this region has been subjected to marked and largely independent degeneration among gene alleles; (ii) the level of degeneration is magnified over longer periods of recombination suppression; and (iii) both mat a and mat A chromosomes have been subjected to deterioration. The frequency of shifts from preferred codons to nonpreferred codons is greater for shorter genes than for longer genes, suggesting that short genes play an especially significant role in early sex chromosome evolution. Furthermore, we show that these degenerative changes in codon usage are best explained by altered selection efficiency in the recombinationally suppressed region. These findings demonstrate that the fungus N. tetrasperma provides an effective system for the study of degenerative genomic changes in young regions of recombination suppression in sex-regulating chromosomes.  相似文献   

2.
We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains), derived from one N. tetrasperma heterokaryon (mat A+mat a), was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first "evolutionary stratum", genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers.  相似文献   

3.
Neurospora crassa and related heterothallic ascomycetes produce eight homokaryotic self-sterile ascospores per ascus. In contrast, asci of N. tetrasperma contain four self-fertile ascospores each with nuclei of both mating types (matA and mata). The self-fertile ascospores of N. tetrasperma result from first-division segregation of mating type and nuclear spindle overlap at the second meiotic division and at a subsequent mitotic division. Recently, Merino et al. presented population-genetic evidence that crossing over is suppressed on the mating-type chromosome of N. tetrasperma, thereby preventing second-division segregation of mating type and the formation of self-sterile ascospores. The present study experimentally confirmed suppressed crossing over for a large segment of the mating-type chromosome by examining segregation of markers in crosses of wild strains. Surprisingly, our study also revealed a region on the far left arm where recombination is obligatory. In cytological studies, we demonstrated that suppressed recombination correlates with an extensive unpaired region at pachytene. Taken together, these results suggest an unpaired region adjacent to one or more paired regions, analogous to the nonpairing and pseudoautosomal regions of animal sex chromosomes. The observed pairing and obligate crossover likely reflect mechanisms to ensure chromosome disjunction.  相似文献   

4.
Whittle CA  Johannesson H 《Heredity》2011,107(4):305-314
Currently, little is known about the origin and early evolution of sex chromosomes. This is largely due to the fact that ancient non-recombining sex chromosomes are highly degenerated, and thus provide little information about the early genomic events in their evolution. The Neurospora tetrasperma mating-type (mat) chromosomes contain a young (<6 Mya) and large region (>6.6 Mb) of suppressed recombination, thereby providing a model system to study early stages of sex chromosome evolution. Here, we examined alleles of 207 genes located on the N. tetrasperma mat a and mat A chromosomes to test for signs of genomic alterations at the protein level in the young region of recombination suppression. We report that the N. tetrasperma mat a and mat A chromosomes have each independently accumulated allele-specific non-synonymous codon substitutions in a time-dependent, and gene-specific manner in the recombinationally suppressed region. In addition, examination of the ratio (ω) of non-synonymous substitutions (dN) to synonymous substitutions (dS) using maximum likelihood analyses, indicates that such changes are associated with relaxed purifying selection, a finding consistent with genomic degeneration. We also reveal that sex specific biases in mutation rates or selection pressures are not necessary for genomic alterations in sex chromosomes, and that recombination suppression in itself is sufficient to explain these results. The present findings extend our current understanding of genomic events associated within the young region of recombination suppression in these fungal sex-regulating chromosomes.  相似文献   

5.
In the filamentous ascomycete Neurospora tetrasperma, a large (approx. 7 Mbp) region of suppressed recombination surrounds the mating-type (mat) locus. While the remainder of the genome is largely homoallelic, this region of recombinational suppression, extending over 1500 genes, is associated with sequence divergence. Here, we used microarrays to examine how the molecular phenotype of gene expression level is linked to this divergent region, and thus to the mating type. Culturing N. tetrasperma on agar media that induce sexual/female or vegetative/male tissue, we found 196 genes significantly differentially expressed between mat A and mat a mating types. Our data show that the genes exhibiting mat-linked expression are enriched in the region genetically linked to mating type, and sequence and expression divergence are positively correlated. Our results indicate that the phenotype of mat A strains is optimized for traits promoting sexual/female development and the phenotype of mat a strains for vegetative/male development. This discovery of differentially expressed genes associated with mating type provides a link between genotypic and phenotypic divergence in this taxon and illustrates a fungal analogue to sexual dimorphism found among animals and plants.  相似文献   

6.
The presence of large genomic regions with suppressed recombination (SR) is a key shared property of some sex- and mating-type determining (mat) chromosomes identified to date in animals, plants, and fungi. Why such regions form and how they evolve remain central questions in evolutionary genetics. The smut fungus Microbotryum lychnis-dioicae is a basidiomycete fungus in which dimorphic mat chromosomes have been reported, but the size, age, and evolutionary dynamics of the SR region remains unresolved. To identify the SR region in M. lychnis-dioicae and to study its evolution, we sequenced 12 genomes (6 per mating type) of this species and identified the genomic contigs that show fixed sequence differences between the mating types. We report that the SR region spans more than half of the mat chromosome (>2.3 Mbp) and that it is of very recent origin (∼2 × 106 years) as the average sequence divergence between mating types was only 2% in the SR region. This contrasts with a much higher divergence in and around the mating-type determining pheromone receptor locus in the SR, suggesting a recent and massive expansion of the SR region. Our results comprise the first reported case of recent massive SR expansion documented in a basidiomycete fungus.  相似文献   

7.
The significance of introgression as an evolutionary force shaping natural populations is well established, especially in animal and plant systems. However, the abundance and size of introgression tracts, and to what degree interspecific gene flow is the result of adaptive processes, are largely unknown. In this study, we present medium coverage genomic data from species of the filamentous ascomycete Neurospora, and we use comparative genomics to investigate the introgression landscape at the genomic level in this model genus. We revealed one large introgression tract in each of the three investigated phylogenetic lineages of Neurospora tetrasperma (sizes of 5.6 Mbp, 5.2 Mbp, and 4.1 Mbp, respectively). The tract is located on the chromosome containing the locus conferring sexual identity, the mating-type (mat) chromosome. The region of introgression is confined to the region of suppressed recombination and is found on one of the two mat chromosomes (mat a). We used Bayesian concordance analyses to exclude incomplete lineage sorting as the cause for the observed pattern, and multilocus genealogies from additional species of Neurospora show that the introgression likely originates from two closely related, freely recombining, heterothallic species (N. hispaniola and N. crassa/N. perkinsii). Finally, we investigated patterns of molecular evolution of the mat chromosome in Neurospora, and we show that introgression is correlated with reduced level of molecular degeneration, consistent with a shorter time of recombination suppression. The chromosome specific (mat) and allele specific (mat a) introgression reported herein comprise the largest introgression tracts reported to date from natural populations. Furthermore, our data contradicts theoretical predictions that introgression should be less likely on sex-determining chromosomes. Taken together, the data presented herein advance our general understanding of introgression as a force shaping eukaryotic genomes.  相似文献   

8.
Ascospores of Neurospora tetrasperma normally contain nuclei of both mating-type idiomorphs (a and A), resulting in self-fertile heterokaryons (a type of sexual reproduction termed pseudohomothallism). Occasional homokaryotic self-sterile strains (either a or A) behave as heterothallics and, in principle, provide N. tetrasperma with a means for facultative outcrossing. This study was conceived as an investigation of the population biology of N. tetrasperma to assess levels of intrastrain heterokaryosis (heterozygosity). The unexpected result was that the mating-type chromosome and autosomes exhibited very different patterns of evolution, apparently because of suppressed recombination between mating-type chromosomes. Analysis of sequences on the mating-type chromosomes of wild-collected self-fertile strains revealed high levels of genetic variability between sibling A and a nuclei. In contrast, sequences on autosomes of sibling A and a nuclei exhibited nearly complete homogeneity. Conservation of distinct haplotype combinations on A and a mating-type chromosomes in strains from diverse locations further suggested an absence of recombination over substantial periods of evolutionary time. The suppression of recombination on the N. tetrasperma mating-type chromosome, expected to ensure a high frequency of self fertility, presents an interesting parallel with, and possible model for studying aspects of, the evolution of mammalian sex chromosomes.  相似文献   

9.
Neurospora crassa is a heterothallic filamentous fungus with two mating types, mat a and mat A. Its mating involves differentiation of female reproductive structures (protoperithecia) and chemotropic growth of female-specific hyphae (trichogynes) towards a cell of the opposite mating type in a pheromone-mediated process. In this study, we characterize the pre-1 gene, encoding a predicted G-protein-coupled receptor with sequence similarity to fungal pheromone receptors. pre-1 is most highly expressed in mat A strains under mating conditions, but low levels can also be detected in mat a strains. Analysis of pre-1 deletion mutants showed that loss of pre-1 does not greatly affect vegetative growth, heterokaryon formation or male fertility in either mating type. Protoperithecia from Deltapre-1 mat A mutants do not undergo fertilization; this defect largely stems from an inability of their trichogynes to recognize and fuse with mat a cells. Previous work has demonstrated that the Galpha subunit, GNA-1, and the Gbeta protein, GNB-1, are essential for female fertility in N. crassa. Trichogynes of Deltagna-1 and Deltagnb-1 mutants displayed severe defects in growth towards and fusion with male cells, similar to that of Deltapre-1 mat A strains. However, the female sterility defect of the Deltapre-1 mat A mutant could not be complemented by constitutive activation of gna-1, suggesting additional layers of regulation. We propose that PRE-1 is a pheromone receptor coupled to GNA-1 that is essential for the mating of mat A strains as females, consistent with a role in launching the pheromone response pathway in N. crassa.  相似文献   

10.
D J Jacobson 《Génome》1992,35(2):347-353
The mating-type of Neurospora crassa (A and a) have a dual function: A and a individuals are required for sexual reproduction, but only strains of the same mating type will form a stable vegetative heterokaryon. Neurospora tetrasperma, in contrast, is a naturally occurring A+a heterokaryon. It was shown previously that the mating-type genes of both species are functionally the same and are not responsible for this difference in heterokaryon incompatibility. This suggests that a separate genetic system determines the heterokaryon incompatibility function of mating type. The mutant tolerant (tol) in N. crassa, unlinked to mating type, acts as a specific suppressor of A+a heterokaryon incompatibility. In the present study, the wild-type alleles at the tol locus were introgressed reciprocally, from N. crassa into N. tetrasperma and from N. tetrasperma into N. crassa, to investigate the action of these alleles in the A+a heterokaryon incompatibility systems of these species. The wild-type allele from N. tetrasperma (tolT) acts as a recessive suppressor of A+a heterokaryon incompatibility in N. crassa. Furthermore, the wild-type allele from N. crassa (tolC) causes A and a to become heterokaryon incompatible in N. tetrasperma, while having no effect on the sexual reproduction. Therefore, the tol gene plays a major role in determining the heterokaryon compatibility of mating type in these species: tolC is an active allele that causes incompatibility and tolT an inactive allele that suppresses incompatibility by its inactivity.  相似文献   

11.
Zakharov IA 《Genetika》2005,41(4):508-519
Genetic characteristics of intratetrad mating, i.e., fusion of haploid products of one meiotic division, are considered. Upon intratetrad mating, the probability of homozygotization is lower than that upon self-fertilization, while heterozygosity at genes linked to the mating-type locus, which determines the possibility of cell fusion, is preserved. If the mating-type locus is linked to the centromere, the genome regions adjoining the centromeres of all chromosomes remain heterozygous. Intratetrad mating is characteristic of a number of fungi (Saccharomyces cerevisiae, Saccharomycodes ludwigii, Neurospora tetrasperma, Agaricus bisporus, Microbotrium violaceum, and others). Parthenogenetic reproduction in some insects also involves this type of fusion of nuclei. Intratetrad mating leads to the accumulation of haplolethals (i.e., lethals manifesting in haploid cells but not hindering their mating) in pericentric chromosome regions. Since heterozygosity increases viability of an organism, recombination has been suppressed during evolution in fungi characterized by intratetrad mating, which ensures heterozygosity of the most part of the genome.  相似文献   

12.
13.
Meiosis and ascospore development in the four-spored pseudohomothallic ascomycetes Neurospora tetrasperma, Gelasinospora tetrasperma, Podospora anserina, and P. fefraspora have been reexamined, highlighting differences that reflect independent origins of the four-spored condition in the different genera. In these species, as in the heterothallic eight-spored N. crassa, fusion of haploid nuclei is followed directly by meiosis and a postmeiotic mitosis. These divisions take place within a single unpartitioned giant cell, the ascus, which attains a length of >0.1 mm before nuclei are enclosed by ascospore walls. Two basically different modes underlie the delivery of opposite mating type nuclei into each of the four ascospores in the different genera. In N. tefrasperma on the one hand, the mating type locus is closely centromere-linked. Mating types therefore segregate at the first meiotic division. The second division spindles of N. tefrasperma overlap and are usually parallel to one another, in contrast to the their tandem arrangement in N. crassa. As a result, nonsister nuclei of opposite mating type are placed close together in each half-ascus and a pair is enclosed in each ascospore. In the Podospora and Gelasinospora species on the other hand, the second-division spindles are in tandem, with sister nuclei of opposite mating type associated as a pair in each half-ascus. It is established for P. anserina and inferred for P. fetraspora and G. fefrasperma that a single reciprocal crossing over almost always occurs in the mating type-centromere interval, ensuring that mating types segregate at the second meiotic division and that nuclei of opposite mating type are enclosed in each ascospore. Other differences are also seen that are less fundamental. Neurospora tetrasperma differs from the other species in the orientation of chromosomes and spindle pole body plaques at interphase (I.) Third-division spindles are oriented parallel to the ascus wall in Gelasinospora but across the ascus in Podospora and Neurospora. The two Podospora species differ from one another in nuclear behavior following mitosis in the young ascospores. In P. tefraspora, two of the four nuclei migrate into the tail cell, which degenerates, leaving one functional nucleus of each mating type. In P. anserina, by contrast, only one of the four nuclei moves into the tail cell, leaving the germinating ascospore with two functional nuclei of one mating type and one of the other. The pseudohomothallic condition with its heterokaryotic vegetative phase has significant consequences for both the individual organism and the breeding system. Genetic controls of development and recombination are complex. Inbreeding is not obligatory. © 1994 WiIey-Liss, Inc.  相似文献   

14.
We examined the phylogenetic relationships among five heterothallic species of Neurospora using restriction fragment polymorphisms derived from cosmid probes and sequence data from the upstream regions of two genes, al-1 and frq. Distance, maximum likelihood, and parsimony trees derived from the data support the hypothesis that strains assigned to N. sitophila, N. discreta, and N. tetrasperma form respective monophyletic groups. Strains assigned to N. intermedia and N. crassa, however, did not form two respective monophyletic groups, consistent with a previous suggestion based on analysis of mitochondrial DNAs that N. crassa and N. intermedia may be incompletely resolved sister taxa. Trees derived from restriction fragments and the al-1 sequence position N. tetrasperma as the sister species of N. sitophila. None of the trees produced by our data supported a previous analysis of sequences in the region of the mating type idiomorph that grouped N. crassa and N. sitophila as sister taxa, as well as N. intermedia and N. tetrasperma as sister taxa. Moreover, sequences from al-1, frq, and the mating-type region produced different trees when analyzed separately. The lack of consensus obtained with different sequences could result from the sorting of ancestral polymorphism during speciation or gene flow across species boundaries, or both.  相似文献   

15.
Genetic characteristics of intratetrad mating, i.e., fusion of haploid products of one meiotic division, are considered. Upon intratetrad mating, the probability of homozygotization is lower than that upon self-fertilization, while heterozygosity at genes linked to the mating-type locus, which determines the possibility of cell fusion, is preserved. If the mating-type locus is linked to the centromere, the genome regions adjoining the centromeres of all chromosomes remain heterozygous. Intratetrad mating is characteristic of a number of fungi (Saccharomyces cerevisiae, Saccharomycodes ludwigii, Neurospora tetrasperma, Agaricus bisporus, Microbotryum violaceum, and others). Parthenogenetic reproduction in some insects also involves this type of fusion of nuclei. Intratetrad mating leads to the accumulation of haplolethals (i.e., lethals manifesting in haploid cells but not hindering their mating) in pericentric chromosome regions. Since heterozygosity increases viability of an organism, recombination has been suppressed during evolution in fungi characterized by intratetrad mating, which ensures heterozygosity of the most part of the genome.__________Translated from Genetika, Vol. 41, No. 4, 2005, pp. 508–519.Original Russian Text Copyright © 2005 by Zakharov.  相似文献   

16.
Sex chromosomes in plants and animals and fungal mating-type chromosomes often show exceptional genome features, with extensive suppression of homologous recombination and cytological differentiation between members of the diploid chromosome pair. Despite strong interest in the genetics of these chromosomes, their large regions of suppressed recombination often are enriched in transposable elements and therefore can be challenging to assemble. Here we show that the latest improvements of the PacBio sequencing yield assembly of the whole genome of the anther-smut fungus, Microbotryum lychnidis-dioicae (the pathogenic fungus causing anther-smut disease of Silene latifolia), into finished chromosomes or chromosome arms, even for the repeat-rich mating-type chromosomes and centromeres. Suppressed recombination of the mating-type chromosomes is revealed to span nearly 90% of their lengths, with extreme levels of rearrangements, transposable element accumulation, and differentiation between the two mating types. We observed no correlation between allelic divergence and physical position in the nonrecombining regions of the mating-type chromosomes. This may result from gene conversion or from rearrangements of ancient evolutionary strata, i.e., successive steps of suppressed recombination. Centromeres were found to be composed mainly of copia-like transposable elements and to possess specific minisatellite repeats identical between the different chromosomes. We also identified subtelomeric motifs. In addition, extensive signs of degeneration were detected in the nonrecombining regions in the form of transposable element accumulation and of hundreds of gene losses on each mating-type chromosome. Furthermore, our study highlights the potential of the latest breakthrough PacBio chemistry to resolve complex genome architectures.  相似文献   

17.
Gow NA 《Current biology : CB》2005,15(13):R509-R511
The genome sequence of the 'asexual' human pathogenic fungus Aspergillus fumigatus suggests it has the capability to undergo mating and meiosis. That this organism engages in clandestine sexual activity is also suggested by observations of two equally distributed complementary mating types in nature, the expression of mating type genes and evidence of recent genome recombination events.  相似文献   

18.
Schizosaccharomyces pombe cells can switch between two mating types, plus (P) and minus (M). The change in cell type occurs due to a replication-coupled recombination event that transfers genetic information from one of the silent-donor loci, mat2P or mat3M, into the expressed mating-type determining mat1 locus. The mat1 locus can as a consequence contain DNA encoding either P or M information. A molecular mechanism, known as synthesis-dependent strand annealing, has been proposed for the underlying recombination event. A key feature of this model is that only one DNA strand of the donor locus provides the information that is copied into the mat1. Here we test the model by constructing strains that switch using two different mutant P cassettes introduced at the donor loci, mat2 and mat3. We show that in such strains wild-type P-cassette DNA is efficiently generated at mat1 through heteroduplex DNA formation and repair. The present data provide an in vivo genetic test of the proposed molecular recombination mechanism.  相似文献   

19.
Neurospora crassa is a self-sterile filamentous fungus with two mating types, mat A and mat a. Its mating involves chemotropic polarized growth of female-specific hyphae (trichogynes) toward male cells of the opposite mating type in a process involving pheromones and receptors. mat A cells express the ccg-4 pheromone and the pre-1 receptor, while mat a strains produce mRNA for the pheromone mfa-1 and the pre-2 receptor; MFA-1 and CCG-4 are the predicted ligands for PRE-1 and PRE-2, respectively. In this study, we generated Deltaccg-4 and Deltamfa-1 mutants and engineered a mat a strain to coexpress ccg-4 and its receptor, pre-2. As males, Deltaccg-4 mat A and Deltamfa-1 mat a mutants were unable to attract mat a and mat A trichogynes, respectively, and consequently failed to initiate fruiting body (perithecial) development or produce meiotic spores (ascospores). In contrast, Deltaccg-4 mat a and Deltamfa-1 mat A mutants exhibited normal chemotropic attraction and male fertility. Deltaccg-4 Deltamfa-1 double mutants displayed defective chemotropism and male sterility in both mating types. Heterologous expression of ccg-4 enabled mat a males to attract mat a trichogynes, although subsequent perithecial differentiation did not occur. Expression of ccg-4 and pre-2 in the same strain triggered self-stimulation, resulting in formation of barren perithecia with no ascospores. Our results indicate that CCG-4 and MFA-1 are required for mating-type-specific male fertility and that pheromones (and receptors) are initial determinants for sexual identity during mate recognition. Furthermore, a self-attraction signal can be transmitted within a strain that expresses a pheromone and its cognate receptor.  相似文献   

20.
Jacobson DJ 《Genetics》2005,171(2):839-843
The Neurospora tetrasperma mating-type chromosomes have been shown to be structurally heterozygous by reciprocal introgression of these chromosomes between N. tetrasperma and N. crassa. This structural heterozygosity correlates with both a previously described recombination block and cytologically visible unpaired chromosomes at pachytene. Genes on the autosomes are also implicated in blocking recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号