首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our traditional physical picture holds with the intuitive notion that each individual cell comprising the cellular collective senses signals or gradients and then mobilizes physical forces in response. Those forces, in turn, drive local cellular motions from which collective cellular migrations emerge. Although it does not account for spontaneous noisy fluctuations that can be quite large, the tacit assumption has been one of linear causality in which systematic local motions, on average, are the shadow of local forces, and these local forces are the shadow of the local signals. New lines of evidence now suggest a rather different physical picture in which dominant mechanical events may not be local, the cascade of mechanical causality may be not so linear, and, surprisingly, the fluctuations may not be noise as much as they are an essential feature of mechanism. Here we argue for a novel synthesis in which fluctuations and non-local cooperative events that typify the cellular collective might be illuminated by the unifying concept of cell jamming. Jamming has the potential to pull together diverse factors that are already known to contribute but previously had been considered for the most part as acting separately and independently. These include cellular crowding, intercellular force transmission, cadherin-dependent cell–cell adhesion, integrin-dependent cell–substrate adhesion, myosin-dependent motile force and contractility, actin-dependent deformability, proliferation, compression and stretch.  相似文献   

2.
Some cells migrate and find their way as solitary entities. However, during development of multicellular animals and possibly during tumor dissemination, cells often move as groups, associated tightly or loosely. Recent advances in live imaging have aided examination of such 'multicellular cell biology'. Here, I propose a model for how a group of cells can process and react to guidance information as a unit rather than as a gathering of solitary cells. Signaling pathways and regulatory mechanisms can differ substantially between solitary- and collective-guidance modes; a major difference being that, in collective guidance, similar to in bacterial chemotaxis, the signal need not be localized subcellularly within the responding cell. I suggest that collective-guidance signaling occurs alongside individual cell reactions. Both produce directional migration.  相似文献   

3.
Fish keratocytes are an established model in single cell motility but little is known about their collective migration. Initially, sheets migrate from the scale at ~145 μm/h but over the course of 24 h the rate of leading edge advance decreases to ~23 μm/h. During this period, leader cells retain their ability to migrate rapidly when released from the sheet and follower cell area increases. After the addition of RGD peptide, leader cell lamellae are lost, altering migratory forces within the sheet, resulting in rapid retraction. Leader and follower cell states interconvert within minutes with changes in cell–cell adhesions. Leader cells migrate as single cells when they detach from the leading edge and single cells appear to become leader cells if they rejoin the sheet. Follower cells rapidly establish leader cell morphology during closing of holes formed during sheet expansion and revert to follower cell morphology after hole-closure. Inhibition of Rho associated kinase releases leader cells and halts advancement of the leading edge suggesting an important role for the intercellular actomyosin cable at the leading edge. In addition, the presence of the stationary scale orients direction of sheet migration which is characterized by a more uniform advance of the leading edge than in some cell line systems. These data establish fish keratocyte explant cultures as a collective cell migration system and suggest that cell–cell interactions determine the role of keratocytes within the migrating sheet.  相似文献   

4.
Collective cell migration in morphogenesis and cancer   总被引:9,自引:0,他引:9  
The movement of cells that maintain cell-cell junctions yet protrude along or within tissues is an important mechanism for cell positioning in morphogenesis, tissue repair and cancer. Collective cell migration shares similarities but also important differences to individually migrating cells. Coherent groups of cells are arranged and held together by cell-cell adhesion molecules, including cadherins, integrins, ALCAM and NCAM. Integrins of the beta 1 and beta 3 families further provide polarized interactions with the extracellular tissue environment, while matrix-degrading proteases become focalized to substrate contacts to widen tissue space for the advancing cell mass. By generating one functional unit, in contrast to individual cell migration, collective migration provides the active and passive translocation of mobile and non-mobile cells, respectively. This review highlights cellular and molecular principles of collective migration in the context of morphogenic tissue patterning and tumor cell invasion.  相似文献   

5.
The migration of border cells during Drosophila melanogaster oogenesis is a simple and powerful system for studying invasive cell migration in vivo. Border cells are somatic cells that delaminate from the follicular epithelium of an egg chamber and invade the germ line cluster. They migrate between the nurse cells to reach the oocyte, using DE-cadherin for adhesion to the substratum. Border cells take approximately 6 h to migrate a distance of 100 microm. The migration is guided by EGFR (epidermal growth factor receptor) and PVR (platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF) receptor). Here, we show that a single long cellular extension (LCE), several cell diameters in length, is formed at the initiation of migration. The LCE may function as a 'pathfinder' in response to guidance cues. LCE growth requires directional guidance signals and specific adhesion to the substratum. Interference with actin-myosin interactions allows continued LCE growth while preventing translocation of the cell bodies. We discuss similarities between LCEs and axons and the use of LCE-like structures as a general mechanism for initiating invasive migration in vivo.  相似文献   

6.
7.
Evolution at a multiallelic locus under the joint action of migration and viability selection is investigated. Generations are discrete and nonoverlapping. The monoecious, diploid population is subdivided into finitely many panmictic colonies that exchange adult migrants independently of genotype. The forward migration matrix is arbitrary, but time independent and ergodic (i.e., irreducible and aperiodic). Several examples of globally attracting multiallelic equilibria are presented. Migration can cause global fixation even if, without migration, there is a globally attracting multiallelic equilibrium in every colony. Migration can also cause the global fixation of an allele that, without migration, is eliminated in every colony. Without dominance, generically, the number of alleles present at equilibrium cannot exceed the number of colonies. Some general properties and examples of the Levene model are studied in detail. If in each colony there is either no dominance or, without migration, a globally attracting internal equilibrium, then there exists a globally attracting equilibrium with migration. Therefore, if an internal equilibrium exists, it is the global attractor.  相似文献   

8.
Epithelial organs are built through the movement of groups of interconnected cells. We observed cells in elongating mammary ducts reorganize into a multilayered epithelium, migrate collectively, and rearrange dynamically, all without forming leading cellular extensions. Duct initiation required proliferation, Rac, and myosin light-chain kinase, whereas repolarization to a bilayer depended on Rho kinase. We observed that branching morphogenesis results from the active motility of both luminal and myoepithelial cells. Luminal epithelial cells advanced collectively, whereas myoepithelial cells appeared to restrain elongating ducts. Significantly, we observed that normal epithelium and neoplastic hyperplasias are organized similarly, suggesting common mechanisms of epithelial growth.  相似文献   

9.
10.
We devise a novel assay that introduces micro-architectures into highly confining microchannels to probe the decision making processes of migrating cells. The conditions are meant to mimic the tight spaces in the physiological environment that cancer cells encounter during metastasis within the matrix dense stroma and during intravasation and extravasation through the vascular wall. In this study we use the assay to investigate the relative probabilities of a cell 1) permeating and 2) repolarizing (turning around) when it migrates into a spatially confining region. We observe the existence of both states even within a single cell line, indicating phenotypic heterogeneity in cell migration invasiveness and persistence. We also show that varying the spatial gradient of the taper can induce behavioral changes in cells, and different cell types respond differently to spatial changes. Particularly, for bovine aortic endothelial cells (BAECs), higher spatial gradients induce more cells to permeate (60%) than lower gradients (12%). Furthermore, highly metastatic breast cancer cells (MDA-MB-231) demonstrate a more invasive and permeative nature (87%) than non-metastatic breast epithelial cells (MCF-10A) (25%). We examine the migration dynamics of cells in the tapered region and derive characteristic constants that quantify this transition process. Our data indicate that cell response to physical spatial gradients is both cell-type specific and heterogeneous within a cell population, analogous to the behaviors reported to occur during tumor progression. Incorporation of micro-architectures in confined channels enables the probing of migration behaviors specific to defined geometries that mimic in vivo microenvironments.  相似文献   

11.
Directed cell migration on fibronectin gradients: effect of gradient slope   总被引:1,自引:0,他引:1  
The migration of human microvascular endothelial cells (hMEC) was measured on a range of fibronectin gradient slopes. hMEC drift speed increased with increasing gradient slope with no concurrent change in cellular persistence time or random cell speed. The frequency of discrete cellular motion in the gradient direction increased with gradient slope. Morphological polarization of cells on the gradients is also characterized and correlated with cellular drift speed. These experiments present the first demonstration of cellular response to changing haptotactic gradient slope using an in vitro system for the quantitative study of cell migration.  相似文献   

12.
Collective epithelial cell migration facilitates formation and maintenance of continuous sheets that line the surfaces and cavities of glands and tissues. By screening Rho GTPase regulators, myosin-IXA RhoGAP was identified as a key requirement for cell-cell adhesions that permit collective migration.  相似文献   

13.
Chemoattractant signaling induces the polarization and directed movement of cells secondary to the activation of multiple effector pathways. In addition, chemotactic signals can be amplified and relayed to proximal cells via the synthesis and secretion of additional chemoattractant. The mechanisms underlying such remarkable features remain ill defined. We show that the asymmetrical distribution of adenylyl cyclase (ACA) at the back of Dictyostelium discoideum cells, an essential determinant of their ability to migrate in a head-to-tail fashion, requires vesicular trafficking. This trafficking results in a local accumulation of ACA-containing intracellular vesicles and involves intact actin, microtubule networks, and de novo protein synthesis. We also show that migrating cells leave behind ACA-containing vesicles, likely secreted as multivesicular bodies and presumably involved in the formation of head-to-tail arrays of migrating cells. We propose that similar compartmentalization and shedding mechanisms exist in mammalian cells during embryogenesis, wound healing, neuron growth, and metastasis.  相似文献   

14.
The cephalic neural crest (NC) cells delaminate from the neuroepithelium in large numbers and undergo collective cell migration under the influence of multiple factors including positive and negative taxis, cell-cell interactions mediating cell sorting, cell cooperation, and Contact-Inhibition of Locomotion. The migration has to be tightly regulated to allow NC cells to reach precise locations in order to contribute to various craniofacial structures such as the skeletal and peripheral nervous systems. Several birth defects, syndromes, and malformations are due to improper cephalic NC (CNC) migration, and NC cell migration bears important similarities to cancer cell invasion and metastasis dissemination. Therefore, understanding how CNC cells interpret multiple inputs to achieve directional collective cell migration will shed light on pathological situations where cell migration is involved.  相似文献   

15.
Directional cell migration on extracellular matrix (ECM) plays important roles in embryonic development and adult organisms. To study the mechanisms and signaling pathways involved in the regulation of directional cell migration, we created defined fibronectin (FN) gradients by using microfluidic systems. We found that fibroblasts exhibited haptotaxis towards higher FN concentration on the gradient. Furthermore, the net movements in the direction of FN gradients correlated with the increase in the slope of the gradient although the overall rate of migration was not correlated. Consistent with previous observations on the uniformly coated surface, local higher FN concentration led to reduced migration rate due to increased spreading. Upon transfection of N-WASP or activated Cdc42, but not FAK or Grb7, the cells showed increased directional migration. However, transfection of FAK, but not the other signaling molecules, led to an increase in the persistence of directional cell migration, which is dependent on the slope of the gradient as well as FAK interaction with PI3K. Together, these studies reveal some novel properties of directional cell migration on defined FN gradient and suggested a role for FAK signaling and N-WASP and Cdc42 in the differential regulation of the persistence and rate of directional cell migration.  相似文献   

16.
Collective cell migration occurs in a range of contexts: cancer cells frequently invade in cohorts while retaining cell-cell junctions. Here we show that collective invasion by cancer cells depends on decreasing actomyosin contractility at sites of cell-cell contact. When actomyosin is not downregulated at cell-cell contacts, migrating cells lose cohesion. We provide a molecular mechanism for this downregulation. Depletion of discoidin domain receptor 1 (DDR1) blocks collective cancer-cell invasion in a range of two-dimensional, three-dimensional and 'organotypic' models. DDR1 coordinates the Par3/Par6 cell-polarity complex through its carboxy terminus, binding PDZ domains in Par3 and Par6. The DDR1-Par3/Par6 complex controls the localization of RhoE to cell-cell contacts, where it antagonizes ROCK-driven actomyosin contractility. Depletion of DDR1, Par3, Par6 or RhoE leads to increased actomyosin contactility at cell-cell contacts, a loss of cell-cell cohesion and defective collective cell invasion.  相似文献   

17.

Background

Cell migration is a vital process for growth and repair. In vitro migration assays, utilized to study cell migration, often rely on physical scraping of a cell monolayer to induce cell migration. The physical act of scrape injury results in numerous factors stimulating cell migration – some injury-related, some solely due to gap creation and loss of contact inhibition. Eliminating the effects of cell injury would be useful to examine the relative contribution of injury versus other mechanisms to cell migration. Cell exclusion assays can tease out the effects of injury and have become a new avenue for migration studies. Here, we developed two simple non-injury techniques for cell exclusion: 1) a Pyrex® cylinder - for outward migration of cells and 2) a polydimethylsiloxane (PDMS) insert - for inward migration of cells. Utilizing these assays smooth muscle cells (SMCs) and human umbilical vein endothelial cells (HUVECs) migratory behavior was studied on both polystyrene and gelatin-coated surfaces.

Results

Differences in migratory behavior could be detected for both smooth muscle cells (SMCs) and endothelial cells (ECs) when utilizing injury versus non-injury assays. SMCs migrated faster than HUVECs when stimulated by injury in the scrape wound assay, with rates of 1.26 % per hour and 1.59 % per hour on polystyrene and gelatin surfaces, respectively. The fastest overall migration took place with HUVECs on a gelatin-coated surface, with the in-growth assay, at a rate of 2.05 % per hour. The slowest migration occurred with the same conditions but on a polystyrene surface at a rate of 0.33 % per hour.

Conclusion

For SMCs, injury is a dominating factor in migration when compared to the two cell exclusion assays, regardless of the surface tested: polystyrene or gelatin. In contrast, the migrating surface, namely gelatin, was a dominating factor for HUVEC migration, providing an increase in cell migration over the polystyrene surface. Overall, the cell exclusion assays - the in-growth and out-growth assays, provide a means to determine pure migratory behavior of cells in comparison to migration confounded by cell wounding and injury.
  相似文献   

18.
Microtubules define the architecture and internal organization of cells by positioning organelles and activities, as well as by supporting cell shape and mechanics. One of the major functions of microtubules is the control of polarized cell motility. In order to support the asymmetry of polarized cells, microtubules have to be organized asymmetrically themselves. Asymmetry in microtubule distribution and stability is regulated by multiple molecular factors, most of which are microtubule-associated proteins that locally control microtubule nucleation and dynamics. At the same time, the dynamic state of microtubules is key to the regulatory mechanisms by which microtubules regulate cell polarity, modulate cell adhesion and control force-production by the actin cytoskeleton. Here, we propose that even small alterations in microtubule dynamics can influence cell migration via several different microtubule-dependent pathways. We discuss regulatory factors, potential feedback mechanisms due to functional microtubule-actin crosstalk and implications for cancer cell motility.  相似文献   

19.
We describe a method for obtaining synchronously dividing cells of bacteria (Escherichia coli B and K-12 and Bacillus subtilis 168) and fission yeasts (Schizosaccharomyces pombe) by the use of Percoll density gradients.  相似文献   

20.
Thiobacillus acidophilus andT. ferrooxidans were separated by centrifugation on the basis of their cell density in Renografin gradients. For both species, growth history was the largest factor influencing cell density. Density was greatest forT. acidophilus andT. ferrooxidans grown with tetrathionate, followed byT. acidophilus grown with glucose.T. ferrooxidans grown with ferrous sulfate was the least dense.T. acidophilus was isolated from iron-grownT. ferrooxidans by separation in a Renografin gradient. Plasmid patterns ofT. acidophilus andT. ferrooxidans were used to confirm the separation of the two species in mixed gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号