首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fungal biology》2019,123(8):555-557
Fungi threaten the security of food supply to human populations on several fronts. They destroy up to 30 % of crop products through disease and spoilage processes, while mycotoxin-producing fungi and opportunistic pathogens endanger food safety. Control of these fungi is vital for improving food security, but current measures are inadequate and further challenges due to human-population growth and climate change are escalating. Investment and innovation in research on strategies to control fungal growth, harnessed through international, inter-disciplinary collaboration across socio-economic boundaries, provides one key to rising to this challenge.  相似文献   

2.
Staple crops face major challenges in the near future and a diversification away from over-reliance on staples will be important as part of the progress towards the goal of achieving security of food production. Underutilized or neglected crops species are often indigenous ancient crop species which are still used at some level within the local, national or even international communities, but have the potential to contribute further to the mix of food sources than they currently do. The most cost-effective and easily disseminated changes that can be made to a crop are changes to the genetics, as these are contained within the seed itself and, for many species, the seed is a pure breeding, self-replicating, resource. This article focuses on the potential of underutilized crops to contribute to food security and, in particular, whether genetics and breeding can overcome some of the constraints to the enhanced uptake of these species in the future. The focus here is on overview rather than detail and subsequent articles will examine the current evidence base.  相似文献   

3.
A part of the big three cereal crops in the world, wheat has become a major constituent of the everyday food chain and is grown at a massive scale to meet global demands. This makes it an important crop from an economic as well as food security perspective. Selection of high-quality cultivars and consistent trait enhancement for such cultivars is crucial, and in light of new challenges from climate change, this has become an absolute necessity of time. In this regard, we conducted a detailed qualitative and quantitative trait analysis for multiple commercially viable varieties of wheat, and corresponding results were subjected to a series of critical statistical analyses. Final results have shown that five cultivars including Uqaab-2000, Faisalabad- 85, Anmol-19, NARC-2009, and Pirsabak-2004 depicts higher levels of various essential qualitative and quantitative traits (including Starch content, grain weight, RS content, Protein content, etc.) and are most viable varieties for further growth and trait enhancements to meet regional and global food challenges.  相似文献   

4.
Phenomics--technologies to relieve the phenotyping bottleneck   总被引:5,自引:0,他引:5  
Global agriculture is facing major challenges to ensure global food security, such as the need to breed high-yielding crops adapted to future climates and the identification of dedicated feedstock crops for biofuel production (biofuel feedstocks). Plant phenomics offers a suite of new technologies to accelerate progress in understanding gene function and environmental responses. This will enable breeders to develop new agricultural germplasm to support future agricultural production. In this review we present plant physiology in an 'omics' perspective, review some of the new high-throughput and high-resolution phenotyping tools and discuss their application to plant biology, functional genomics and crop breeding.  相似文献   

5.
Global food security is one of the utmost essential challenges in the 21st century in providing enough food for the growing population while coping with the already stressed environment. High temperature (HT) is one of the main factors affecting plant growth, development and reproduction and causes male sterility in plants. In male reproductive tissues, metabolic changes induced by HT involve carbohydrates, lipids, hormones, epigenetics and reactive oxygen species, leading to male sterility and ultimately reducing yield. Understanding the mechanism and genes involved in these pathways during the HT stress response will provide a new path to improve crops by using molecular breeding and biotechnological approaches. Moreover, this review provides insight into male sterility and integrates this with suggested strategies to enhance crop tolerance under HT stress conditions at the reproductive stage.  相似文献   

6.
Feeding 9–10 billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well‐being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply‐ and demand‐side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade‐offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand‐side measures codeliver to aid food security. We conclude that while supply‐side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand‐side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand‐side measures offer a greater potential (1.5–15.6 Gt CO2‐eq. yr?1) in meeting both challenges than do supply‐side measures (1.5–4.3 Gt CO2‐eq. yr?1 at carbon prices between 20 and 100 US$ tCO2‐eq. yr?1), but given the enormity of challenges, all options need to be considered. Supply‐side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand‐side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that addresses multiple objectives is required now more than ever.  相似文献   

7.
Ronald P 《Genetics》2011,188(1):11-20
The United States and the world face serious societal challenges in the areas of food, environment, energy, and health. Historically, advances in plant genetics have provided new knowledge and technologies needed to address these challenges. Plant genetics remains a key component of global food security, peace, and prosperity for the foreseeable future. Millions of lives depend upon the extent to which crop genetic improvement can keep pace with the growing global population, changing climate, and shrinking environmental resources. While there is still much to be learned about the biology of plant-environment interactions, the fundamental technologies of plant genetic improvement, including crop genetic engineering, are in place, and are expected to play crucial roles in meeting the chronic demands of global food security. However, genetically improved seed is only part of the solution. Such seed must be integrated into ecologically based farming systems and evaluated in light of their environmental, economic, and social impacts-the three pillars of sustainable agriculture. In this review, I describe some lessons learned, over the last decade, of how genetically engineered crops have been integrated into agricultural practices around the world and discuss their current and future contribution to sustainable agricultural systems.  相似文献   

8.
Climate Change and Health in Sub-Saharan Africa: A Case-Based Perspective   总被引:1,自引:0,他引:1  
Over the coming decades, sub-Saharan Africa will face profound stresses and challenges from global climate change. Many of these will manifest as adverse health outcomes. This article uses a series of five hypothetical cases to review the climate impacts on the health and well-being of individuals and populations in sub-Saharan Africa. This approach fosters insights into the human dimensions of the risks to health, their interaction with local human ecology, and awareness of the diverse health ramifications of external environmental changes. Each case illustrates the health impact resulting from a specific environmental or social consequence of climate change, including impacts on agriculture and food security, droughts, floods, malaria, and population displacement. Whereas the article focuses on discrete manifestations of climate change, individuals will, in practice, face multiple stresses from climate change (i.e., floods and malaria) concomitant with other non-climate stressors (i.e., HIV/AIDS, globalization, etc.). These multiple sources of vulnerability must be considered when designing climate change and socioeconomic development interventions.  相似文献   

9.
To address the multiple challenges to food security posed by global climate change, population growth and rising incomes, plant breeders are developing new crop varieties that can enhance both agricultural productivity and environmental sustainability. Current breeding practices, however, are unable to keep pace with demand. Genomic selection (GS) is a new technique that helps accelerate the rate of genetic gain in breeding by using whole-genome data to predict the breeding value of offspring. Here, we describe a new GS model that combines RR-BLUP with markers fit as fixed effects selected from the results of a genome-wide-association study (GWAS) on the RR-BLUP training data. We term this model GS + de novo GWAS. In a breeding population of tropical rice, GS + de novo GWAS outperformed six other models for a variety of traits and in multiple environments. On the basis of these results, we propose an extended, two-part breeding design that can be used to efficiently integrate novel variation into elite breeding populations, thus expanding genetic diversity and enhancing the potential for sustainable productivity gains.  相似文献   

10.
The agriculture-based livelihood systems that are already vulnerable due to multiple challenges face immediate risk of increased crop failures due to weather vagaries. As breeders and biotechnologists, our strategy is to advance and innovate breeding for weather-proofing crops. Plant stress tolerance is a genetically complex trait. Additionally, crops rarely face a single type of stress in isolation, and it is difficult for plants to deal with multiple stresses simultaneously. One of the most helpful approaches to creating stress-resilient crops is genome editing and trans- or cis-genesis. Out of hundreds of stress-responsive genes, many have been used to impart tolerance against a particular stress factor, while a few used in combination for gene pyramiding against multiple stresses. However, a better approach would be to use multi-role pleiotropic genes that enable plants to adapt to numerous environmental stresses simultaneously. Herein we attempt to integrate and present the scattered information published in the past three decades about these pleiotropic genes for crop improvement and remodeling future cropping systems. Research articles validating functional roles of genes in transgenic plants were used to create groups of multi-role pleiotropic genes that could be candidate genes for developing weather-proof crop varieties. These biotech crop varieties will help create ‘high-value farms’ to meet the goal of a sustainable increase in global food productivity and stabilize food prices by ensuring a fluctuation-free assured food supply. It could also help create a gene repository through artificial gene synthesis for ‘resilient high-value food production’ for the 21st century.Subject terms: Agricultural genetics, Climate-change adaptation, Agriculture

With newer 21st century challenges, agriculture transition has become imperative for food and nutritional security in the new era. Farming currently faces formidable challenges in feeding a growing population in a sustainable way (Firbank et al. 2018). The situation has become complicated and worse in view of resource depletion, climate change, challenges due to pandemics like COVID-19. There is an immediate need to explore ways and means for developing a robust food production system that would survive the challenges of climate change, resource shrinkage and consumer preferences for nutritious food. In 2008, a High-Level Conference on World Food Security was convened by Food and Agricultural Organization, International Fund for Agricultural Development, United Nations World Food Programme and Consultative Group on International Agricultural Research. In this conference, 181 countries adopted a declaration that “It is essential to address the question of how to increase the resilience of present food production systems to challenges posed by climate change” (Husaini and Tuteja 2013). National Climate Assessment by the United States, Global Change Research Program has highlighted that climate change poses several challenges to crop production, and crop yields are expected to decrease due to altered temperatures and water availability, soil erosion, and pest and disease outbreaks (Reidmiller et al. 2018). According to the Global Report on Food Crises (GRFC 2020), a joint consensus-based assessment of acute food insecurity situations around the world by 16 partner organizations, weather extremes were the primary drivers of the acute food insecurity situation for almost 34 million people in 25 countries in 2019 in comparison with 29 million in 2018. Furthermore, the growing intensity and severity of these extreme weather events caused an increase in the number of people facing food crises in 2019 in comparison with 2018 (GRFC 2020). These extreme weather events are generally an amulgam of multiple stress types and are very complicated to handle.  相似文献   

11.
One of humanity’s major challenges of the 21st century will be meeting future food demands on an increasingly resource constrained-planet. Global food production will have to rise by 70 percent between 2000 and 2050 to meet effective demand which poses major challenges to food production systems. Doing so without compromising environmental integrity is an even greater challenge. This study looks at the interdependencies between land and water resources, agricultural production and environmental outcomes in Latin America and the Caribbean (LAC), an area of growing importance in international agricultural markets. Special emphasis is given to the role of LAC’s agriculture for (a) global food security and (b) environmental sustainability. We use the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT)—a global dynamic partial equilibrium model of the agricultural sector—to run different future production scenarios, and agricultural trade regimes out to 2050, and assess changes in related environmental indicators. Results indicate that further trade liberalization is crucial for improving food security globally, but that it would also lead to more environmental pressures in some regions across Latin America. Contrasting land expansion versus more intensified agriculture shows that productivity improvements are generally superior to agricultural land expansion, from an economic and environmental point of view. Finally, our analysis shows that there are trade-offs between environmental and food security goals for all agricultural development paths.  相似文献   

12.
Living marine resources are crucial for guaranteeing food security, meeting nutritional needs, generating employment, and solving other human challenges worldwide. Nevertheless, resource overexploitation and environmental contamination pose serious challenges to the sustainable development of fisheries (SDF). Numerous studies have been conducted in various disciplines worldwide to address these challenges. In this study, we collected 4450 journal articles from the Web of Science Core Collection database to help explain the evolution process, current state of affairs, research hotspots, and trends of research on the SDF. Using bibliometric tools, VOSviewer, CiteSpace, and Scimago Graphica, a scientometric analysis was conducted to define the knowledge structure by visualizing the co-occurrence network, co-authorship network, co-citation network, and emergence analysis. The findings indicate that the number of publications in this field are expanding rapidly, and key events related to the SDF have influenced publication numbers. Additionally, performance analysis from the author, journal and national perspectives provides scientific information for researchers. The thematic content on the SDF has also changed to emphasize ecosystem structure and its services.  相似文献   

13.
Achieving global food security is one of the major challenges of the coming decades. In order to tackle future food security challenges we must understand the past. This study presents a historical analysis of global food availability, one of the key elements of food security. By calculating national level dietary energy supply and production for nine time steps during 1965–2005 we classify countries based on their food availability, food self-sufficiency and food trade. We also look at how diets have changed during this period with regard to supply of animal based calories. Our results show that food availability has increased substantially both in absolute and relative terms. The percentage of population living in countries with sufficient food supply (>2500 kcal/cap/d) has almost doubled from 33% in 1965 to 61% in 2005. The population living with critically low food supply (<2000 kcal/cap/d) has dropped from 52% to 3%. Largest improvements are seen in the MENA region, Latin America, China and Southeast Asia. Besides, the composition of diets has changed considerably within the study period: the world population living with high supply of animal source food (>15% of dietary energy supply) increased from 33% to over 50%. While food supply has increased globally, food self-sufficiency (domestic production>2500 kcal/cap/d) has not changed remarkably. In the beginning of the study period insufficient domestic production meant insufficient food supply, but in recent years the deficit has been increasingly compensated by rising food imports. This highlights the growing importance of food trade, either for food supply in importing countries or as a source of income for exporters. Our results provide a basis for understanding past global food system dynamics which, in turn, can benefit research on future food security.  相似文献   

14.
Climate change poses critical challenges for population persistence in natural communities, for agriculture and environmental sustainability, and for food security. In this review, we discuss recent progress in climatic adaptation in plants. We evaluate whether climate change exerts novel selection and disrupts local adaptation, whether gene flow can facilitate adaptive responses to climate change, and whether adaptive phenotypic plasticity could sustain populations in the short term. Furthermore, we discuss how climate change influences species interactions. Through a more in‐depth understanding of these eco‐evolutionary dynamics, we will increase our capacity to predict the adaptive potential of plants under climate change. In addition, we review studies that dissect the genetic basis of plant adaptation to climate change. Finally, we highlight key research gaps, ranging from validating gene function to elucidating molecular mechanisms, expanding research systems from model species to other natural species, testing the fitness consequences of alleles in natural environments, and designing multifactorial studies that more closely reflect the complex and interactive effects of multiple climate change factors. By leveraging interdisciplinary tools (e.g., cutting‐edge omics toolkits, novel ecological strategies, newly developed genome editing technology), researchers can more accurately predict the probability that species can persist through this rapid and intense period of environmental change, as well as cultivate crops to withstand climate change, and conserve biodiversity in natural systems.  相似文献   

15.
The world population is expected to reach an estimated 9.2 billion by 2050. Therefore, food production globally has to increase by 70% in order to feed the world, while total arable land, which has reached its maximal utilization, may even decrease. Moreover, climate change adds yet another challenge to global food security. In order to feed the world in 2050, biotechnological advances in modern agriculture are essential. Plant genetic engineering, which has created a new wave of global crop production after the first green revolution, will continue to play an important role in modern agriculture to meet these challenges. Plastid genetic engineering, with several unique advantages including transgene containment, has made significant progress in the last two decades in various biotechnology applications including development of crops with high levels of resistance to insects, bacterial, fungal and viral diseases, different types of herbicides, drought, salt and cold tolerance, cytoplasmic male sterility, metabolic engineering, phytoremediation of toxic metals and production of many vaccine antigens, biopharmaceuticals and biofuels. However, useful traits should be engineered via chloroplast genomes of several major crops. This review provides insight into the current state of the art of plastid engineering in relation to agricultural production, especially for engineering agronomic traits. Understanding the bottleneck of this technology and challenges for improvement of major crops in a changing climate are discussed.  相似文献   

16.
The trans fatty acids (TFAs) in food are mainly generated from the ruminant animals (meat and milk) and processed oil or oil products. Excessive intake of TFAs (>1% of total energy intake) caused more than 500,000 deaths from coronary heart disease and increased heart disease risk by 21% and mortality by 28% around the world annually, which will be eliminated in industrially-produced trans fat from the global food supply by 2023. Herein, we aim to provide a comprehensive overview of the biological effects, analytical methods, formation and mitigation measures of TFAs in food. Especially, the research progress on the rapid, easy-to-use, and newly validated analytical methods, new formation mechanism, kinetics, possible mitigation mechanism, and new or improved mitigation measures are highlighted. We also offer perspectives on the challenges, opportunities, and new directions for future development, which will contribute to the advances in TFAs research.  相似文献   

17.
World population is expected to grow from the present 6.8 billion people to about 9 billion by 2050. The growing need for nutritious and healthy food will increase the demand for fisheries products from marine sources, whose productivity is already highly stressed by excessive fishing pressure, growing organic pollution, toxic contamination, coastal degradation and climate change. Looking towards 2050, the question is how fisheries governance, and the national and international policy and legal frameworks within which it is nested, will ensure a sustainable harvest, maintain biodiversity and ecosystem functions, and adapt to climate change. This paper looks at global fisheries production, the state of resources, contribution to food security and governance. It describes the main changes affecting the sector, including geographical expansion, fishing capacity-building, natural variability, environmental degradation and climate change. It identifies drivers and future challenges, while suggesting how new science, policies and interventions could best address those challenges.  相似文献   

18.
Recent advances in root biology are making it possible to genetically design root systems with enhanced soil exploration and resource capture. These cultivars would have substantial value for improving food security in developing nations, where yields are limited by drought and low soil fertility, and would enhance the sustainability of intensive agriculture. Many of the phenes controlling soil resource capture are related to root architecture. We propose that a better understanding of the root phenome is needed to effectively translate genetic advances into improved crop cultivars. Elementary, unique root phenes need to be identified. We need to understand the 'fitness landscape' for these phenes: how they affect crop performance in an array of environments and phenotypes. Finally, we need to develop methods to measure phene expression rapidly and economically without artefacts. These challenges, especially mapping the fitness landscape, are non-trivial, and may warrant new research and training modalities.  相似文献   

19.
Crop production is facing unprecedented challenges. Despite the fact that the food supply has significantly increased over the past half-century, ~8.9 and 14.3% people are still suffering from hunger and malnutrition, respectively. Agricultural environments are continuously threatened by a booming world population, a shortage of arable land, and rapid changes in climate. To ensure food and ecosystem security, there is a need to design future crops for sustainable agriculture development by maximizing net production and minimalizing undesirable effects on the environment. The future crops design projects, recently launched by the National Natural Science Foundation of China and Chinese Academy of Sciences (CAS), aim to develop a roadmap for rapid design of customized future crops using cutting-edge technologies in the Breeding 4.0 era. In this perspective, we first introduce the background and missions of these projects. We then outline strategies to design future crops, such as improvement of current well-cultivated crops, de novo domestication of wild species and redomestication of current cultivated crops. We further discuss how these ambitious goals can be achieved by the recent development of new integrative omics tools, advanced genome-editing tools and synthetic biology approaches. Finally, we summarize related opportunities and challenges in these projects.  相似文献   

20.
Drivers behind food security and crop protection issues are discussed in relation to food losses caused by pests. Pests globally consume food estimated to feed an additional one billion people. Key drivers include rapid human population increase, climate change, loss of beneficial on-farm biodiversity, reduction in per capita cropped land, water shortages, and EU pesticide withdrawals under policies relating to 91/414 EEC. IPM (Integrated Pest Management) will be compulsory for all EU agriculture by 2014 and is also being widely adopted globally. IPM offers a 'toolbox' of complementary crop- and region-specific crop protection solutions to address these rising pressures. IPM aims for more sustainable solutions by using complementary technologies. The applied research challenge now is to reduce selection pressure on single solution strategies, by creating additive/synergistic interactions between IPM components. IPM is compatible with organic, conventional, and GM cropping systems and is flexible, allowing regional fine-tuning. It reduces pests below economic thresholds utilizing key 'ecological services', particularly biocontrol. A recent global review demonstrates that IPM can reduce pesticide use and increase yields of most of the major crops studied. Landscape scale 'ecological engineering', together with genetic improvement of new crop varieties, will enhance the durability of pest-resistant cultivars (conventional and GM). IPM will also promote compatibility with semiochemicals, biopesticides, precision pest monitoring tools, and rapid diagnostics. These combined strategies are urgently needed and are best achieved via multi-disciplinary research, including complex spatio-temporal modelling at farm and landscape scales. Integrative and synergistic use of existing and new IPM technologies will help meet future food production needs more sustainably in developed and developing countries, in an era of reduced pesticide availability. Current IPM research gaps are identified and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号