首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast growth factor (FGF)-dependent epithelial-mesenchymal transitions and cell migration contribute to the establishment of germ layers in vertebrates and other animals, but a comprehensive demonstration of the cellular activities that FGF controls to mediate these events has not been provided for any system. The establishment of the Drosophila mesoderm layer from an epithelial primordium involves a transition to a mesenchymal state and the dispersal of cells away from the site of internalisation in a FGF-dependent fashion. We show here that FGF plays multiple roles at successive stages of mesoderm morphogenesis in Drosophila. It is first required for the mesoderm primordium to lose its epithelial polarity. An intimate, FGF-dependent contact is established and maintained between the germ layers through mesoderm cell protrusions. These protrusions extend deep into the underlying ectoderm epithelium and are associated with high levels of E-cadherin at the germ layer interface. Finally, FGF directs distinct hitherto unrecognised and partially redundant protrusive behaviours during later mesoderm spreading. Cells first move radially towards the ectoderm, and then switch to a dorsally directed movement across its surface. We show that both movements are important for layer formation and present evidence suggesting that they are controlled by genetically distinct mechanisms.  相似文献   

2.
FGF signalling is needed for the proper establishment of the mesodermal cell layer in Drosophila embryos. The activation of the FGF receptor Heartless triggers the di-phosphorylation of MAPK in the mesoderm, which accumulates in a graded fashion with the highest levels seen at the dorsal edge of the mesoderm. We have examined the specific requirement for FGF signalling in the spreading process. We show that only the initial step of spreading, specifically the establishment of contact between the ectoderm and the mesoderm, depends upon FGF signalling, and that unlike the role of FGF signalling in the differentiation of heart precursors this function cannot be replaced by other receptor tyrosine kinases. The initiation of mesoderm spreading requires the FGF receptor to possess a functional kinase domain, but does not depend upon the activation of MAPK. Thus, the dispersal of the mesoderm at early stages is regulated by pathways downstream of the FGF receptor that are independent of the MAPK cascade. Furthermore, we demonstrate that the activation of MAPK by Heartless needs additional cues from the ectoderm. We propose that FGF signalling is required during the initial stages of mesoderm spreading to promote the efficient interaction of the mesoderm with the ectoderm rather than having a long range chemotactic function, and we discuss this in relation to the cellular mechanism of mesoderm spreading.  相似文献   

3.
The cellular mechanisms responsible for the formation of the Xenopus nervous system have been examined in total exogastrula embryos in which the axial mesoderm appears to remain segregated from prospective neural ectoderm and in recombinates of ectoderm and mesoderm. Posterior neural tissue displaying anteroposterior pattern develops in exogastrula ectoderm. This effect may be mediated by planar signals that occur in the absence of underlying mesoderm. The formation of a posterior neural tube may depend on the notoplate, a midline ectodermal cell group which extends along the anteroposterior axis. The induction of neural structures characteristic of the forebrain and of cell types normally found in the ventral region of the posterior neural tube requires additional vertical signals from underlying axial mesoderm. Thus, the formation of the embryonic Xenopus nervous system appears to involve the cooperation of distinct planar and vertical signals derived from midline cell groups.  相似文献   

4.
During vertebrate gastrulation, a relatively limited number of blastodermal cells undergoes a stereotypical set of cellular movements that leads to formation of the three germ layers: ectoderm, mesoderm and endoderm. Gastrulation, therefore, provides a unique developmental system in which to study cell movements in vivo in a fairly simple cellular context. Recent advances have been made in elucidating the cellular and molecular mechanisms that underlie cell movements during zebrafish gastrulation. These findings can be compared with observations made in other model systems to identify potential general mechanisms of cell migration during development.  相似文献   

5.
Abstract. The ultrastructure of the day 8.5 mouse embryo has been studied by transmission electron microscopy, with special emphasis on the primary mesenchymal cells and their interaction with cells of the embryonic ectoderm and the proximal endoderm. The organization of the two polar epithelial cell layers (embryonic ectoderm and proximal endoderm), the isolated cells of the distal endoderm and the primary mesenchymal cells is described. Primary mesenchymal cells are different from embryonic ectoderm cells, from which they are derived, not only by the absence of desmosomes and intermediate-sized filaments of the cytokeratin type but also by their variable morphology not exhibiting stable polar architecture, and their numerous cytoplasmic processes which make contacts with the basal lamina of the ectoderm, the basal cell surface of the proximal endoderm, and other mesenchymal cells. Over most of the embryo the embryonic ectoderm is covered by a typical basal lamina, except for certain regions that are frequently characterized by cytoplasmic projections ('blebs') from the basal cell surface membrane. In contrast, the basal surface of the proximal endoderm is not covered by a continuous basal lamina and reveals mushroom-like protrusions of the cortical cytoplasm. Junctions between primary mesenchymal cells are numerous and include adhaerens-type formations of various sizes as well as gap junctions. Occasionally, a special type of junction between mesenchymal cells and embryonic ectoderm has been found, resulting in local interruptions of the basal lamina. The observations are discussed in relation to possible mechanisms of mesoderm formation and the drastic changes of cell character that accompany this process, including cytoskeletal changes such as the disappearance of cytokeratin filaments and the expression of vimentin.  相似文献   

6.
The nephric duct is the first epithelial tubule to differentiate from intermediate mesoderm that is essential for all further urogenital development. In this study we identify the domain of intermediate mesoderm that gives rise to the nephric duct and demonstrate that the surface ectoderm is required for its differentiation. Removal of the surface ectoderm resulted in decreased levels of Sim-1 and Pax-2 mRNA expression in mesenchymal nephric duct progenitors, and caused inhibition of nephric duct formation and subsequent kidney development. The surface ectoderm expresses BMP-4 and we show that it is required for the maintenance of high-level BMP-4 expression in lateral plate mesoderm. Addition of a BMP-4-coated bead to embryos lacking the surface ectoderm restored normal levels of Sim-1 and Pax-2 mRNA expression in nephric duct progenitors, nephric duct formation and the initiation of nephrogenesis. Thus, BMP-4 signaling can substitute for the surface ectoderm in supporting nephric duct morphogenesis. Collectively, these data suggest that inductive interactions between the surface ectoderm, lateral mesoderm and intermediate mesoderm are essential for nephric duct formation and the initiation of urogenital development.  相似文献   

7.
The ultrastructure of the day 8.5 mouse embryo has been studied by transmission electron microscopy, with special emphasis on the primary mesenchymal cells and their interaction with cells of the embryonic ectoderm and the proximal endoderm. The organization of the two polar epithelial cell layers (embryonic ectoderm and proximal endoderm), the isolated cells of the distal endoderm and the primary mesenchymal cells is described. Primary mesenchymal cells are different from embryonic ectoderm cells, from which they are derived, not only by the absence of desmosomes and intermediate-sized filaments of the cytokeratin type but also by their variable morphology not exhibiting stable polar architecture, and their numerous cytoplasmic processes which make contacts with the basal lamina of the ectoderm, the basal cell surface of the proximal endoderm, and other mesenchymal cells. Over most of the embryo the embryonic ectoderm is covered by a typical basal lamina, except for certain regions that are frequently characterized by cytoplasmic projections ("blebs') from the basal cell surface membrane. In contrast, the basal surface of the proximal endoderm is not covered by a continuous basal lamina and reveals mushroom-like protrusions of the cortical cytoplasm. Junctions between primary mesenchymal cells are numerous and include adhaerens-type formations of various sizes as well as gap junctions. Occasionally, a special type of junction between mesenchymal cells and embryonic ectoderm has been found, resulting in local interruptions of the basal lamina. The observations are discussed in relation to possible mechanisms of mesoderm formation and the drastic changes of cell character that accompany this process, including cytoskeletal changes such as the disappearance of cytokeratin filaments and the expression of vimentin.  相似文献   

8.
In the mammal, the pluripotent cells of embryo differentiate and commit to either the mesoderm/endoderm lineages or the ectoderm lineage during gastrulation. In culture, the ability to direct lineage choice from pluripotent cells into the mesoderm/endoderm or ectoderm lineages will enable the development of technologies for the formation of highly enriched or homogenous populations of cells. Here we show that manipulation of cell:cell contact and a mesoderm suppressing activity in culture affects the outcome of pluripotent cell differentiation and when both variables are manipulated appropriately they can direct differentiation to either the mesoderm or ectoderm lineage. The disruption of cell:cell contacts and removal of a mesoderm suppressor activity results in the differentiation of pluripotent, primitive ectoderm-like cells to the mesoderm lineage, while maintenance of cell:cell contacts and inclusion, within the culture medium, of a mesoderm suppressing activity results in the formation of near homogenous populations of ectoderm. Understanding the contribution of these variables in lineage choice provides a framework for the development of directed differentiation protocols that result in the formation of specific cell populations from pluripotent cells in culture.  相似文献   

9.
Nidogen-1, a key component of basement membranes, is considered to function as a link between laminin and collagen Type IV networks and is expressed by mesenchymal cells during embryonic and fetal development. It is not clear which cells produce nidogen-1 in early developmental stages when no mesenchyme is present. We therefore localized nidogen-1 and its corresponding mRNA at the light and electron microscopic level in Day 7 mouse embryos during the onset of mesoderm formation by in situ hybridization, light microscopic immunostaining, and immunogold histochemistry. Nidogen-1 mRNA was found not only in the cells of the ectoderm-derived mesoderm but also in the cytoplasm of the endoderm and ectoderm, indicating that all three germ layers express it. Nidogen-1 was localized only in fully developed basement membranes of the ectoderm and was not seen in the developing endodermal basement membrane or in membranes disrupted during mesoderm formation. In contrast, laminin-1 and collagen Type IV were present in all basement membrane types at this developmental stage. The results indicate that, in the early embryo, nidogen-1 may be expressed by epithelial and mesenchymal cells, that both cell types contribute to embryonic basement membrane formation, and that nidogen-1 might serve to stabilize basement membranes in vivo. (J Histochem Cytochem 48:229-237, 2000)  相似文献   

10.
Changing patterns of cytokeratins and vimentin in the early chick embryo   总被引:5,自引:0,他引:5  
The distribution of cytokeratins and vimentin intermediate filaments in the first 48 h of chick development has been determined using immunofluorescent labelling. During formation of the germ layers, cytokeratin expression is associated with the appearance of an integral epithelium (ectoderm), whereas vimentin expression is associated with cells that detach and migrate from this epithelium to form endoderm and mesoderm. Subsequently, vimentin persists in the endoderm and mesoderm and the tissues derived therefrom, such as the somites and developing heart, throughout the period of study. The appearance of cytokeratins at later stages of development occurs in some epithelia such as the ectoderm, endoderm, lateral plate and epimyocardium but not others including the neural plate, neural tube and somites. Expression of cytokeratins in endoderm and mesenchymal tissues occurs in tandem with vimentin. In conclusion, vimentin expression is related to its distribution in the epiblast before germ layer formation. Its initial appearance may be related to the motile behaviour of cells about to ingress through the primitive streak. The appearance of cytokeratin filaments, however, does not reflect germ layer derivation but rather the need for an epithelial sheet.  相似文献   

11.
Gastrulation, the process that puts the three major germlayers, the ectoderm, mesoderm and endoderm in their correct topological position in the developing embryo, is characterised by extensive highly organised collective cell migration of epithelial and mesenchymal cells. We discuss current knowledge and insights in the mechanisms controlling these cell behaviours during gastrulation in the chick embryo. We discuss several ideas that have been proposed to explain the observed large scale vortex movements of epithelial cells in the epiblast during formation of the primitive streak. We review current insights in the control and execution of the epithelial to mesenchymal transition (EMT) underlying the formation of the hypoblast and the ingression of the mesendoderm cells through the streak. We discuss the mechanisms by which the mesendoderm cells move, the nature and dynamics of the signals that guide these movements, as well as the interplay between signalling and movement that result in tissue patterning and morphogenesis. We argue that instructive cell-cell signaling and directed chemotactic movement responses to these signals are instrumental in the execution of all phases of gastrulation.  相似文献   

12.
Embryonal carcinoma cells are pluripotent stem cells derived from teratocarcinomas and are considered to be the malignant counterparts of human embryonic stem cells. As there are few reliable experimental systems available to study the molecular mechanisms governing normal embryogenesis, well-characterized human embryonal carcinoma stem cell lines may provide a robust and simple model to study certain aspects of pluripotency and cellular differentiation. Here, we have analysed NTERA-2 cL.D1 cells at molecular and cellular levels during expansion and differentiation, via formation of cell aggregates similar to embryoid bodies in embryonic stem cells. Thus, human embryonal carcinoma cells may provide a valuable insight into cell fate determination, into the embryonic ectoderm, mesoderm and endoderm and their downstream derivatives.  相似文献   

13.
14.
In arthropods, annelids and chordates, segmentation of the body axis encompasses both ectodermal and mesodermal derivatives. In vertebrates, trunk mesoderm segments autonomously and induces segmental arrangement of the ectoderm-derived nervous system. In contrast, in the arthropod Drosophila melanogaster, the ectoderm segments autonomously and mesoderm segmentation is at least partially dependent on the ectoderm. While segmentation has been proposed to be a feature of the common ancestor of vertebrates and arthropods, considering vertebrates and Drosophila alone, it is impossible to conclude whether the ancestral primary segmented tissue was the ectoderm or the mesoderm. Furthermore, much of Drosophila segmentation occurs before gastrulation and thus may not accurately represent the mechanisms of segmentation in all arthropods. To better understand the relationship between segmented germ layers in arthropods, we asked whether segmentation is an intrinsic property of the ectoderm and/or the mesoderm in the crustacean Parhyale hawaiensis by ablating either the ectoderm or the mesoderm and then assaying for segmentation in the remaining tissue layer. We found that the ectoderm segments autonomously. However, mesoderm segmentation requires at least a permissive signal from the ectoderm. Although mesodermal stem cells undergo normal rounds of division in the absence of ectoderm, they do not migrate properly in respect to migration direction and distance. In addition, their progeny neither divide nor express the mesoderm segmentation markers Ph-twist and Ph-Even-skipped. As segmentation is ectoderm-dependent in both Parhyale and holometabola insects, we hypothesize that segmentation is primarily a property of the ectoderm in pancrustacea.  相似文献   

15.
During vertebrate gastrulation, the three germ layers, ectoderm, mesoderm and endoderm are formed, and the resulting progenitor cells are brought into the positions from which they will later contribute more complex tissues and organs. A core element in this process is the internalization of mesodermal and endodermal progenitors at the onset of gastrulation. Although many of the molecules that induce mesendoderm have been identified, much less is known about the cellular mechanisms underlying mesendodermal cell internalization and germ layer formation. Here we show that at the onset of zebrafish gastrulation, mesendodermal progenitors in dorsal/axial regions of the germ ring internalize by single cell delamination. Once internalized, mesendodermal progenitors upregulate E-Cadherin (Cadherin 1) expression, become increasingly motile and eventually migrate along the overlying epiblast (ectodermal) cell layer towards the animal pole of the gastrula. When E-Cadherin function is compromised, mesendodermal progenitors still internalize, but, with gastrulation proceeding, fail to elongate and efficiently migrate along the epiblast, whereas epiblast cells themselves exhibit reduced radial cell intercalation movements. This indicates that cadherin-mediated cell-cell adhesion is needed within the forming shield for both epiblast cell intercalation, and mesendodermal progenitor cell elongation and migration during zebrafish gastrulation. Our data provide insight into the cellular mechanisms underlying mesendodermal progenitor cell internalization and subsequent migration during zebrafish gastrulation, and the role of cadherin-mediated cell-cell adhesion in these processes.  相似文献   

16.
In higher vertebrates, the paraxial mesoderm undergoes a mesenchymal to epithelial transformation to form segmentally organised structures called somites. Experiments have shown that signals originating from the ectoderm overlying the somites or from midline structures are required for the formation of the somites, but their identity has yet to be determined. Wnt6 is a good candidate as a somite epithelialisation factor from the ectoderm since it is expressed in this tissue. In this study, we show that injection of Wnt6-producing cells beneath the ectoderm at the level of the segmental plate or lateral to the segmental plate leads to the formation of numerous small epithelial somites. Ectopic expression of Wnt6 leads to sustained expression of markers associated with the epithelial somites and reduced or delayed expression of markers associated with mesenchymally organised somitic tissue. More importantly, we show that Wnt6-producing cells are able to rescue somite formation after ectoderm ablation. Furthermore, injection of Wnt6-producing cells following the isolation of the neural tube/notochord from the segmental plate was able to rescue somite formation at both the structural (epithelialisation) and molecular level, as determined by the expression of marker genes like Paraxis or Pax-3. We show that Wnts are indeed responsible for the epithelialisation of somites by applying Wnt antagonists, which result in the segmental plate being unable to form somites. These results show that Wnt6, the only known member of this family to be localised to the chick paraxial ectoderm, is able to regulate the development of epithelial somites and that cellular organisation is pivotal in the execution of the differentiation programmes. We propose a model in which the localisation of Wnt6 and its antagonists regulates the process of epithelialisation in the paraxial mesoderm.  相似文献   

17.
Limb bud cells of chick embryos (stages 23–24) were dissociated into single cells, reaggregated, and cultured in vitro for about a week. δ-Crystallin, generally thought to be a lens-specific protein in the chick, was detected in the aggregates by indirect immunofluorescent staining, double immunodiffusion test, and immunoelectrophoresis with specific antiserum against δ-crystallin. Cells containing δ-crystallin were distributed in epidermal cell clusters and also in mesenchymal tissues surrounding cartilage nodules in the aggregates. Those cells in mesenchymal tissues were shown to have originated from the mesoderm of the limb bud, and those in epidermal cell clusters probably originated from the ectoderm. The possible cellular origin of this appearance of δ-crystallin was discussed.  相似文献   

18.
After completion of gastrulation, typical vertebrate embryos consist of three cell sheets, called germ layers. The outer layer, the ectoderm, which produces the cells of the epidermis and the nervous system; the inner layer, the endoderm, producing the lining of the digestive tube and its associated organs (pancreas, liver, lungs etc.) and the middle layer, the mesoderm, which gives rise to several organs (heart, kidney, gonads), connective tissues (bone, muscles, tendons, blood vessels), and blood cells. The formation of the germ layers is one of the earliest embryonic events to subdivide multicellular embryos into a few compartments. In Xenopus laevis, the spatial domains of three germ layers are largely separated along the animal-vegetal axis even before gastrulation; ectoderm in the animal pole region; mesoderm in the equatorial region and endoderm in the vegetal pole region. In this review, we summarise the recent advances in our understanding of the formation of the germ layers in Xenopus laevis.  相似文献   

19.
Zebrafish gastrulation movements: bridging cell and developmental biology   总被引:1,自引:0,他引:1  
During vertebrate gastrulation, large cellular rearrangements lead to the formation of the three germ layers, ectoderm, mesoderm and endoderm. Zebrafish offer many genetic and experimental advantages for studying vertebrate gastrulation movements. For instance, several mutants, including silberblick, knypek and trilobite, exhibit defects in morphogenesis during gastrulation. The identification of the genes mutated in these lines together with the analysis of the mutant phenotypes has provided new insights into the molecular and cellular mechanisms that underlie vertebrate gastrulation movements.  相似文献   

20.
Most triploblastic animals including vertebrates have a coelomic cavity that separates the outer and inner components of the body. The coelom is lined by two different tissue components, somatopleure and splanchnopleure, which are derived from the lateral plate region. Thus, the coelom is constructed as a result of a binary decision during early specification of the lateral plate. In this report we studied the molecular mechanisms of this binary decision. We first demonstrate that the splitting of the lateral plate into the two cell sheets progresses in an anteroposterior order and this progression is not coordinated with that of the somitic segmentation. By a series of embryological manipulations we found that young splanchnic mesoderm is still competent to be respecified as somatic mesoderm, and the ectoderm overlying the lateral plate is sufficient for this redirection. The lateral ectoderm is also required for maintenance of the somatic character of the mesoderm. Thus, the ectoderm plays at least two roles in the early subdivision of the lateral plate: specification and maintenance of the somatic mesoderm. We also show that the latter interactions are mediated by BMP molecules that are localized in the lateral ectoderm. Evolutionary aspects of the coelom formation are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号