首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene and flower senescence   总被引:15,自引:0,他引:15  
The end of the relatively short life of carnations held in air is associated with climacteric rises in ethylene production and respiration, and coordinate rises in activity of the enzymes of the ethylene biosynthetic pathway. Carnation sensescence is associated with derepression of specific genes, increased polyribosome activity, and major changes in patterns of protein synthesis. Isotopic competition assays indicate the presence in carnation petals of ethylene binding activity with the expected characteristics of the physiological ethylene receptor. Inhibition of ethylene production and/or ethylene binding (whether in selected varieties, or by treatment with chemicals) results in longer-lived carnations. Examination of other flowers shows that the carnation is not a universal paradigm for flower senescence. The response to ethylene varies widely, and in many species petal wilting occurs without any apparent involvement of ethylene.  相似文献   

2.
It is well established that ethylene promotes female flower development in cucumber. However, little is known about how the gaseous hormone selectively affects female flowers, and what mechanism it uses. Previously, we found organ‐specific DNA damage in the primordial anther of female cucumber flowers. This finding led to a hypothesis that ethylene might promote female flower development via the organ‐specific induction of DNA damage in primordial anthers. In this study, we tested this hypothesis first by demonstrating ethylene induction of DNA damage via the ethylene signaling pathway using cucumber protoplasts. Then, using representative component genes of the ethylene signaling pathway as probes, we found that one of the ethylene receptors, CsETR1, was temporally and spatially downregulated in the stamens of stage‐6 female cucumber flowers, especially along with the increase of the nodes. Furthermore, by constructing transgenic Arabidopsis plants with organ‐specific expression of antisense CsETR1 under the control of an AP3 promoter to downregulate ETR1 expression in the stamens, we generated Arabidopsis ‘female flowers’, in which the abnormal stamens mimic those of female cucumber flowers. Our data suggest that ethylene perception is involved in the arrest of stamen development in female cucumber flowers through the induction of DNA damage. This opens up a novel perspective and approach to solve the half‐century‐long puzzle of how gaseous ethylene selectively promotes female flowers in the monoecious cucumber plant.  相似文献   

3.
Hormones are included in the essential elements that control the induction of flowering. Ethylene is thought to be a strong inhibitor of flowering in short day plants (SDPs), whereas the involvement of abscisic acid (ABA) in the regulation of flowering of plants is not well understood. The dual role of ABA in the photoperiodic flower induction of the SDP Pharbitis nil and the interaction between ABA and ethylene were examined in the present experiments. Application of ABA on the cotyledons during the inductive 16-h-long night inhibited flowering. However, ABA application on the cotyledons or the shoot apices during the subinductive 12-h-long night resulted in slight stimulation of flowering. Application of ABA also resulted in enhanced ethylene production. Whereas nordihydroguaiaretic acid (NDGA) - an ABA biosynthesis inhibitor - applied on the cotyledons of 5-d-old seedlings during the inductive night inhibited both the formation of axillary and of terminal flower buds, application of 2-aminoethoxyvinylglycine (AVG) and 2,5-norbornadiene (NBD) - inhibitors of ethylene action - reversed the inhibitory effect of ABA on flowering. ABA levels in the cotyledons of seedlings exposed to a 16-h-long inductive night markedly increased. Such an effect was not observed when the inductive night was interrupted with a 15-min-long red light pulse or when seedlings were treated at the same time with gaseous ethylene during the dark period. Lower levels of ABA were observed in seedlings treated with NDGA during the inductive night. These results may suggest that ABA plays an important role in the photoperiodic induction of flowering in P. nil seedlings, and that the inhibitory effect of ethylene on P. nil flowering inhibition may depend on its influence on the ABA level. A reversal of the inhibitory effect of ethylene on flower induction through a simultaneous treatment of induced seedlings with both ethylene and ABA strongly supports this hypothesis.  相似文献   

4.
Accumulated experimental evidence suggests that the decline in the content of membrane components such as phospholipids (PL), is a key event in flower senescence. This loss of membrane integrity can be modulated by ethylene. The aim of this work was to examine the interrelationship between ethylene and one of the products of PL metabolism, diacylglycerol (DAG), during petunia ( Petunia hybrida ) flower senescence. DAG's role was studied using phorbol 12-myristate 13-acetate (PMA), which acts similarly in kinase activation. Our results demonstrate for the first time a senescence-related transient increase in the content of DAG in petunia plasma membranes. The climacteric-like ethylene rise associated with petal wilting appeared in petunia flowers well after PL degradation and DAG increase had commenced. The appearance and peak magnitude of the ethylene rise was enhanced or increased, respectively, by PMA treatment, thereby accelerating appearance and magnitude of all senescence parameters assayed. Conversely, suppression of ethylene action by silver thiosulfate (STS) resulted in retardation of flower wilting, as well as in abolishment of the PMA-enhancing effects on senescence. The results suggest an active role for lipid metabolites like DAG in enhancing flower senescence, through regulation of ethylene production and action, or possible activation of kinases. This sequence of events implies that ethylene is a mediator of flower senescence, rather than a trigger of the process.  相似文献   

5.
Using theArabidopsis ethylene receptorETR1 as a probe, we have isolated a tomato homologue (tETR) from a ripening cDNA library. The predicted amino acid sequence is 70% identical toETR1 and homologous to a variety of bacterial two component response regulators over the histidine kinase domain. Sequencing of four separate cDNAs indicates that tETR lacks the carboxyl terminal response domain and is identical to that encoded by the tomatoNever ripe gene. Ribonuclease protection showed tETR mRNA was undetectable in unripe fruit or pre-senescent flowers, increased in abundance during the early stages of ripening, flower senescence, and in abscission zones, and was greatly reduced in fruit of ripening mutants deficient in ethylene synthesis or response. These results suggest that changes in ethylene sensitivity are mediated by modulation of receptor levels during development.  相似文献   

6.
Bullatantriol has been isolated from Annona bullata. Its constitution and relative configuration have been established by X-ray analysis. Its absolute configuration has been assigned by chiroptical investigation of the corresponding 7-ketone.  相似文献   

7.
8.
9.
Ethylene production and expression patterns of an 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (CARAO1) and of two ACC synthase (EC 4.4.1.14) genes (CARACC3 and CARAS1) were studied in floral organs of cut carnation flowers (Dianthus caryophyllus L.) cv. White Sim. During the vase life and after treatment of fresh flowers with ethylene, production of ethylene and expression of ethylene biosynthetic genes first started in the ovary followed by the styles and the petals. ACC oxidase was expressed in all the floral organs whereas, during the vase life, tissue-specific expression of the two ACC synthase genes was observed. After treatment with a high ethylene concentration, tissue specificity of the two ACC synthase genes was lost and only a temporal difference in expression remained. In styles, poor correlation between ethylene production and ACC synthase (CARAS1) gene expression was observed suggesting that either activity is regulated at the translational level or that the CARAS1 gene product requires an additional factor for activity.Isolated petals showed no increase in ethylene production and expression of ethylene biosynthetic genes when excised from the flower before the increase in petal ethylene production (before day 7); showed rapid cessation of ethylene production and gene expression when excised during the early phase of petal ethylene production (day 7) and showed a pattern of ethylene production and gene expression similar to the pattern observed in the attached petals when isolated at day 8. The interorgan regulation of gene expression and ethylene as a signal molecule in flower senescence are discussed.  相似文献   

10.
Chenopodium rubrum plants, induced to flower by three cycles of 12 h darkness and 12 h light, produced 42% less ethylene than vegetative plants kept under continuous light. Plants that had each dark cycle broken by 2 h light in the middle did not flower and produced almost as much ethylene as the vegetative plants. Shoots and roots of plants of all three experimental treatments had a similar content of 1-aminocyclopropane-1-carboxylic acid (ACC), the mean amounting to about 2 nmol · g–1 dry weight. Also the content of N-malonyl-ACC (MACC) was similar in shoots of all three treatments. MACC content in roots was shown to be much higher, especially in the treatments with three dark periods (about 85 nmol · g–1 dry weight). When labeled [2,3-14C] ACC was administered, the relative contents of ACC and MACC were very similar among all three treatments. The only process influenced by flower induction was ACC conversion to ethylene. Induced plants converted 36% less ACC than the vegetative ones. Plants subjected to night-break converted almost as much ACC to ethylene as vegetative plants. It is concluded that flower induction in the short-day plantChenopodium rubrum decreases ethylene production by decreasing their capability of converting ACC to ethylene.  相似文献   

11.
12.
Ethylene Receptors: Ethylene Perception and Signal Transduction   总被引:2,自引:0,他引:2  
Ethylene is sensed by a family of receptors that can be divided into two subfamilies based on phylogenetic analysis and some shared structural features. In this review we focus on the mechanistic aspects of how the receptors function in plants to transduce the ethylene signal. Recent work has led to new insights into how ethylene binds to the receptors and how this binding may induce a conformational change to regulate signaling. Additional studies point to several possible mechanisms for signal output by the receptors, which may involve changes in enzymatic activity and/or conformational changes. Other studies indicate the importance of interactions, both physical and genetic, between the receptors and early components of the signaling pathway, in particular, the Raf-like kinase CTR1, which functions as an integral component of the ethylene receptor signaling complex. The current model for signaling in Arabidopsis supports differing contributions from the receptors, with subfamily-1 receptors playing a more significant role than the subfamily-2 receptors in transmitting the ethylene signal.  相似文献   

13.
14.
乙烯受体与信号转导成员的研究进展   总被引:2,自引:0,他引:2  
综述了近几年有关乙烯受体和乙烯信号转导成员研究的最新进展,ETR1与其多基因家族的结构及在信号转导过程中的作用机理.乙烯与受体结合需要铜离子的协同作用.ETR1、CTR1、EIN2、EIN3、ERN1、ERF1等组成乙烯信号转导.  相似文献   

15.
Ethylene and abscission   总被引:20,自引:0,他引:20  
  相似文献   

16.
Ethylene     
  相似文献   

17.
18.
19.
20.
Style-controlled wilting of the flower   总被引:3,自引:0,他引:3  
L. J. W. Gilissen 《Planta》1977,133(3):275-280
Differences in rate of wilting in cross-, self-and unpollinated flowers of self-incompatiblePetunia hybrida L. clone W166H appeared to be significant. Wilting rate was fastest following cross-pollination and slowest in unpollinated flowers. The difference between wilting behaviour of cross- and self-pollinated flowers was not caused by rate of pollen tube growth and not by the incompatibility (recognition or rejection) reaction either. It is assumed, that, following pollination, the wilting reaction is only retarded after penetration of pollen tubes of the same genetic composition as the style (complete self-pollination). The number of viable pollen grains necessary to initiate a maximal wilting-rate of flowers following cross- and self-pollination is about 800, which means that a fifth of the stigmatic surface must be covered with living pollen grains. It is suggested that pollen tube penetration and injury of the style have a similar influence on the initiation of wilting.Wilting-rate following pollination is faster in young plants as compared with wilting in old plants. The wilting process of unpollinated and self-pollinated flowers started in the early morning and lasted till afternoon. Cross-pollinated flowers wilted independently of the hour of the day. The role of flower-wilting as a means of communication to the environment with regard to pollination of the style is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号