首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gastrulation, the process that puts the three major germlayers, the ectoderm, mesoderm and endoderm in their correct topological position in the developing embryo, is characterised by extensive highly organised collective cell migration of epithelial and mesenchymal cells. We discuss current knowledge and insights in the mechanisms controlling these cell behaviours during gastrulation in the chick embryo. We discuss several ideas that have been proposed to explain the observed large scale vortex movements of epithelial cells in the epiblast during formation of the primitive streak. We review current insights in the control and execution of the epithelial to mesenchymal transition (EMT) underlying the formation of the hypoblast and the ingression of the mesendoderm cells through the streak. We discuss the mechanisms by which the mesendoderm cells move, the nature and dynamics of the signals that guide these movements, as well as the interplay between signalling and movement that result in tissue patterning and morphogenesis. We argue that instructive cell-cell signaling and directed chemotactic movement responses to these signals are instrumental in the execution of all phases of gastrulation.  相似文献   

2.
After aggregation by chemotaxis, cells of the cellular slime mold Dictyostelium discoideum form a multicellular structure and show coherent motion such as vortices. Here, we present a mathematical model to explain both aggregation and coherent motion of cells in two-dimensional space. The model incorporates chemotactic response of cells and the cell's property, called "contact following", to follow the other cells with which they are in contact. Analytical study and computer simulation using the model show that with contact following, cells form circular clusters within which cell rotation occurs. Unidirectional cell motion in a long belt of cells is another type of solution of the model. Besides, contact following has an effect to accelerate cell cluster merging. By considering the mechanism of cell movement, possible explanations of contact following are proposed.  相似文献   

3.
We have investigated the patterns of tissue flow underlying the formation of the primitive streak in the chick embryo. Analysis of time-lapse sequences of brightfield images to extract the tissue velocity field and of fluorescence images of small groups of DiI-labelled cells have shown that epiblast cells move in two large-scale counter-rotating streams, which merge at the site of streak formation. Despite the large-scale tissue flows, individual cells appear to move little relative to their neighbours. As the streak forms, it elongates in both the anterior and posterior directions. Inhibition of actin polymerisation via local application of the inhibitor latrunculin A immediately terminates anterior extension of the streak tip, but does not prevent posterior elongation. Inhibition of actin polymerisation at the base of the streak completely inhibits streak formation, implying that continuous movement of cells into the base of the forming streak is crucial for extension. Analysis of cycling cells in the early embryo shows that cell-cycle progression in the epiblast is quite uniform before the primitive streak forms then decreases in the central epiblast and incipient streak and increases at the boundary between the area pellucida and area opaca during elongation. The cell-cycle inhibitor aphidicolin, at concentrations that completely block cell-cycle progression, permits initial streak formation but arrests development during extension. Our analysis suggests that cell division maintains the cell-flow pattern that supplies the streak with cells from the lateral epiblast, which is critical for epiblast expansion in peripheral areas, but that division does not drive streak formation or the observed tissue flow.  相似文献   

4.
The formation of the primitive streak in early avian development marks the onset of gastrulation, during which large scale cell movement leads to a trilaminar blastoderm comprising prospective endodermal, mesodermal and ectodermal tissue. During streak formation a specialized group of cells first moves anteriorly as a coherent column, beginning from the posterior end of the prospective anterior-posterior axis (a process called progression), and then reverses course and returns to the most posterior point on the axis (a process called regression). To date little is known concerning the mechanisms controlling either progression or regression. Here we develop a model in which chemotaxis directs the cell movement and which is capable of reproducing the principal features connected with progression and regression of the primitive streak. We show that this model exhibits a number of experimentally-observed features of normal and abnormal streak development, and we propose a number of experimental tests which may serve to illuminate the mechanisms. This paper represents the first attempt to model the global features of primitive streak formation, and provides an initial stage in the development of a more biologically-realistic discrete cell model that will allow for variation of properties between cells and control over movement of individual cells.  相似文献   

5.
Differential cell movement is an important mechanism in the development and morphogenesis of many organisms. In many cases there are indications that chemotaxis is a key mechanism controlling differential cell movement. This can be particularly well studied in the starvation-induced multicellular development of the social amoeba Dictyostelium discoideum. Upon starvation, up to 10(5) individual amoebae aggregate to form a fruiting body The cells aggregate by chemotaxis in response to propagating waves of cAMP, initiated by an aggregation centre. During their chemotactic aggregation the cells start to differentiate into prestalk and prespore cells, precursors to the stalk and spores that form the fruiting body. These cells enter the aggregate in a random order but then sort out to form a simple axial pattern in the slug. Our experiments strongly suggest that the multicellular aggregates (mounds) and slugs are also organized by propagating cAMP waves and, furthermore, that cell-type-specific differences in signalling and chemotaxis result in cell sorting, slug formation and movement.  相似文献   

6.
The heart is the first organ to function during vertebrate development and cardiac progenitors, are among the first cell lineages to be established from mesoderm cells emerging from the primitive streak during gastrulation. Cardiac progenitors have been mapped in the epiblast of pre-streak embryos. In the early chick gastrula they are located in the mid-primitive streak, from which they enter the mesoderm bilaterally. However, migration routes of cardiac progenitors have never been directly observed within the embryo and the factor(s) controlling their movement are not known. Furthermore, it is not understood how signals controlling cell movement are integrated with those that determine cell fate. Long-term video microscopy combined with GFP labelling and image processing enabled us to observe the movement patterns of prospective cardiac cells in whole embryos in real time. Embryo manipulations and the analysis of explants suggest that Wnt3a plays a crucial role in guiding these cells through a RhoA dependent mechanism involving negative chemotaxis. Wnt3a is expressed at high levels in the amniote primitive streak and ectopic signalling activity caused wider movement trajectories resulting in cardia bifida, which was rescued by dominant-negative Wnt3a. Our studies revealed Wnt3a-RhoA mediated chemo-repulsion as a novel mechanism guiding cardiac progenitors. This activity can act at long-range and does not interfere with cardiac cell fate specification.  相似文献   

7.
The organisation and form of most organisms is generated during theirembryonic development and involves precise spatial and temporal controlof cell division, cell death, cell differentiation and cell movement.Differential cell movement is a particularly important mechanism in thegeneration of form. Arguably the best understood mechanism of directedmovement is chemotaxis. Chemotaxis plays a major role in the starvationinduced multicellular development of the social amoebae Dictyostelium.Upon starvation up to 105 individual amoebae aggregate to form afruiting body. In this paper we review the evidence that the movement ofthe cells during all stages of Dictyostelium development is controlled bypropagating waves of cAMP which control the chemotactic movement ofthe cells. We analyse the complex interactions between cell-cell signallingresulting in cAMP waves of various geometries and cell movement whichresults in a redistribution of the signalling sources and therefore changes thegeometry of the waves. We proceed to show how the morphogenesis,including aggregation stream and mound formation, slug formation andmigration, of this relatively simple organism is beginning to be understoodat the level of rules for cell behaviour, which can be tested experimentallyand theoretically by model calculations.  相似文献   

8.
We explored the hypothesis that the chemotactic migration of carcinoma cells that assemble hemidesmosomes involves the activation of a signaling pathway that releases the alpha6beta4 integrin from these stable adhesion complexes and promotes its association with F-actin in cell protrusions enabling it to function in migration. Squamous carcinoma-derived A431 cells were used because they express alpha6beta4 and migrate in response to EGF stimulation. Using function-blocking antibodies, we show that the alpha6beta4 integrin participates in EGF-stimulated chemotaxis and is required for lamellae formation on laminin-1. At concentrations of EGF that stimulate A431 chemotaxis ( approximately 1 ng/ml), the alpha6beta4 integrin is mobilized from hemidesmosomes as evidenced by indirect immunofluorescence microscopy using mAbs specific for this integrin and hemidesmosomal components and its loss from a cytokeratin fraction obtained by detergent extraction. EGF stimulation also increased the formation of lamellipodia and membrane ruffles that contained alpha6beta4 in association with F-actin. Importantly, we demonstrate that this mobilization of alpha6beta4 from hemidesmosomes and its redistribution to cell protrusions occurs by a mechanism that involves activation of protein kinase C-alpha and that it is associated with the phosphorylation of the beta4 integrin subunit on serine residues. Thus, the chemotactic migration of A431 cells on laminin-1 requires not only the formation of F-actin-rich cell protrusions that mediate alpha6beta4-dependent cell movement but also the disruption of alpha6beta4-containing hemidesmosomes by protein kinase C.  相似文献   

9.
A drop assay for chemotaxis to cAMP confirms that both anterior-like cells (ALC) and prestalk cells (pst cells) respond to cAMP gradients. We present evidence that the chemotactic response of both ALC and pst cells is suppressed by ammonia, but a higher concentration of ammonia is required to suppress the response in pst cells. ALC show a chemotactic response to cAMP when moving on a substratum of prespore cells in isolated slug posteriors incubated under oxygen. ALC chemotaxis on a prespore cell substratum is suppressed by the same concentration of ammonia that suppresses ALC chemotaxis on the agar substratum in drop assays. Chemotaxis suppression is mediated by the unprotonated (NH3) species of ammonia. The observed suppression, by ammonia, of ALC chemotaxis to cAMP supports our earlier hypothesis that ammonia is the tip-produced suppressor of such chemotaxis. We discuss implications of ammonia sensitivity of pst cells and ALC with regard to the movement and localization of ALC and pst cells in the slug and to the roles played by ALC in fruiting body formation. In addition, we suggest that a progressive decrease in sensitivity to ammonia is an important part of the maturation of ALC into pst cells.  相似文献   

10.
Sphingosine-1-phosphate (S-1-P) is a bioactive lipid that plays a role in diverse biological processes. It functions both as an extracellular ligand through a family of high-affinity G-protein-coupled receptors, and intracellularly as a second messenger. A growing body of evidence has implicated S-1-P in controlling cell movement and chemotaxis in cultured mammalian cells. Mutant D. discoideum cells, in which the gene encoding the S-1-P lyase had been specifically disrupted by homologous recombination, previously were shown to be defective in pseudopod formation, suggesting that a resulting defect might exist in motility and/or chemotaxis. To test this prediction, we analyzed the behavior of mutant cells in buffer, and in both spatial and temporal gradients of the chemoattractant cAMP, using computer-assisted 2-D and 3-D motion analysis systems. Under all conditions, S-1-P lyase null mutants were unable to suppress lateral pseudopod formation like wild-type control cells. This resulted in a reduction in velocity in buffer and spatial gradients of cAMP. Mutant cells exhibited positive chemotaxis in spatial gradients of cAMP, but did so with lowered efficiency, again because of their inability to suppress lateral pseudopod formation. Mutant cells responded normally to simulated temporal waves of cAMP but mimicked the temporal dynamics of natural chemotactic waves. The effect must be intracellular since no homologs of the S-1-P receptors have been identified in the Dictyostelium genome. The defects in the S-1-P lyase null mutants were similar to those seen in mutants lacking the genes for myosin IA, myosin IB, and clathrin, indicating that S-1-P signaling may play a role in modulating the activity or organization of these cytoskeletal elements in the regulation of lateral pseudopod formation.  相似文献   

11.
Naegleria fowleri amebae demonstrated a chemotactic and chemokinetic response toward live cells and extracts of Escherichia coli and other bacterial species when experiments were performed using a blind-well chemotaxis chamber. The peptide N-formyl-methionyl-leucyl-phenylalanine acted as a chemokinetic rather than a chemotactic factor for N. fowleri amebae. Competition experiments in which nerve cell extracts or bacteria were placed on either side of the filter in chemotaxis chambers resulted in increased movement towards bacteria. A scanning electron microscopy study of the interaction of N. fowleri with different bacterial species confirmed that when the amebae were near ingestible bacteria they moved toward the bacteria by pseudopod formation. Naegleria fowleri appeared to respond to bacteria by three interrelated but distinct processes: (a) chemokinesis, (b) chemotaxis, and (c) formation of food cups.  相似文献   

12.
The mechanism of eukaryotic chemotaxis remains unclear despite intensive study. The most frequently described mechanism acts through attractants causing actin polymerization, in turn leading to pseudopod formation and cell movement. We recently proposed an alternative mechanism, supported by several lines of data, in which pseudopods are made by a self-generated cycle. If chemoattractants are present, they modulate the cycle rather than directly causing actin polymerization. The aim of this work is to test the explanatory and predictive powers of such pseudopod-based models to predict the complex behaviour of cells in chemotaxis. We have now tested the effectiveness of this mechanism using a computational model of cell movement and chemotaxis based on pseudopod autocatalysis. The model reproduces a surprisingly wide range of existing data about cell movement and chemotaxis. It simulates cell polarization and persistence without stimuli and selection of accurate pseudopods when chemoattractant gradients are present. It predicts both bias of pseudopod position in low chemoattractant gradients and--unexpectedly--lateral pseudopod initiation in high gradients. To test the predictive ability of the model, we looked for untested and novel predictions. One prediction from the model is that the angle between successive pseudopods at the front of the cell will increase in proportion to the difference between the cell's direction and the direction of the gradient. We measured the angles between pseudopods in chemotaxing Dictyostelium cells under different conditions and found the results agreed with the model extremely well. Our model and data together suggest that in rapidly moving cells like Dictyostelium and neutrophils an intrinsic pseudopod cycle lies at the heart of cell motility. This implies that the mechanism behind chemotaxis relies on modification of intrinsic pseudopod behaviour, more than generation of new pseudopods or actin polymerization by chemoattractants.  相似文献   

13.
Escherichia coli cells use two distinct sensory circuits during chemotaxis towards carbohydrates. One circuit requires the phosphoenolpyruvate-dependent phosphotransferase system (PTS) and is independent of any specific chemoreceptor, whereas the other uses a chemoreceptor-dependent sensory mechanism analogous to that used during chemotaxis towards amino acids. Work on the carbohydrate chemotaxis sensory circuit of Bacillus subtilis reported in this article indicates that the B. subtilis circuit is different from either of those used by E. coli. Our chemotactic analysis of B. subtilis strains expressing various chimeric chemoreceptors indicates that the cytoplasmic, C-terminal module of the chemoreceptor McpC acts as a sensory-input element during carbohydrate chemotaxis. Our results also indicate that PTS-mediated carbohydrate transport, but not carbohydrate metabolism, is required for production of a chemotactic signal. We propose a model in which PTS-transport-induced chemotactic signals are transmitted to the C-terminal module of McpC for control of chemotaxis towards PTS carbohydrates.  相似文献   

14.
Oscillatory cAMP signals very likely organize the cell movement which leads to fruiting body construction in Dictyostelium minutum [Schaap, P., Konijn, T.M. and Van Haastert, P.J.M.: Proc. Natl. Acad. Sci. USA 81, 2122-2126 (1984)]. Stimulation with cAMP induces a transient elevation of cGMP in cells at the early culmination stage, which peaks at 12-18 s. A half maximal cGMP response is induced by 10(-7) M cAMP and saturation of the response is reached at 10(-5) M cAMP. No cGMP accumulation was induced by stimulation of vegetative or aggregative cells of D. minutum by cAMP. Since the transient increase of cGMP is most likely involved in the transduction of chemotactic signals, our results indicate that cAMP signals organize fruiting body formation by inducing chemotaxis inside the aggregate.  相似文献   

15.
【目的】初步探究田菁根瘤菌Sinorhizobium alkalisoli YIC4027中唯一含有PAS结构域可溶性趋化受体Tlp1的功能机理。【方法】本研究基于Red重组系统以及三亲接合技术进行缺失突变株的构建。对野生型和突变株的生长情况、趋化能力、趋氧性、细胞凝结、生物膜的形成、胞外多糖产量、在宿主根表的定殖及竞争性结瘤等表型进行了测定。【结果】与野生型相比,突变株的生长不受影响,趋化和趋氧能力降低,在宿主根表的定殖及竞争性结瘤能力降低,而细胞凝结能力、生物膜形成以及胞外多糖产生能力等均有所提高【。结论】本研究首次证实了S. alkalisoli YIC4027中可溶性趋化受体Tlp1影响细胞的趋化运动。  相似文献   

16.
The ability of cells to recognize and respond with directed motility to chemoattractant agents is critical to normal physiological function. Neutrophils represent the prototypic chemotactic cell in that they respond to signals initiated through the binding of bacterial peptides and other chemokines to G protein-coupled receptors with speeds of up to 30 microm/min. It has been hypothesized that localized regulation of cytoskeletal dynamics by Rho GTPases is critical to orchestrating cell movement. Using a FRET-based biosensor approach, we investigated the dynamics of Rac GTPase activation during chemotaxis of live primary human neutrophils. Rac has been implicated in establishing and maintaining the leading edge of motile cells, and we show that Rac is dynamically activated at specific locations in the extending leading edge. However, we also demonstrate activated Rac in the retracting tail of motile neutrophils. Rac activation is both stimulus and adhesion dependent. Expression of a dominant-negative Rac mutant confirms that Rac is functionally required both for tail retraction and for formation of the leading edge during chemotaxis. These data establish that Rac GTPase is spatially and temporally regulated to coordinate leading-edge extension and tail retraction during a complex motile response, the chemotaxis of human neutrophils.  相似文献   

17.
During axis formation in amniotes, posterior and lateral epiblast cells in the area pellucida undergo a counter-rotating movement along the midline to form primitive streak (Polonaise movements). Using chick blastoderms, we investigated the signaling involved in this cellular movement in epithelial-epiblast. In cultured posterior blastoderm explants from stage X to XI embryos, either Lefty1 or Cerberus-S inhibited initial migration of the explants on chamber slides. In vivo analysis showed that inhibition of Nodal signaling by Lefty1 affected the movement of DiI-marked epiblast cells prior to the formation of primitive streak. In Lefty1-treated embryos without a primitive streak, Brachyury expression showed a patchy distribution. However, SU5402 did not affect the movement of DiI-marked epiblast cells. Multi-cellular rosette, which is thought to be involved in epithelial morphogenesis, was found predominantly in the posterior half of the epiblast, and Lefty1 inhibited the formation of rosettes. Three-dimensional reconstruction showed two types of rosette, one with a protruding cell, the other with a ventral hollow. Our results suggest that Nodal signaling may have a pivotal role in the morphogenetic movements of epithelial epiblast including Polonaise movements and formation of multi-cellular rosette.  相似文献   

18.
K G Büki  H Sepp? 《FEBS letters》1985,184(2):254-258
The formation of new blood vessels occurs by sprouting from previously existing microvasculature. The process involved directed migration of the vascular endothelial cells towards chemical signals released from the target tissue. We have used the Boyden chemotaxis chamber method to identify chemotactic signals for fetal bovine vascular endothelial cells. Human placenta organ cultures produce a high-Mr chemoattractant for the endothelial cells from which a low-Mr factor can be liberated with trichloroacetic acid treatment and ethanol extraction. This activity was isolated from extracts of human placenta using Sephadex LH-20, Amberlite XAD-2, and silica gel thin-layer chromatography. The Mr of the factor is less than 400, it is lipophilic and resistant to proteolytic enzymes. The factor induces chemotactic migration of both aortic endothelial cells and capillary endothelial cells from the retina, but has no effect on fibroblasts or leukocytes suggesting a specific function of the compound for the vascular endothelial cells.  相似文献   

19.
Dictyostelium morphogenesis starts with the chemotactic aggregation of starving individual cells. The cells move in response to propagating waves of the chemoattractant cyclic AMP initiated by cells in the aggregation centre. During aggregation the cells begin to differentiate into several types with different signalling and chemotactic properties. These cell types sort out from each other to form an axial pattern in the slug. There is now good evidence that periodic chemotactic signals not only control aggregation, but also later stages of morphogenesis. These signals take the form of target patterns, spirals, multi-armed spirals and scroll waves. I will discuss their role in the control of cell movement during mound and slug formation and in the formation of the fruiting body.  相似文献   

20.
Dictyostelium discoideum (Dd) is a widely studied model system from which fundamental insights into cell movement, chemotaxis, aggregation and pattern formation can be gained. In this system aggregation results from the chemotactic response by dispersed amoebae to a travelling wave of the chemoattractant cAMP. We have developed a model in which the cells are treated as discrete points in a continuum field of the chemoattractant, and transduction of the extracellular cAMP signal into the intracellular signal is based on the G protein model developed by Tang & Othmer. The model reproduces a number of experimental observations and gives further insight into the aggregation process. We investigate different rules for cell movement the factors that influence stream formation the effect on aggregation of noise in the choice of the direction of movement and when spiral waves of chemoattractant and cell density are likely to occur. Our results give new insight into the origin of spiral waves and suggest that streaming is due to a finite amplitude instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号