首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While past work has often examined the effects of transmission mode on virulence evolution in parasites, few studies have explored the impact of horizontal transmission on the evolution of benefits conferred by a symbiont to its host. Here, we identify three mechanisms that create a positive covariance between horizontal transmission and symbiont‐provided benefits: pleiotropy within the symbiont genome, partner choice by the host, and consumption of host waste by‐products by symbionts. We modify a susceptible‐infected model to incorporate the details of each mechanism and examine the evolution of symbiont benefits given variation in either the immigration rate of susceptible hosts or the rate of successful vertical transmission. We find conditions for each case under which greater opportunity for horizontal transmission (higher migration rate) favors the evolution of mutualism. Further, we find the surprising result that vertical transmission can inhibit the evolution of benefits provided by symbionts to hosts when horizontal transmission and symbiont‐provided benefits are positively correlated. These predictions may apply to a number of natural systems, and the results may explain why many mutualisms that rely on partner choice often lack a mechanism for vertical transmission.  相似文献   

2.
Many symbioses have costs and benefits to their hosts that vary with the environmental context, which itself may vary in space. The same symbiont may be a mutualist in one location and a parasite in another. Such spatially conditional mutualisms pose a dilemma for hosts, who might evolve (higher or lower) horizontal or vertical transmission to increase their chances of being infected only where the symbiont is beneficial. To determine how transmission in hosts might evolve, we modeled transmission evolution where the symbiont had a spatially conditional effect on either host lifespan or fecundity. We found that over ecological time, symbionts that affected lifespan but not fecundity led to high frequencies of infected hosts in areas where the symbiont was beneficial and low frequencies elsewhere. In response, hosts evolved increased horizontal transmission only when the symbiont affected lifespan. We also modeled transmission evolution in symbionts, which evolved high horizontal and vertical transmission, indicating a possible host–symbiont conflict over transmission mode. Our results suggest an eco‐evolutionary feedback where the component of host fitness affected by a conditionally mutualistic symbiont in turn determines its distribution in the population, and, through this, the transmission mode that evolves.  相似文献   

3.
In obligate symbioses, the host’s survival relies on the successful acquisition and maintenance of symbionts. Symbionts can either be transferred from parent to offspring via direct inheritance (vertical transmission) or acquired anew each generation from the environment (horizontal transmission). With vertical symbiont transmission, progeny benefit by not having to search for their obligate symbionts, and, with symbiont inheritance, a mechanism exists for perpetuating advantageous symbionts. But, if the progeny encounter an environment that differs from that of their parent, they may be disadvantaged if the inherited symbionts prove suboptimal. Conversely, while in horizontal symbiont acquisition host survival hinges on an unpredictable symbiont source, an individual host may acquire genetically diverse symbionts well suited to any given environment. In horizontal acquisition, however, a potentially advantageous symbiont will not be transmitted to subsequent generations. Adaptation in obligate symbioses may require mechanisms for both novel symbiont acquisition and symbiont inheritance. Using denaturing-gradient gel electrophoresis and real-time PCR, we identified the dinoflagellate symbionts (genus Symbiodinium) hosted by the Red Sea coral Stylophora pistillata throughout its ontogenesis and over depth. We present evidence that S. pistillata juvenile colonies may utilize both vertical and horizontal symbiont acquisition strategies. By releasing progeny with maternally derived symbionts, that are also capable of subsequent horizontal symbiont acquisition, coral colonies may acquire physiologically advantageous novel symbionts that are then perpetuated via vertical transmission to subsequent generations. With symbiont inheritance, natural selection can act upon the symbiotic variability, providing a mechanism for coral adaptation.  相似文献   

4.
Variation in mitochondrial DNA is often used to trace the evolutionary history of populations and species. We here discuss the effect of infection with cytoplasmically inherited male-lethal symbionts on mitochondrial genome evolution. Male-lethal symbionts spread when killing male hosts increases the lifetime reproductive success of sibling female hosts. This increase in the survivorship of daughters from individuals bearing a male-killer will produce a concomitant increase in the frequency of mitotypes associated with the male-killer. If horizontal transmission of the microoorganism is rare and population sizes not very small, then linkage disequilibrium between microorganism and particular mitotypes will result in a reproduction of within-population mitochondrial variability both because of a selective sweep during the spread of such a micro-organism, and also at equilibrium. Male-killing symbionts may thus confound the use of mtDNA variability in estimation of population parameters. We discuss the differences between the effects of male-killers and the cytoplasmic incompatibility-inducing symbiont Wolbachia , and the possibility that estimation of gene flow between populations may also be confounded by symbiont presence.  相似文献   

5.
Evolutionary theory predicts that hosts are selected to prevent mixing of genetically different symbionts when competition among lineages reduces the productivity of a mutualism. The symbionts themselves may also defend their interests: recent studies of Acromyrmex leaf-cutting ants showed that somatic incompatibility enforces single-clone gardens within mature colonies, thereby constraining horizontal transmission of fungal symbionts. However, phylogenetic analyses indicate that symbiont switches occur frequently enough to remove most signs of host-symbiont cocladogenesis. Here we resolve this paradox by showing that transmission among newly founded Acromyrmex colonies is not constrained. All tested queens of sympatric A. octospinosus and A. echinatior offered a novel fragment of fungus garden accepted the new symbiont. The outcome was unaffected by genetic distance between the novel and the original symbiont, and by the ant species the novel symbiont came from. The colony founding stage may thus provide an efficient but transient window for horizontal transmission, in which the fungus is unable to actively defend its partnership position before the host feeds on it, so that host fecal droplets remain compatible with alternative strains during the early stage of colony founding. We discuss how brief stages of low commitment between partners may increase the evolutionary stability of ancient coevolved mutualisms.  相似文献   

6.
Androgenesis, the development of a haploid embryo from a male nucleus, has been shown to result in the instantaneous uncoupling of the transmission of the organelle and nuclear genomes (with the nuclear genome originating from the male parent only and the organelle genomes from the female parent). We report, for the first time, uncoupling resulting from gynogenesis, in Actinidia deliciosa (kiwifruit), a plant species known for its paternal mode of chloroplast inheritance. After pollen irradiation, transmission of nuclear genes from the pollen parent to the progeny was inhibited, but transmission of the chloroplast genome was not. This demonstrates that plastids can be discharged from the pollen tube into the egg with little or no concomitant transmission of paternal nuclear genes. Such events of opposite inheritance of the organelle and nuclear genomes must be very rare in nature and are unlikely to endanger the long-term stability of the association between the different genomes of the cell. However, they could lead to incongruences between organelle gene trees and species trees and may constitute an alternative to the hybridization/introgression scenario commonly invoked to account for such incongruences.  相似文献   

7.
Eukaryotes often form intimate endosymbioses with prokaryotic organisms. Cases in which these symbionts are transmitted cytoplasmically to host progeny create the potential for co-speciation or congruent evolution among the distinct genomes of these partners. If symbionts do not move horizontally between different eukaryotic hosts, strict phylogenetic congruence of their genomes is predicted and should extend to relationships within a single host species. Conversely, even rare 'host shifts' among closely related lineages should yield conflicting tree topologies at the intraspecific level. Here, we investigate the historical associations among four symbiotic genomes residing within an aphid host: the mitochondrial DNA of Uroleucon ambrosiae aphids, the bacterial chromosome of their Buchnera bacterial endosymbionts, and two plasmids associated with Buchnera. DNA sequence polymorphisms provided a significant phylogenetic signal and no homoplasy for each data set, yielding completely and significantly congruent phylogenies for these four genomes and no evidence of horizontal transmission. This study thus provides the first evidence for strictly vertical transmission and 'co-speciation' of symbiotic organisms at the intraspecific level, and represents the lowest phylogenetic level at which such coevolution has been demonstrated. These results may reflect the obligate nature of this intimate mutualism and indicate opportunities for adaptive coevolution among linked symbiont genomes.  相似文献   

8.
In most sexual organisms, including isogamous, anisogamous and oogamous organisms, uniparental transmission is a striking and universal characteristic of the transmission of organelle (plastid and mitochondrial) genomes (DNA). Using genetic, biochemical and molecular biological techniques, mechanisms of uniparental (maternal and parental) and biparental transmission of organelle genomes have been studied and reviewed. Although to date there has been no cytological review of the transmission of organelle genomes, cytology offers advantages in terms of direct evidence and can enhance global studies of the transmission of organelle genomes. In this review, I focus on the cytological mechanism of uniparental inheritance by “active digestion of male or female organelle nuclei (nucleoids, DNA)” which is universal among isogamous, anisogamous, and oogamous organisms. The global existence of uniparental transmission since the evolution of sexual eukaryotes may imply that the cell nuclear genome continues to inhibit quantitative evolution of organelles by organelle recombination.  相似文献   

9.
One of the outstanding and poorly understood examples of cooperation between species is found in corals, hydras and jellyfish that form symbioses with algae. These mutualistic algae are mostly acquired infectiously from the seawater and, according to models of virulence evolution, should be selected to parasitize their hosts. We altered algal transmission between jellyfish hosts in the laboratory to examine the potential for virulence evolution in this widespread symbiosis. In one experimental treatment, vertical transmission of algae (parent to offspring) selected for symbiont cooperation, because symbiont fitness was tied to host reproduction. In the other treatment, horizontal transmission (infectious spread) decoupled symbiont fitness from the host, potentially allowing parasitic symbionts to spread. Fitness estimates revealed a striking shift to parasitism in the horizontal treatment. The horizontally transmitted algae proliferated faster within hosts and had higher dispersal rates from hosts compared to the vertical treatment, while reducing host reproduction and growth. However, a trade-off was detected between harm caused to hosts and symbiont fitness. Virulence trade-offs have been modelled for pathogens and may be critical in stabilising 'infectious' symbioses. Our results demonstrate the dynamic nature of this symbiosis and illustrate the potential ease with which beneficial symbionts can evolve into parasites.  相似文献   

10.
Aphids may harbor a wide variety of facultative bacterial endosymbionts. These symbionts are transmitted maternally with high fidelity and they show horizontal transmission as well, albeit at rates too low to enable infectious spread. Such symbionts need to provide a net fitness benefit to their hosts to persist and spread. Several symbionts have achieved this by evolving the ability to protect their hosts against parasitoids. Reviewing empirical work and some models, I explore the evolutionary ecology of symbiont‐conferred resistance to parasitoids in order to understand how defensive symbiont frequencies are maintained at the intermediate levels observed in aphid populations. I further show that defensive symbionts alter the reciprocal selection between aphids and parasitoids by augmenting the heritable variation for resistance, by increasing the genetic specificity of the host–parasitoid interaction, and by inducing environment‐dependent trade‐offs. These effects are conducive to very dynamic, symbiont‐mediated coevolution that is driven by frequency‐dependent selection. Finally I argue that defensive symbionts represent a problem for biological control of pest aphids, and I propose to mitigate this problem by exploiting the parasitoids’ demonstrated ability to rapidly evolve counteradaptations to symbiont‐conferred resistance.  相似文献   

11.
Deep-sea clams of the family Vesicomyidae live in symbiosis with intracellular chemosynthetic bacteria. These symbionts are transmitted maternally (vertically) between host generations and should therefore show a pattern of genetic variation paralleling that of the cotransmitted host mitochondrion. However, instances of lateral (nonvertical) symbiont acquisition could still occur, thereby decoupling symbiont and mitochondrial phylogenies. Here, we provide the first evidence against strict maternal cotransmission of symbiont and mitochondrial genomes in vesicomyids. Analysis of Vesicomya sp. mt-II clams from hydrothermal vents on the Juan de Fuca Ridge (northeastern Pacific) revealed a symbiont phylotype (designated symB(VII)) highly divergent from previously described symbionts of the same host lineage. SymB(VII)-hosting clams occurred at low frequency (0.02) relative to individuals hosting the dominant symbiont phylotype. Phylogenetic analysis of 16S rRNA genes from a wide range of symbionts and free-living bacteria clustered symB(VII) within the monophyletic clade of vesicomyid symbionts. Further analysis of 3 symbiont loci (23S, dnaK, and soxA) across 11 vesicomyid taxa unambiguously placed symB(VII) as sister to the symbiont of a distantly related host lineage, Vesicomya sp. from the Mid-Atlantic Ridge (98.9% median nucleotide identity across protein-coding loci). Using likelihood and Bayesian model discrimination methods, we rejected the strict maternal cotransmission hypothesis by showing a significant decoupling of symbiont and host mitochondrial (COI and mt16S genes) phylogenies. Indeed, decoupling occurred even when symB(VII) was excluded from phylogenetic reconstructions, suggesting a history of host switching in this group. Together, the data indicate a history of lateral symbiont transfer in vesicomyids, with symB(VII) being the most conspicuous example. Interpreted alongside previous studies of the vesicomyid symbiosis, these results suggest a mixed mode of symbiont transmission characterized by predominantly vertical transmission punctuated with instances of lateral symbiont acquisition. Lateral acquisition may facilitate the exchange of genetic material (recombination) among divergent symbiont lineages, rendering the evolutionary history of vesicomyid symbiont genomes much more complex than previously thought.  相似文献   

12.
The mutualism between fungus-growing termites (Macrotermitinae) and their mutualistic fungi (Termitomyces) began in Africa. The fungus-growing termites have secondarily colonized Madagascar and only a subset of the genera found in Africa is found on this isolated island. Successful long-distance colonization may have been severely constrained by the obligate interaction of the termites with fungal symbionts and the need to acquire these symbionts secondarily from the environment for most species (horizontal symbiont transmission). Consistent with this hypothesis, we show that all extant species of fungus-growing termites of Madagascar are the result of a single colonization event of termites belonging to one of the only two groups with vertical symbiont transmission, and we date this event at approximately 13 Mya (Middle/Upper Miocene). Vertical symbiont transmission may therefore have facilitated long-distance dispersal since both partners disperse together. In contrast to their termite hosts, the fungal symbionts have colonized Madagascar multiple times, suggesting that the presence of fungus-growing termites may have facilitated secondary colonizations of the symbiont. Our findings indicate that the absence of the right symbionts in a new environment can prevent long-distance dispersal of symbioses relying on horizontal symbiont acquisition.  相似文献   

13.
In parasitic associations, the evolutionary interest of a symbiont contradicts that of a host, which sometimes causes the phenomena so-called 'parasite manipulation' wherein symbiont infection alters host behaviour to facilitate its vertical/horizontal transmission. In mutualistic associations, meanwhile, symbiont-induced alteration of host behaviour that enhances its transmission has been little described. Here we report such a case in the stinkbug Megacopta punctatissima associated with an obligate gut bacterium. When female stinkbugs lay eggs, small particles called 'symbiont capsules' are deposited underside of the egg mass. Newborn nymphs immediately acquire the symbiont from the capsule, and then aggregate and become quiescent. By manipulating the levels of symbiont supply to newborn nymphs experimentally, we demonstrated that (i) experimental depletion of the symbiont resulted in the occurrence of wandering nymphs, (ii) the less symbiont supply, the more wandering nymphs, and (iii) almost all wandering nymphs were either symbiont-free or symbiont-depleted, whereas the majority of resting nymphs were infected with sufficient titres of the symbiont. These results strongly suggest that the nymphal behaviour is strongly influenced by the success/failure of the symbiont acquisition, thereby ensuring transmission of the essential symbiont and minimizing the energy and time spent for the activity.  相似文献   

14.
Many obligately intracellular symbionts exhibit a characteristic set of genetic changes that include an increase in substitution rates, loss of many genes, and apparent destabilization of many proteins and structural RNAs. Authors have suggested that these changes are due to increased mutation rates, or, more commonly, decreased effective population size due to population bottlenecks at the symbiont or, perhaps, host level. I propose that the increase in substitution rates and accumulation of deleterious mutations is a consequence of the population structure imposed on the endosymbionts by strict host association, loss of horizontal transmission and potentially conflicting levels of selection. I analyze a population genetic model of endosymbiont evolution, and demonstrate that substitution rates will increase, and the effect of those substitutions on endosymbiont fitness will become more deleterious as horizontal transmission among hosts decreases. Additionally, I find that there is a critical level of horizontal transmission below which natural selection cannot effectively purge deleterious mutations, leading to an expected loss of fitness over time. This critical level varies across loci with the degree of correlation between host and endosymbiont fitness, and may help explain differential retention and loss of certain genes.  相似文献   

15.
Members of several bacterial lineages are known only as symbionts of insects and move among hosts through maternal transmission. Such vertical transfer promotes strong fidelity within these associations, favoring the evolution of microbially mediated effects that improve host fitness. However, phylogenetic evidence indicates occasional horizontal transfer among different insect species, suggesting that some microbial symbionts retain a generalized ability to infect multiple hosts. Here we examine the abilities of three vertically transmitted bacteria from the Gammaproteobacteria to infect and spread within a novel host species, the pea aphid, Acyrthosiphon pisum. Using microinjection, we transferred symbionts from three species of natural aphid hosts into a common host background, comparing transmission efficiencies between novel symbionts and those naturally infecting A. pisum. We also examined the fitness effects of two novel symbionts to determine whether they should persist under natural selection acting at the host level. Our results reveal that these heritable bacteria vary in their capacities to utilize A. pisum as a host. One of three novel symbionts failed to undergo efficient maternal transmission in A. pisum, and one of the two efficiently transmitted bacteria depressed aphid growth rates. Although these findings reveal that negative fitness effects and low transmission efficiency can prevent the establishment of a new infection following horizontal transmission, they also indicate that some symbionts can overcome these obstacles, accounting for their widespread distributions across aphids and related insects.  相似文献   

16.

Aim

The aims were to test the role of temperature in latitudinal patterns of egg size and investigate maternal investment trade-offs among coral taxa.

Location

Global, from 34° S to 34° N.

Time period

1981–2020.

Major taxa studied

Reef coral species from the order Scleractinia.

Methods

We compiled a comprehensive geo-referenced global dataset of egg sizes (diameter or volume) and fecundity (number of eggs per area) for colonial corals (Scleractinia; 123 species, 5359 observations and 39 localities), substantially enhanced by new field collections (>88% of observations). We used Bayesian phylogenetic multilevel models to test for Rass' rule (a hypothesized negative relationship between egg size and temperature); we also included other environmental variables and life history traits. We also tested whether a trade-off exists between egg size and fecundity in broadcast spawning hermaphroditic corals with horizontal symbiont transmission (HHT).

Results

We found a significant relationship between coral egg size and symbiont transmission. Eggs from coral species with vertical symbiont transmission were c. 18.8% smaller than those from species with horizontal symbiont transmission. We also found non-significant relationships between egg size and sea surface temperature (SST) for broadcast spawning corals and between egg size and fecundity specifically for HHT species.

Main conclusions

Contrary to recognized latitudinal patterns of egg size across taxa, our study does not provide support for Rass' rule in corals. Additionally, our findings do not support a maternal investment trade-off between egg size and fecundity for HHT species. Our study used a phylogenetic framework that should be a standard practice when studying interspecific variation, including investigation of maternal investment and identification of the influence of multiple predictors on larval fitness (egg size), in addition to trade-offs affecting propagule influx (fecundity). Both these functional traits are vital and have direct consequences for population maintenance and connectivity in sessile organisms, such as corals.  相似文献   

17.
Sánchez MS  Arnold J  Asmussen MA 《Genetics》2000,154(3):1347-1365
Interspecific genetic interactions in host-symbiont systems raise intriguing coevolutionary questions and may influence the effectiveness of public health and management policies. Here we present an analytical and numerical investigation of the effects of host genetic heterogeneity in the rate of vertical transmission of a symbiont. We consider the baseline case with a monomorphic symbiont and a single diallelic locus in its diploid host, where vertical transmission is the sole force. Our analysis introduces interspecific disequilibria to quantify nonrandom associations between host genotypes and alleles and symbiont presence/absence. The transient and equilibrium behavior is examined in simulations with randomly generated initial conditions and transmission parameters. Compared to the case where vertical transmission rates are uniform across host genotypes, differential transmission (i) increases average symbiont survival from 50% to almost 60%, (ii) dramatically reduces the minimum average transmission rate for symbiont survival from 0.5 to 0.008, and (iii) readily creates permanent host-symbiont disequilibria de novo, whereas uniform transmission can neither create nor maintain such associations. On average, heterozygotes are slightly more likely to carry and maintain the symbiont in the population and are more randomly associated with the symbiont. Results show that simple evolutionary forces can create substantial nonrandom associations between two species.  相似文献   

18.
Across animals and plants, numerous metabolic and defensive adaptations are a direct consequence of symbiotic associations with beneficial microbes. Explaining how these partnerships are maintained through evolutionary time remains one of the central challenges within the field of symbiosis research. While genome erosion and co-cladogenesis with the host are well-established features of symbionts exhibiting intracellular localization and transmission, the ecological and evolutionary consequences of an extracellular lifestyle have received little attention, despite a demonstrated prevalence and functional importance across many host taxa. Using insect–bacteria symbioses as a model, we highlight the diverse routes of extracellular symbiont transfer. Extracellular transmission routes are unified by the common ability of the bacterial partners to survive outside their hosts, thereby imposing different genomic, metabolic and morphological constraints than would be expected from a strictly intracellular lifestyle. We emphasize that the evolutionary implications of symbiont transmission routes (intracellular versus extracellular) do not necessarily correspond to those of the transmission mode (vertical versus horizontal), a distinction of vital significance when addressing the genomic and physiological consequences for both host and symbiont.  相似文献   

19.
Phylogenetic comparative methods (PCMs) provide a potentially powerful toolkit for testing hypotheses about cultural evolution. Here, we build on previous simulation work to assess the effect horizontal transmission between cultures has on the ability of both phylogenetic and non-phylogenetic methods to make inferences about trait evolution. We found that the mode of horizontal transmission of traits has important consequences for both methods. Where traits were horizontally transmitted separately, PCMs accurately reported when trait evolution was not correlated even at the highest levels of horizontal transmission. By contrast, linear regression analyses often incorrectly concluded that traits were correlated. Where simulated trait evolution was not correlated and traits were horizontally transmitted as a pair, both methods inferred increased levels of positive correlation with increasing horizontal transmission. Where simulated trait evolution was correlated, increasing rates of separate horizontal transmission led to decreasing levels of inferred correlation for both methods, but increasing rates of paired horizontal transmission did not. Furthermore, the PCM was also able to make accurate inferences about the ancestral state of traits. These results suggest that under certain conditions, PCMs can be robust to the effects of horizontal transmission. We discuss ways that future work can investigate the mode and tempo of horizontal transmission of cultural traits.  相似文献   

20.
We have compared the length of noncoding organelle DNA spacers in a broad sample of plant species characterized by different life history traits to test hypotheses regarding the nature of the mechanisms driving changes in their size. We first demonstrate that the spacers do not evolve at random in size but have experienced directional evolutionary trends during plant diversification. We then study the relationships between spacer lengths and other molecular features and various species attributes by taking into account population genetic processes acting within cell lineages. Comparative techniques are used to test these relationships while controlling for species phylogenetic relatedness. The results indicate that spacer length depends on mode of organelle transmission, on population genetic structure, on nucleotide content, on rates of molecular evolution, and on life history traits, in conformity with predictions based on a model of intracellular competition among replicating organelle genomes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号