首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Activation of the alternative pathway of complement plays a critical role in the development of allergen-induced airway hyperresponsiveness (AHR) and inflammation in mice. Endogenous factor H, a potent inhibitor of the alternative pathway, is increased in the airways of sensitized and challenged mice, but its role in regulating inflammation or AHR has been unknown. We found that blocking the tissue-binding function of factor H with a competitive antagonist increased complement activation and tissue inflammation after allergen challenge of sensitized mice. Conversely, administration of a fusion protein that contains the iC3b/C3d binding region of complement receptor 2 linked to the inhibitory region of factor H, a molecule directly targeting complement-activating surfaces, protected mice in both primary and secondary challenge models of AHR and lung inflammation. Thus, although endogenous factor H does play a role in limiting the development of AHR, strategies to deliver the complement-regulatory region of factor H specifically to the site of inflammation provide greater protection than that afforded by endogenous regulators. Such an agent may be an effective therapy for the treatment of asthma.  相似文献   

3.
One of the earliest signs of age‐related macular degeneration (AMD) is the formation of drusen which are extracellular deposits beneath the retinal pigmented epithelium (RPE). To investigate the relationship between drusen and AMD, we focused on amyloid β (Aβ), a major component of drusen and also of senile plaques in the brain of Alzheimer's patients. We previously reported that Aβ was accumulated in drusen‐like structure in senescent neprilysin gene‐disrupted mice. The purpose of this study was to investigate the influence of Aβ on factor B, the main activator of the complement alternative pathway. The results showed that Aβ did not directly modulate factor B expression in RPE cells, but increased the production of monocyte chemoattractant protein‐1 (MCP‐1). Aβ also increased the production of IL‐1β and TNF‐α in macrophages/microglia, and exposure of RPE cells to IL‐1β and TNF‐α significantly up‐regulated factor B. Co‐cultures of RPE cells and macrophages/microglia in the presence of Aβ significantly increased the expression of factor B in RPE. These findings indicate that cytokines produced by macrophages/microglia that were recruited by MCP‐1 produced in RPE cells stimulated by Aβ up‐regulate factor B in RPE cells. Thus, a combined mechanism exists for Aβ‐induced for the activation of the complement alternative pathway in the subretinal space; cytokine‐induced up‐regulation of activator factor B and dysfunction of the inhibitor factor I by direct binding to Aβ as suggested in our earlier study. J. Cell. Physiol. 220: 119–128, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Our study demonstrates that binding of complement-opsonized HIV to complement receptor type 1 on human erythrocytes (E) via C3b fragments is followed by a rapid normal human serum-mediated detachment of HIV from E. The release was dependent on the presence of factor I indicating a conversion of C3b fragments to iC3b and C3d on the viral surface. This in turn resulted in an efficient binding of opsonized HIV to CR2-expressing B cells, thus facilitating B cell-mediated transmission of HIV to T cells. These data provide a new dynamic view of complement opsonization of HIV, suggesting that association of virus with E might be a transient phenomenon and the factor I-mediated processing of C3b to iC3b and C3d on HIV targets the virus to complement receptor type 2-expressing cells. Thus, factor I in concert with CR1 on E and factor H in serum due to their cofactor activity are likely to be important contributors for the generation of C3d-opsonized infectious HIV reservoirs on follicular dendritic cells and/or B cells in HIV-infected individuals.  相似文献   

5.
Age-related macular degeneration (AMD) is a major cause of loss of central vision in the elderly. The formation of drusen, an extracellular, amorphous deposit of material on Bruch''s membrane in the macula of the retina, occurs early in the course of the disease. Although some of the molecular components of drusen are known, there is no understanding of the cell biology that leads to the formation of drusen. We have previously demonstrated increased mitochondrial DNA (mtDNA) damage and decreased DNA repair enzyme capabilities in the rodent RPE/choroid with age. In this study, we found that drusen in AMD donor eyes contain markers for autophagy and exosomes. Furthermore, these markers are also found in the region of Bruch''s membrane in old mice. By in vitro modeling increased mtDNA damage induced by rotenone, an inhibitor of mitochondrial complex I, in the RPE, we found that the phagocytic activity was not altered but that there were: 1) increased autophagic markers, 2) decreased lysosomal activity, 3) increased exocytotic activity and 4) release of chemoattractants. Exosomes released by the stressed RPE are coated with complement and can bind complement factor H, mutations of which are associated with AMD. We speculate that increased autophagy and the release of intracellular proteins via exosomes by the aged RPE may contribute to the formation of drusen. Molecular and cellular changes in the old RPE may underlie susceptibility to genetic mutations that are found in AMD patients and may be associated with the pathogenesis of AMD in the elderly.  相似文献   

6.
We identified on the membrane of mouse spleen cells a polypeptide of Mr 190,000 (S190), with binding affinity for the mouse third component of the complement system (C3). S190, purified by affinity chromatography on C3-Sepharose, has properties resembling those of the human C3 receptor type 1 (CR1). Thus, S190, like CR1, served as a cofactor for the C3b inactivator (I)-mediated cleavage of fluid-phase C3b into iC3b, and had cofactor activity comparable to that of serum factor H (H). S190 also acted as a cofactor for the cleavages of membrane-bound C3b or membrane-bound iC3b into C3c (Mr 140,000) and C3dg (Mr 40,000) by serum factor I. As is the case with CR1, the specific activity of S190 for the cleavages leading to C3c-C3dg formation was approximately 100-fold greater than that of H. We therefore conclude that S190 and CR1 are analogous proteins.  相似文献   

7.
Oxidative damage and inflammation are postulated to be involved in age-related macular degeneration (AMD). However, the molecular signal(s) linking oxidation to inflammation in this late-onset disease is unknown. Here we describe AMD-like lesions in mice after immunization with mouse serum albumin adducted with carboxyethylpyrrole, a unique oxidation fragment of docosahexaenoic acid that has previously been found adducting proteins in drusen from AMD donor eye tissues and in plasma samples from individuals with AMD. Immunized mice develop antibodies to this hapten, fix complement component-3 in Bruch's membrane, accumulate drusen below the retinal pigment epithelium during aging, and develop lesions in the retinal pigment epithelium mimicking geographic atrophy, the blinding end-stage condition characteristic of the dry form of AMD. We hypothesize that these mice are sensitized to the generation of carboxyethylpyrrole adducts in the outer retina, where docosahexaenoic acid is abundant and conditions for oxidative damage are permissive. This new model provides a platform for dissecting the molecular pathology of oxidative damage in the outer retina and the immune response contributing to AMD.  相似文献   

8.
9.
Kaposi's sarcoma-associated herpesvirus (KSHV) is closely associated with Kaposi's sarcoma and certain B-cell lymphomas. The fourth open reading frame of the KSHV genome encodes a protein (KSHV complement control protein (KCP, previously termed ORF4)) predicted to have complement-regulating activity. Here, we show that soluble KCP strongly enhanced the decay of classical C3-convertase but not the alternative pathway C3-convertase, when compared with the host complement regulators: factor H, C4b-binding protein, and decay-accelerating factor. The equilibrium affinity constant (KD) of KCP for C3b and C4b was determined by surface plasmon resonance analysis to range between 0.47-10 microM and 0.025-6.1 microM, respectively, depending on NaCl concentration and cation presence. Soluble and cell-associated KCP acted as a cofactor for factor I (FI)-mediated cleavage of both C4b and C3b and induced the cleavage products C4d and iC3b, respectively. In the presence of KCP, FI further cleaved iC3b to C3d, which has never been described before as complement receptor 1 only mediates the production of C3dg by FI. KCP would enhance virus pathogenesis through evading complement attack, opsonization, and anaphylaxis but may also aid in targeting KSHV to one of its host reservoirs since C3d is a ligand for complement receptor 2 on B-cells.  相似文献   

10.
Functional properties of membrane cofactor protein of complement.   总被引:11,自引:0,他引:11       下载免费PDF全文
Membrane cofactor protein (MCP or gp45-70) of the complement system is a cofactor for factor I-mediated cleavage of fluid-phase C3b and C3b-like C3, which opens the thioester bond. In the present study the activity of MCP was further characterized. Unexpectedly, in the absence of factor I, MCP stabilized the alternative- and, to a lesser extent, the classical-pathway cell-bound C3 convertases and thereby enhanced C3b deposition. Soluble MCP, if added exogenously, hardly functioned as cofactor for the cleavage of erythrocyte-bound C3b to iC3b; i.e. its activity, compared with the cofactor activity of factor H, was inefficient, since less than 10% of the bound C3b was MCP-sensitive. Further, exogenously added soluble MCP was also a weak cofactor for the cleavage of C3b bound to zymosan. Likewise, factor I, in the presence of cells bearing MCP, cleaved fluid-phase C3b inefficiently. These results imply that MCP has very little extrinsic cofactor activity for factor I. In contrast, exogenously added MCP and factor I mediated efficient cleavage of erythrocyte-bound C3b if the concentration of Nonidet P40 was sufficient to solubilize the cells. Interestingly, soluble MCP and factor I degraded C3b attached to certain solubilized acceptor membrane molecules more readily than others. The cleavage reaction of fluid-phase and cell-bound C3b by soluble MCP and factor I produced iC3b, but no C3c and C3dg. These and prior data indicate that soluble MCP has potent cofactor activity for fluid-phase C3b or C3b bound to solubilized molecules, but acts inefficiently towards C3b on other cells. This functional profile is unique for a C3b/C4b binding protein and, taken together with its wide tissue distribution, suggests an important role for MCP in the regulation of the complement system.  相似文献   

11.
The factor I-mediated cleavage of C3b, using factor H as a cofactor was completely inhibited by diisopropylfluorophosphate (DFP) when factor I and C3b were incubated with DFP before the addition of factor H. Inhibition, although to a lesser degree, was observed when factor H was present during DFP-exposure. No inhibition in factor I activity was seen when factor I and H were incubated with DFP either alone or together. It was also demonstrated that the 38-kDa subunit of factor I bound radiolabeled DFP when factor I and C3b together were exposed to DFP. These observations suggest that factor I interacts with C3b in a manner that exposes its catalytic site to DFP, an interaction that is independent of factor H. The inhibitory effect by DFP on factor I led us to further investigate the factor I cleavage products of iC3b, inasmuch as previous reports were ambiguous as to whether digestion occurs in the presence of DFP. Digestion of C3b bound to activated thiol Sepharose (ATS-C3b) in the presence of factor H at low pH and ionic strength and in serum by complement activation produced C3d,g-like fragments with apparent molecular mass of 41 and 43 kDa. These fragments were shown to have three different N-terminal and two different C-terminal ends. The major fragments had N-terminal sequences starting with Glu933, as shown by sequence determination. Traces of fragments extending beyond this point were also found, shown by Western blot analysis using a panel of mAb previously shown to bind to epitopes exposed within a region of C3 spanning residues 929 to 943, as well as a shorter fragment starting with Glu938. When digestion of C3b is carried out in the presence of DFP, the factor I level necessary for digestion is elevated and may explain how the first two cleavages producing iC3b but not the following giving C3d,g, can occur. The finding of several factor I cleavage sites in the C3d,g region of C3 demonstrates that factor I has a broad specificity, mainly for arginyl bonds. It has also been shown to digest a lysyl bond exposed in ATS-bound C3b.  相似文献   

12.
beta-Glucans were identified 36 years ago as a biologic response modifier that stimulated tumor rejection. In vitro studies have shown that beta-glucans bind to a lectin domain within complement receptor type 3 (CR3; known also as Mac-1, CD11b/CD18, or alphaMbeta2-integrin, that functions as an adhesion molecule and a receptor for factor I-cleaved C3b, i.e., iC3b) resulting in the priming of this iC3b receptor for cytotoxicity of iC3b-opsonized target cells. This investigation explored mechanisms of tumor therapy with soluble beta-glucan in mice. Normal mouse sera were shown to contain low levels of Abs reactive with syngeneic or allogeneic tumor lines that activated complement, depositing C3 onto tumors. Implanted tumors became coated with IgM, IgG, and C3, and the absent C3 deposition on tumors in SCID mice was reconstituted with IgM or IgG isolated from normal sera. Therapy of mice with glucan- or mannan-rich soluble polysaccharides exhibiting high affinity for CR3 caused a 57-90% reduction in tumor weight. In young mice with lower levels of tumor-reactive Abs, the effectiveness of beta-glucan was enhanced by administration of a tumor-specific mAb, and in SCID mice, an absent response to beta-glucan was reconstituted with normal IgM or IgG. The requirement for C3 on tumors and CR3 on leukocytes was highlighted by therapy failures in C3- or CR3-deficient mice. Thus, the tumoricidal function of CR3-binding polysaccharides such as beta-glucan in vivo is defined by natural and elicited Abs that direct iC3b deposition onto neoplastic cells, making them targets for circulating leukocytes bearing polysaccharide-primed CR3. Therapy fails when tumors lack iC3b, but can be restored by tumor-specific Abs that deposit iC3b onto the tumors.  相似文献   

13.
Similar to other highly successful invasive bacterial pathogens, Staphylococcus aureus recruits the complement regulatory protein factor H (fH) to its surface to inhibit the alternative pathway of complement. Here, we report the identification of the surface-associated protein SdrE as a fH-binding protein using purified fH overlay of S. aureus fractionated cell wall proteins and fH cross-linking to S. aureus followed by mass spectrometry. Studies using recombinant SdrE revealed that rSdrE bound significant fH whether from serum or as a purified form, in both a time- and dose-dependent manner. Furthermore, rSdrE-bound fH exhibited cofactor functionality for factor I (fI)-mediated cleavage of C3b to iC3b which correlated positively with increasing amounts of fH. Expression of SdrE on the surface of the surrogate bacterium Lactococcus lactis enhanced recruitment of fH which resulted in increased iC3b generation. Moreover, surface expression of SdrE led to a reduction in C3-fragment deposition, less C5a generation, and reduced killing by polymorphonuclear cells. Thus, we report the first identification of a S. aureus protein associated with the staphylococcal surface that binds factor H as an immune evasion mechanism.  相似文献   

14.
Factor I (fI) is a major regulator of complement. As a protease it has very restricted specificity, cleaving only C3b or C4b in the presence of a cofactor such as factor H (fH). Cleavage of C3b by fI yields iC3b, a major opsonin. The cleavage occurs through the formation of a ternary complex between the enzyme, the substrate, and the cofactor. The catalytic subunit of fI, the SP domain, accommodates substrate recognition and cleavage. The role of the fI heavy chain within the catalysis complex is unknown. Using partial proteolysis and affinity chromatography an intact form of the SP domain was generated and isolated from fI in high yield. fI and the SP domain were found to have similar amidolytic activities but strikingly different proteolytic activities on C3(NH(3)). fI did not cleave C3(NH(3)) in the absence of fH, while in its presence it cleaved C3(NH(3)) rapidly at two sites. The SP domain, however, slowly cleaved C3(NH(3)) in the absence of fH, at more than two sites. Cleavage by the SP domain was inhibited, not stimulated, by fH. Pefabloc SC and antipain inhibited the proteolytic activity of both fI and the SP domain, but suramin inhibited only fI and not the SP domain. The contrast in the proteolytic activities suggests that the heavy chain domains and the cofactor must have roles in orienting the natural substrates and restricting cleavage to the two sites which yield iC3b through a highly specific catalysis.  相似文献   

15.
The complement system in vertebrates plays a crucial role in the elimination of pathogens. To regulate complement on self-tissue and to prevent spontaneous activation and systemic depletion, complement is controlled by both fluid-phase and membrane-bound inhibitors. One such inhibitor, complement factor I (CFI) regulates complement by proteolytic cleavage of components C3b and C4b in the presence of specific cofactors. Complement factor H (CFH), the main cofactor for CFI, regulates the alternative pathway of complement activation by acting in the breakdown of C3b to iC3b. To gain further insight into the origin of C3 regulation in bony fish we have cloned and characterized the CFI and CFH1 cDNAs in the rainbow trout (Oncorhynchus mykiss). In this study we report the primary sequence, the tissue expression profile, the polypeptide domain architecture and the phylogenetic analysis of trout CFI and CFH1 genes. The deduced amino acid sequences of trout CFI and CFH1 polypeptides exhibit 42% and 32% identity with human orthologs, respectively. RNA expression analysis showed that CFI is expressed differentially in trout tissues, while liver is the main source of CFH1 expression. Our data indicate that factor H and I genes have emerged during evolution as early as the divergence of teleost fish.  相似文献   

16.
Inflammation is an umbrella feature of ageing. It is present in the aged retina and many retinal diseases including age-related macular degeneration (AMD). In ageing and in AMD mitochondrial function declines. In normal ageing this can be manipulated by brief exposure to 670 nm light on the retina, which increases mitochondrial membrane potential and reduces inflammation. Here we ask if 670 nm exposure has the same ability in an aged mouse model of AMD, the complement factor H knockout (CFH−/−) where inflammation is a key feature. Further, we ask whether this occurs when 670 nm is delivered briefly in environmental lighting rather than directly focussed on the retina. Mice were exposed to 670 nm for 6 minutes twice a day for 14 days in the form of supplemented environmental light. Exposed animals had significant increase in cytochrome c oxidase (COX), which is a mitochondrial enzyme regulating oxidative phosphorylation.There was a significant reduction in complement component C3, an inflammatory marker in the outer retina. Vimetin and glial fibrillary acidic protein (GFAP) expression, which reflect retinal stress in Muller glia, were also significantly down regulated. There were also significant changes in outer retinal macrophage morphology. However, amyloid beta (Aβ) load, which also increases with age in the outer retina and is pro-inflammatory, did not change. Hence, 670 nm is effective in reducing inflammation probably via COX activation in mice with a genotype similar to that in 50% of AMD patients even when brief exposures are delivered via environmental lighting. Further, inflammation can be reduced independent of Aβ. The efficacy revealed here supports current early stage clinical trials of 670 nm in AMD patients.  相似文献   

17.
The oviduct-derived embryotrophic factor, ETF-3, enhances the development of trophectoderm and the hatching process of treated embryos. Monoclonal anti-ETF-3 antibody that abolishes the embryotrophic activity of ETF-3 recognized a 115-kDa protein from the conditioned medium of immortalized human oviductal cells. Mass spectrometry analysis showed that the protein was complement C3. Western blot analysis using an antibody against C3 confirmed the cross-reactivities between anti-C3 antibody with ETF-3 and anti-ETF-3 antibody with C3 and its derivatives, C3b and iC3b. Both derivatives, but not C3, were embryotrophic. iC3b was most efficient in enhancing the development of blastocysts with larger size and higher hatching rate, consistent with the previous reported embryotrophic activity of ETF-3. Embryos treated with iC3b contained iC3b immunoreactivity. The oviductal epithelium produced C3 as evidenced by the presence of C3 immunoreactivity and mRNA in the human oviduct and cultured oviductal cells. Cyclical changes in the expression of C3 immunoreactivity and mRNA were also found in the mouse oviduct with the highest expression at the estrus stage. Molecules involving in the conversion of C3b to iC3b and binding of iC3b were present in the human oviduct (factor I) and mouse preimplantation embryo (Crry and CR3), respectively. In conclusion, the present data showed that the oviduct produced C3/C3b, which was converted to iC3b to stimulate embryo development.  相似文献   

18.
Age-related macular degeneration (AMD) is a major cause of vision loss. It is associated with development of characteristic plaque-like deposits (soft drusen) in Bruch’s membrane basal to the retinal pigment epithelium (RPE). A sequence variant (Y402H) in short consensus repeat domain 7 (SCR7) of complement factor H (CFH) is associated with risk for “dry” AMD. We asked whether the eye-targeting of this disease might be related to specific interactions of CFH SCR7 with proteins expressed in the aging human RPE/choroid that could contribute to protein deposition in drusen. Yeast 2-hybrid (Y2H) screens of a retinal pigment epithelium/choroid library derived from aged donors using CFH SCR7 baits detected an interaction with EFEMP1/Fibulin 3 (Fib3), which is the locus for an inherited macular degeneration and also accumulates basal to macular RPE in AMD. The CFH/Fib3 interaction was validated by co-immunoprecipitation of native proteins. Quantitative Y2H and ELISA assays with different recombinant protein constructs both demonstrated higher affinity for Fib3 for the disease-related CFH 402H variant. Immuno-labeling revealed colocalization of CFH and Fib3 in globular deposits within cholesterol-rich domains in soft drusen in two AMD donors homozygous for CFH 402H (H/H). This pattern of labeling was quite distinct from those seen in examples of eyes with Y/Y and H/Y genotypes. The CFH 402H/Fib3 interaction could contribute to the development of pathological aggregates in soft drusen in some patients and as such might provide a target for therapeutic intervention in some forms of AMD.  相似文献   

19.
Age-related macular degeneration (AMD) is characterized by progressive loss of central vision, which is attributed to abnormal accumulation of macular deposits called "drusen" at the interface between the basal surface of the retinal pigment epithelium (RPE) and Bruch's membrane. In the most severe cases, drusen deposits are accompanied by the growth of new blood vessels that breach the RPE layer and invade photoreceptors. In this study, we hypothesized that RPE secreted proteins are responsible for drusen formation and choroidal neovascularization. We used stable isotope labeling by amino acids in cell culture (SILAC) in combination with LC-MS/MS analysis and ZoomQuant quantification to assess differential protein secretion by RPE cell cultures prepared from human autopsy eyes of AMD donors (diagnosed by histological examinations of the macula and genotyped for the Y402H-complement factor H variant) and age-matched healthy control donors. In general, RPE cells were found to secrete a variety of extracellular matrix proteins, complement factors, and protease inhibitors that have been reported to be major constituents of drusen (hallmark deposits in AMD). Interestingly, RPE cells from AMD donors secreted 2 to 3-fold more galectin 3 binding protein, fibronectin, clusterin, matrix metalloproteinase-2 and pigment epithelium derived factor than RPE cells from age-matched healthy donors. Conversely, secreted protein acidic and rich in cysteine (SPARC) was found to be down regulated by 2-fold in AMD RPE cells versus healthy RPE cells. Ingenuity pathway analysis grouped these differentially secreted proteins into two groups; those involved in tissue development and angiogenesis and those involved in complement regulation and protein aggregation such as clusterin. Overall, these data strongly suggest that RPE cells are involved in the biogenesis of drusen and the pathology of AMD.  相似文献   

20.
Chromosome 13 dementias, familial British dementia (FBD) and familial Danish dementia (FDD), are associated with neurodegeneration and cerebrovascular amyloidosis, with striking neuropathological similarities to Alzheimer's disease (AD). Despite the structural differences among the amyloid subunits (ABri in FBD, ADan in FDD, and Abeta in AD), these disorders are all characterized by the presence of neurofibrillary tangles and parenchymal and vascular amyloid deposits co-localizing with markers of glial activation, suggestive of local inflammation. Proteins of the complement system and their pro-inflammatory activation products are among the inflammation markers associated with AD lesions. Immunohistochemistry of FBD and FDD brain sections demonstrated the presence of complement activation components of the classical and alternative pathways as well as the neo-epitope of the membrane attack complex. Hemolytic experiments and enzyme-linked immunosorbent assays specific for the activation products iC3b, C4d, Bb, and C5b-9 indicated that ABri and ADan are able to fully activate the complement cascade at levels comparable to those generated by Abeta1-42. ABri and ADan specifically bound C1q with high affinity and formed stable complexes in physiological conditions. Activation proceeds approximately 70-75% through the classical pathway while only approximately 25-30% seems to occur through the alternative pathway. The data suggest that the chronic inflammatory response generated by the amyloid peptides in vivo might be a contributing factor for the pathogenesis of FBD and FDD and, in more general terms, to other neurodegenerative conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号