首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies with methyl ethyl ketone peroxide (MEKP), a radical generator, showed depletion of plasma vitamin E and liver glutathione (GSH) levels prior to a decrease of liver vitamin E levels. Since hepatic pools of this vitamin may serve to maintain circulating levels of vitamin E under conditions of oxidative challenge, we have evaluated the similarity of response after treatment with 1,2-dibromoethane (DBE), a compound that is not known to generate oxyradicals or to induce lipid peroxidation in vivo. Treatment of normal rats with DBE caused a depletion in hepatic vitamin E levels 1 day after treatment; however, in contrast to our prior findings with MEKP this depletion after DBE treatment was observed in tandem with elevations in the plasma content of vitamin E. Liver vitamin E depletion was neither dependent upon a sustained liver GSH depletion nor upon hepatocellular death. Mobilization and export of hepatic vitamin E did not result in an immediate whole body redistribution of this vitamin in that pulmonary and renal levels of vitamin E remained normal under conditions of liver vitamin E depletion. Moreover, the stimulus that resulted in exportation of liver vitamin E was maintained by daily treatments with DBE. DBE caused a substantial elevation above control values in liver GSH content and these elevations were also maintained by daily DBE treatments. In experiments to assess the influence of prandial replacement of vitamin E on the extent of depletion in response to DBE treatment, rats were fed a vitamin E-deficient diet for 2 days prior to treatment. This short pulse of a vitamin E-deficient diet delayed (to 2 days) both the elevation in liver GSH content and the depletion of liver vitamin E and hastened (to 1 day) the elevation in plasma vitamin E concentration. These observations suggest the presence of at least two pools of liver vitamin E and that one of these pools, which comprises at least 30% of the total hepatic vitamin E content, is able to be mobilized and exported in response to chemical challenge. The stimulus that resulted in liver vitamin E exportation in response to DBE treatment seems to result from wholly intrahepatic processes and may not be a direct response to lipid peroxidation. Moreover, the similarity between the time-course and the extent of hepatic vitamin E depletion observed after treatment with either MEKP or DBE suggests a similarity in physiochemical processes that function to mobilize hepatic vitamin E stores.  相似文献   

2.
Vitamin E (vE) is a biological free radical scavenger capable of providing antioxidant protection depending upon its tissue content. In previous studies, we observed that vE increased significantly in rat lungs after oxidant exposure, and we postulated that vE may be mobilized to the lung from other body sites under oxidative stress. To test this hypothesis, we fed Long-Evans rats either a vE-supplemented or a vE-deficient diet, injected them intraperitoneally with 14C-labeled vE, and then exposed half of each group to 0.5 ppm ozone (O3) for 5 days. After exposure, we determined vE content and label retention in lungs, liver, kidney, heart, brain, plasma, and white adipose tissue. Tissue vE content of all tissues generally reflected the dietary level, but labeled vE retention in all tissues was inversely related to tissue content, possibly reflecting a saturation of existing vE receptor sites in supplemented rats. Following O3 exposure, lung vE content increased significantly in supplemented rats and decreased in deficient rats, but the decrease was not statistically significant, and vE content remained unchanged in all other tissues of both dietary groups. Retention of 14C-labeled vE increased in all tissues of O3-exposed rats of both dietary groups, except in vE-deficient adipose tissue and vE-supplemented brain, where it decreased, and plasma, where it did not change. The marked increases in lung vE content and labeled vE retention of O3-exposed vE-supplemented rats support our hypothesis that vE may be mobilized to the lung in response to oxidative stress, providing that the vitamin is sufficiently available in other body sites.  相似文献   

3.
The effect of consuming a low carotene diet (≈60 μg carotene/day) on oxidative susceptibility and superoxide dismutase (SOD) activity in women living in a metabolic research unit was evaluated. The diet had sufficient vitamins A, E, and C. The women ate the diet supplemented with 1500 μg/day β-carotene for 4 days (baseline), then the unsupplemented diet for 68 days (depletion), followed by the diet supplemented with > 15,000 μg/day carotene for 28 days (repletion). Production of hexanal, pentanal, and pentane by copper-oxidased plasma low density lipoproteins from carotene-depleted women was greater than their production of these compounds when repleted with carotene. Erythrocyte SOD activity was depressed in carotene-depleted women; it recovered with repletion. Thiobarbituric acid reactive substances in plasma of carotene-depleted women were elevated and diminished with repletion. Dietary carotene seems to be needed, not only as a precursor of vitamin A, but also to inhibit oxidative damage and decrease oxidation susceptibility.  相似文献   

4.
In this study we examined the response of the renal and hepatic glutathione (GSH) pool in rats to drastic GSH depletion treatments. For this purpose, we used a protein-free diet, starvation, and the injection of varying doses of diethyl maleate as depleting agents. We analysed GSH levels in both kidney and liver tissue homogenates after rats were fed a protein-free diet for 2 or 7 days or starved for 1, 2, or 3 days, as well as after diethyl maleate administration in a single maximal dose or in varying doses. The results indicated that the liver GSH pool was always more labile than the kidney GSH pool. Moreover, kidney GSH levels were almost unchanged after 7 days on a protein-free diet or after 2 days of starvation, while liver showed significant changes in GSH levels. When we analysed the repletion rate, kidney had higher kinetic parameters (k = 0.148 h-1) than liver (0.097 h-1). We conclude that efficient mechanisms of maintaining GSH levels exist in the kidney and these may serve to avoid GSH diminution and hence preserve renal function during states of GSH depletion.  相似文献   

5.
Data are presented in this paper on the effect of vitamin E on rats given a fish diet after whole-body gamma-irradiation. The content of lipid peroxidation products in rat plasma, brain and liver and also the content of vitamin E have been investigated. Irradiation increases lipid peroxidation in the studied tissues and decreases vitamin E content. This process is aggravated by the fish diet. Vitamin E given in addition to fish diet helps the organism to stabilize the antioxidant homeostasis at a qualitatively different level.  相似文献   

6.
We have studied the effects of dietary depletion of vitamin E and selenium on endogenous ubiquinone-dependent antioxidant system. Deficiency induced an increase in both coenzyme Q9 and Q10 in liver tissue, reaching a maximum between 4 and 7 weeks of deficient diet consumption. Cytochrome b5 reductase polypeptide was also enriched in membranes after 5 weeks of deficient diet consumption. Substantial DT-diaphorase activity was found in deficient, but not in control plasma membranes. Deficient membranes were very sensitive to lipid peroxidation, although a great protection was observed after incubation with NAD(P)H. Our results show that liver cells can boost endogenous ubiquinone-dependent protective mechanisms in response to deficiency in vitamin E and selenium.  相似文献   

7.
Metabolic syndrome is more prevalent in men than in women. In an experimental dietary model of metabolic syndrome, the high-fructose-fed rat, oxidative stress has been observed in males. Given that estradiol has been documented to exert an antioxidant effect, we investigated whether female rats were better protected than males against the adverse effects of a high-sucrose diet, and we studied the influence of hormonal status in female rats. Males and females were first fed a sucrose-based or starch-based diet for 2 weeks. In the males, the plasma triglyceride (TG)-raising effect of sucrose was accompanied by significantly lowered plasma alpha-tocopherol and a significantly lowered alpha-tocopherol/TG ratio (30%), suggesting that vitamin E depletion may predispose lipoproteins to subsequent oxidative stress. In males, after exposure of heart tissue homogenate to iron-induced lipid peroxidation, thiobarbituric reactive substances were significantly higher in the sucrose-fed than in the starch-fed rats. In contrast, in sucrose-fed females, neither a decrease in vitamin E/TG ratio nor an increased susceptibility of heart tissue to peroxidation was observed, despite both a significantly decreased heart superoxide dismutase activity (14%) and a significant 3-fold increase in plasma nitric oxide concentration compared with starch-fed females. The influence of hormonal status in female rats was then assessed using intact, ovariectomized, or estradiol-supplemented ovariectomized female rats fed the sucrose or starch diet for 2 weeks. After exposure of heart tissue to iron-induced lipid peroxidation, higher susceptibility to peroxidation was found only in ovariectomized females fed the sucrose diet compared with the starch group and not in intact females or ovariectomized females supplemented with estradiol. Thus, estrogens, by their effects on antioxidant capacity, might explain the sexual difference in the pro-oxidant effect of sucrose diet resulting in metabolic syndrome in rats.  相似文献   

8.
To test the hypothesis that burn and smoke injury will deplete tissue alpha-tocopherol and cause its faster plasma disappearance, deuterium-labeled vitamin E was administered to sheep exposed to both surface skin burn and smoke insufflation, which cause injuries similar to those of human victims of fire accidents. Two different protocols were used: (1) deuterated vitamin E was administered orally with food at time 0 (just before injury) or (2) the labeled vitamin E was administered orally with food the day before injury. The animals, which had been operatively prepared seven days before, were anesthetized and then received both 40% body surface area third-degree burn and 48 breaths of cotton smoke or sham injuries. All were resuscitated with Ringer's lactate solution (4 ml/kg/% BSA burn/24 h) and mechanically ventilated. Blood samples were collected at various times after vitamin E dosing. In both studies the depletion of plasma alpha-tocopherol was faster in the injured sheep. The sheep given deuterated vitamin E 24 h before injury had similar maximum alpha-tocopherol concentrations at similar times. The exponential rates of alpha-tocopherol disappearance were 1.5 times greater and half-lives were 12 h shorter (p < 0.05) in the injured sheep. In separate studies, various tissues were obtained from sheep that were sacrificed from 4 to 48 h after injury. The liver alpha-tocopherol concentrations in sheep killed at various times after injury seem to show a linear decrease at a rate of 0.1 nmol alpha-tocopherol/g liver per hour, suggesting that the liver is supplying alpha-tocopherol to maintain the plasma and lung alpha-tocopherol concentrations, but that this injury is so severe the liver is unable to maintain lung alpha-tocopherol concentrations. These findings suggest that alpha-tocopherol should be administered to burn patients to prevent vitamin E depletion and to protect against oxidative stress from burn injury.  相似文献   

9.
Measurements of succinate dehydrogenase and mitochondrial glycerol-3-phosphate dehydrogenase activities, iron, cytochrome c and myoglobin, were made on various hind-leg muscles, fast-twitch red and white muscle and heart and liver of male Wistar rats fed an iron-deficient diet on weaning. Rats fed the same diet and given 20 mg iron intraperitoneally as iron-dextran (Imferon) served as controls. For iron-repletion studies anemic rats (hemoglobin less than 7 g/dl) were given a single injection of 10 mg iron (Imferon) and the time course of change in the above parameters was followed up to 22 days after injection. The iron concentration of most iron-deficient muscles dropped to approx. 35% of control, the heart to 60% and liver to 13%. On repletion, the iron concentration of all tissues increase significantly by 4 days. While the levels of cytochrome c and myoglobin approximated the iron levels in muscle, they did not change significantly in the heart. Succinate dehydrogenase activity dropped profoundly in muscle, to 10-30% of control; on repletion, the activity increased significantly. Mitochondrial glycerol-3-phosphate dehydrogenase activity showed only small changes in iron-deficient tissues.  相似文献   

10.
Both excess dietary vitamin E and vitamin E deficiency in rats can significantly depress the activity of GSH peroxidase in liver and plasma of rats. Of all the six levels of vitamin E tested in this study, the dietary level of vitamin E found to maintain the maximum activity of GSH peroxidase in tissues of rats was somewhere between 25 and 250 IU/kg diet. This study conclusively indicates that the excess dietary vitamin E represses GSH peroxidase activity.  相似文献   

11.
高淀粉膳食对血浆胰岛素、cAMP含量及组织cAMP代谢的影响   总被引:1,自引:0,他引:1  
对高淀粉膳食(糖占总热量80%)对大鼠血脂、胰岛素及cAMP代谢的影响进行了研究。大鼠摄取高淀粉膳食3天,空腹血浆岛素及甘油三酯含量明显高于对照组(P<0.01;P<0.01)。6天后血浆甘油三酯含量增高近四倍(P<0.01),而血浆、肌肉和脂肪组织cAMP含量低于对照组,分别减低38%,45%和32%(P<0.05;P<0.05,0.1相似文献   

12.
Since experiments with freshly isolated rat hepatocytes have shown that cellular vitamin E is consumed in response to insult by compounds that induce an oxidative stress only after cellular glutathione (GSH) concentrations have been substantially depleted, experiments were performed to determine whether this sequence of events occurred in response to oxidative insult in vivo. The role that plasma vitamin E plays in the response to chemically induced oxidative injury in vivo was also assessed. Treatments with 40 mg/kg of methyl ethyl ketone peroxide (MEKP) quickly induced lipid peroxidation in vivo and from one to 4 h after treatment caused a depression in the plasma content of vitamin E and the liver content of GSH, as well as signs of toxicity (elevations in serum activities of alanine and aspartate aminotransferases). At these time points however, the liver content of vitamin E was either indistinguishable from or slightly elevated from controls. By 12 to 24 h after treatment the liver content of vitamin E was reduced by 20-25% whereas values for all other indicators had returned toward control levels. Pretreatment of rats with L-buthionine-S,R-sulfoximine, an inhibitor of GSH by 4 or 24 h after treatment, did not alter the time course or extent of hepatic vitamin E depletion that was observed after treatment with MEKP. Other compounds that induce oxidative stress and lipid peroxidation to the liver, carbon tetrachloride and menadione, did not provoke an alteration in hepatic vitamin E levels as compared to controls 1 day after treatment. These findings indicate that depletion of hepatic vitamin E may not occur as an immediate consequence of oxidative insult to the liver and that the depletion of hepatic vitamin E levels may not be related to the extent of prior GSH depletion. Moreover, these findings suggest that alterations in the plasma concentration of vitamin E may not reflect concurrent alterations in hepatic vitamin E levels. A mechanism whereby liver vitamin E stores are mobilized for the maintenance of plasma vitamin E levels is proposed.  相似文献   

13.
《Free radical research》2013,47(5-6):315-322
Effects of dietary vitamin E deficiency on the fatty acid compositions of total lipids and phospholipids were studied in several tissues of rats fed a vitamin E-deficient diet for 4, 6, and 9 months. No significant differences were observed between the vitamin E deficiency and controls except in the fatty acid profiles of liver total lipids. Triacylglycerol (TAG) accumulation was found in the liver of rats fed a vitamin E-deficient diet. The levels of TAG-palmitate and -oleate increased particularly in the liver from such animals. The fatty acid compositions of hepatic phospholipids were not affected by the diet. Increased TAG observed in the liver of rats fed a vitamin E-deficient diet was restored to normal when the diet was supplemented with 20 mg α-tocopheryl acetate/kg diet. These findings indicate that dietary vitamin E deficiency causes TAG accumulation in the liver and that the antioxidant, vitamin E, is capable of preventing free radical-induced liver injury.  相似文献   

14.
Previous studies in selenium (Se)-depleted sheep and rats showed that selenoprotein W (SeW) levels decreased in all tissues except brain. To further investigate this depletion in different parts of the brain, second generation Se-depleted rats were used. Dams consumed a Se-deficient basal diet during gestation and lactation, and deficient rats were obtained by continuation on the same diet. Control rats were fed a diet with 0.1-mg Se/kg diet after weaning. Glutathione peroxidase (GPX) activities were measured for comparative purposes to SeW levels. GPX activity in muscle, skin, spleen, and testis increased about 4-fold with Se repletion and reached a plateau after 6 or 10 weeks, but GPX activity decreased to almost one tenth of the original activity with continuous Se depletion. In contrast, GPX activities increased, rather than declined, in various brain regions (cortex, cerebellum, and thalamus) with time of feeding the deficient diet. An experiment with first generation rats, however, indicated that GPX activity was significantly lower in these three brain regions from rats fed the deficient diet as compared to rats fed the supplemented diet. SeW levels in skin, spleen, muscle, and testis were undetectable in weanling rats, but became detectable after 6 weeks of Se repletion. In contrast, the expression of SeW in cortex, cerebellum, and thalamus was not significantly affected by Se depletion, but increased SeW levels occurred only in thalamus with Se supplementation. The results with GPX using first and second generation rats suggest that there are "mobile" and "immobile" GPX fractions in the brain.  相似文献   

15.
In the companion paper we demonstrated that hepatic vitamin E in rats becomes depleted and extrahepatic pools of vitamin E are altered by treatment with 1,2-dibromoethane (DBE). Vitamin E depletion may be dependent upon initial steps of DBE metabolism that are either oxidative (cytochrome P450 dependent) or conjugative (glutathione transferase dependent). That the liver content of glutathione (GSH) and vitamin E, the plasma concentration of vitamin E, and the serum activities of AST and ALT may be influenced by cytosolic metabolism of DBE was assessed by comparison of findings from rats treated with either 1,2-dichloroethane (DCE) or 1-bromo-2-chloroethane (BCE). The extent of oxidative metabolism was diminished by the use of tetradeutero-DBE (d4-DBE), and the availability of GSH for conjugative metabolism was diminished by pretreatment of rats with L-buthionine-S,R-sulfoximine (BSO) prior to treatment with DBE. Our results indicate that neither DCE nor BCE provokes a liver vitamin E depletion in rats, that d4-DBE treatment hastens but does not enhance the observed hepatic vitamin E depletion by comparison to animals treated with an equimolar dose of DBE, and that BSO pretreatment prevented the hepatic vitamin E depletion observed from animals treated with DBE alone. These results indicate that hepatic vitamin E depletion is the unique sequelae to conjugation of GSH with DBE, and we suggest the reactive episulfonium ion intermediate or a macromolecular adduct of this ion derived from DBE may play a role in liver vitamin E depletion associated with exposure to DBE.  相似文献   

16.
As an index lipid peroxidation, thiobarbituric acid (TBA)-reactive substances in the liver, kidney, and serum, and hydrocarbons (ethane and pentane) in the exhalation of rats injected subcutaneously with 10 mg/kg/day of methylmercuric chloride (MMC) were determined. Formation of TBA-reactive substances in the liver and kidney of rats was significantly increased 4 and 2 days after initial injection of MMC, respectively. The result for serum was similar to that for the kidney. The maximum ethane production in the exhaled gases was observed 4 days after initial injection of MMC, and thereafter decreased slowly. Pentane production was significantly increased 5 days after initial injection of MMC, and thereafter continued to increase. Glutathione peroxidase activity and amount of vitamin C in the liver were depleted 4 days after initial injection of MMC; vitamin E was not depleted. In the kidney, significant decreases of glutathione peroxidase activity and vitamin C content were also seen 4 days after initial injection of MMC, but vitamin E content was unaltered.Thus, a clear increase of lipid peroxidation as determined by measurement of TBA-reactive substances in tissues and of hydrocarbons in the exhaled gases of rats after MMC treatment was demonstrated, though there was a lag phase of several days before the increase of lipid peroxidation. It is suggested that the significant increase of lipid peroxide formation may be a result of depletion of defending factors against lipid peroxidation.  相似文献   

17.
Gamma-tocopherol (gammaT) complements alpha-tocopherol (alphaT) by trapping reactive nitrogen oxides to form a stable adduct, 5-nitro-gammaT [Christen et al., PNAS 94:3217-3222; 1997]. This observation led to the current investigation in which we studied the effects of gammaT supplementation on plasma and tissue vitamin C, vitamin E, and protein nitration before and after zymosan-induced acute peritonitis. Male Fischer 344 rats were fed for 4 weeks with either a normal chow diet with basal 32 mg alphaT/kg, or the same diet supplemented with approximately 90 mg d-gammaT/kg. Supplementation resulted in significantly higher levels of gammaT in plasma, liver, and kidney of control animals without affecting alphaT, total alphaT+gammaT or vitamin C. Intraperitoneal injection of zymosan caused a marked increase in 3-nitrotyrosine and a profound decline in vitamin C in all tissues examined. Supplementation with gammaT significantly inhibited protein nitration and ascorbate oxidation in the kidney, as indicated by the 29% and 56% reduction of kidney 3-nitrotyrosine and dehydroascorbate, respectively. Supplementation significantly attenuated inflammation-induced loss of vitamin C in the plasma (38%) and kidney (20%). Zymosan-treated animals had significantly higher plasma and tissue gammaT than nontreated pair-fed controls, and the elevation of gammaT was strongly accentuated by the supplementation. In contrast, alphaT did not significantly change in response to zymosan treatment. In untreated control animals, gammaT supplementation lowered basal levels of 3-nitrotyrosine in the kidney and buffered the starvation-induced changes in vitamin C in all tissues examined. Our study provides the first in vivo evidence that in rats with high basal amounts of alphaT, a moderate gammaT supplementation attenuates inflammation-mediated damage, and spares vitamin C during starvation-induced stress without affecting alphaT.  相似文献   

18.
The effect of dietary vitamin E on the fetal ischemic distress induced by clamping the uterotubal vessels of pregnant rats was studied. The fetal heart rate was measured by the pulsed doppler technique as an index of fetal distress induced by ischemia. On reperfusion after clamping the vessels for 9 min, the decreased fetal heart rate was restored to normal rapidly and completely in the E-supplemented group, but slowly and incompletely in the E-deficient and control groups. On reperfusion after ischemia, the amounts of lipid peroxides, measured as thiobarbituric acid (TBA)-reactive substances, were greatly increased in the fetal brain and liver and in the placenta of in the E-deficient and control groups, but not in the E-supplemented group. The vitamin E concentrations in fetal tissues were less than 10% of those in the maternal tissues. Significant differences were found in the vitamin E concentrations in the maternal serum and liver in the three groups of rats given diet containing different amounts of vitamin E for 2 weeks. No significant differences were found between the vitamin E-deficient and control groups in the levels of vitamin E in the fetal brain and liver and the placenta, but these levels were significantly lower than those in the E-supplemented group.  相似文献   

19.
The influence of dietary vitamin E and Santoquin on lipid peroxidation and liver regeneration in partially-hepatectomized rats was studied. Rats were fed either a basal 10% tocopherol-stripped corn oil diet, the basal diet plus 40 mg dl-alpha-tocopheryl acetate/kg, or the basal diet plus 2 g Santoquin (6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline)/kg. After 6 weeks, rats fed the antioxidant-deficient diet produced more of the lipid peroxidation product, pentane, than did the rats fed antioxidants. Partial hepatectomy was performed after six and one-half weeks or ten weeks of feeding the diets. At 3 and 6 days after surgery, pentane production was significantly elevated over pre-surgery levels in rats fed the antioxidant-deficient or vitamin E-supplemented diets, but not in rats fed the Santoquin-supplemented diet. Six days after surgery, there were fewer thiobarbituric acid reactants in regenerating liver of Santoquin-fed rats than of vitamin-E fed rats or antioxidant-deficient rats. There was no increase in the 6-day level of thiobarbituric acid reactants over the 3-day level in livers of rats fed Santoquin, while there was an increase in livers of the antioxidant-deficient and vitamin E-supplemented rats. Liver sulfhydryl levels were higher at 3 and 6 days post surgery in the Santoquin-fed rats than in the antioxidant-deficient or vitamin E-supplemented rats. Plasma gamma-glutamyl-transpeptidase activity was not different among the groups of rats. Between the third and sixth day following surgery, liver regeneration was significantly stimulated in Santoquin-fed, but not vitamin E-fed rats. After 11 days, a stimulatory, but not statistically significant, effect of vitamin E was found. Although DNA content of liver was higher at 6 days than at 3 days post surgery, it was not different among the dietary groups, indicating that cell proliferation rather than hypertrophy had occurred. Partial hepatectomy could have altered the ability of the liver to metabolize pentane, thus explaining part of the increased production of pentane. However, the results obtained support the interpretation that elevated levels of dietary antioxidants can be beneficial in terms of reduced lipid peroxidation and increased rates of liver regeneration following liver surgery.  相似文献   

20.
The retention of radioisotope-labeled vitamin A during processing for electron microscopy was investigated using the livers and kidneys of vitamin A deficient rats. [15-14C]Retinol (3muCi/animal) was administered by esophageal intubation to male rats which had been maintained on a vitamin A deficient diet for five or six weeks postweaning. Glutaraldehyde- or osmium-fixed tissue was processed by three methods: a) routine (a graded series of ethanols, propylene oxide and epoxy), b) rapid (75% and 95% ethanol with three changes of epoxy), or c) water-soluble embedding (70% and 80% hydroxypropyl methacrylate). Water-soluble embedding retained the highest percentage of label in the tissue (liver: 96.31%; kidney: 98.68%). Inclusion of osmium tetroxide in the processing sequence and minimal exposure of tissue to lipid solvents were necessary for good retention of labeled vitamin A in tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号