首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Though the three-dimensional structures of barley alpha-amylase isozymes AMY1 and AMY2 are very similar, they differ remarkably from each other in their affinity for Ca(2+) and when interacting with substrate analogs. A surface site recognizing maltooligosaccharides, not earlier reported for other alpha-amylases and probably associated with the different activity of AMY1 and AMY2 toward starch granules, has been identified. It is located in the C-terminal part of the enzyme and, thus, highlights a potential role of domain C. In order to scrutinize the possible biological significance of this domain in alpha-amylases, a thorough comparison of their three-dimensional structures was conducted. An additional role for an earlier-identified starch granule binding surface site is proposed, and a new calcium ion is reported.  相似文献   

3.
A total of 59 bacteria samples from Antarctic sea water were collected and screened for their ability to produce alpha-amylase. The highest activity was recorded from an isolate identified as an Alteromonas species. The purified alpha-amylase shows a molecular mass of about 50,000 Da and a pI of 5.2. The enzyme is stable from pH 7.5 to 9 and has a maximal activity at pH 7.5. Compared with other alpha-amylases from mesophiles and thermophiles, the "cold enzyme" displays a higher activity at low temperature and a lower stability at high temperature. The psychrophilic alpha-amylase requires both Cl- and Ca2+ for its amylolytic activity. Br- is also quite efficient as an allosteric effector. The comparison of the amino acid composition with those of other alpha-amylases from various organisms shows that the cold alpha-amylase has the lowest content in Arg and Pro residues. This could be involved in the principle used by the psychrophilic enzyme to adapt its molecular structure to the low temperature of the environment.  相似文献   

4.
Ten genes from two multigene families encode barley alpha-amylases. To gain insight into the occurrence and fate of individual isoforms during seed germination, the alpha-amylase repertoire was mapped by using a proteomics approach consisting of 2D gel electrophoresis, western blotting, and mass spectrometry. Mass spectrometric analysis confirmed that the 29 alpha-amylase positive 2D gel spots contained products of one (GenBank accession gi|113765) and two (gi|4699831 and gi|166985) genes encoding alpha-amylase 1 and 2, respectively, but lacked products from seven other genes. Eleven spots were identified only by immunostaining. Mass spectrometry identified 12 full-length forms and 12 fragments from the cultivar Barke. Products of both alpha-amylase 2 entries co-migrated in five full-length and one fragment spot. The alpha-amylase abundance and the number of fragments increased during germination. Assessing the fragment minimum chain length by peptide mass fingerprinting suggested that alpha-amylase 2 (gi|4699831) initially was cleaved just prior to domain B that protrudes from the (betaalpha)(8)-barrel between beta-strand 3 and alpha-helix 3, followed by cleavage on the C-terminal side of domain B and near the C-terminus. Only two shorter fragments were identified of the other alpha-amylase 2 (gi|166985). The 2D gels of dissected tissues showed alpha-amylase degradation to be confined to endosperm. In contrast, the aleurone layer contained essentially only full-length alpha-amylase forms. While only products of the above three genes appeared by germination also of 15 other barley cultivars, the cultivars had distinct repertoires of charge and molecular mass variant forms. These patterns appeared not to be correlated with malt quality.  相似文献   

5.
The amylase from Tenebrio molitor L. larvae (yellow mealworm) was characterized according to a number of its molecular and catalytic properties. The insect amylase is a single polypeptide chain with mol.wt. 68000, an isoelectric point of 4.0 and a very low content of sulphur-containing amino acids. The enzyme is a Ca2+-protein and behaves as an alpha-amylase. Removal of Ca2+ by exhaustive dialysis against water causes the irreversible inactivation of the enzyme. Moreover, the enzyme is activated by the presence in the assay mixture of Cl-, or some other inorganic anions that are less effective than Cl-, and is inhibited by F-. Optimal conditions of pH and temperature for the enzymic activity are 5.8 and 37 degrees C. The insect amylase exhibits an identical kinetic behaviour toward starch, amylose and amylopectin; the enzyme hydrolyses glycogen with a higher affinity constant. Compared with the non-insect alpha-amylases described in the literature, Tenebrio molitor amylase has a lower affinity for starch.  相似文献   

6.
Subsite affinity maps of long substrate binding clefts in barley alpha-amylases, obtained using a series of maltooligosaccharides of degree of polymerization of 3-12, revealed unfavorable binding energies at the internal subsites -3 and -5 and at subsites -8 and +3/+4 defining these subsites as binding barriers. Barley alpha-amylase 1 mutants Y105A and T212Y at subsite -6 and +4 resulted in release or anchoring of bound substrate, thus modifying the affinities of other high-affinity subsites (-2 and +2) and barriers. The double mutant Y105A-T212Y displayed a hybrid subsite affinity profile, converting barriers to binding areas. These findings highlight the dynamic binding energy distribution and the versatility of long maltooligosaccharide derivatives in mapping extended binding clefts in alpha-amylases.  相似文献   

7.
We have studied the effects of neomycin, a potent inhibitor of inositol phospholipid-specific phospholipase C (PLC), on the germination of rice seed and the gibberellin-induced expression of alpha-amylase in the aleurone layer and the scutellar tissues. It was shown that, in the absence of exogenous Ca2+, neomycin markedly reduced the germination speed and seedling growth of rice seeds and inhibited the gibberellin-induced expression of alpha-amylase in both secretory tissues. In addition, neomycin decreased the formation of inositol 1,4,5-trisphosphate (IP3) in the gibberellin-treated aleurone layer and the scutellar tissues. However, the inhibitory effects on the germination speed and the expression of alpha-amylase activity were overcome by supplementation of Ca2+. In addition, gibberellin elevated the level of IP3, and ABA prevented the gibberellin-induced formation of IP3, although ABA alone did not alter the IP3 level. The expression of a membrane-bound PLC molecule in rice aleurone layer was shown to be induced by gibberellin, and the gibberellin-induced expression of PLC was markedly delayed by treatment with ABA. These results strongly suggest that the phosphoinositide-Ca2+ signal transduction pathway may play an important role in the gibberellin-induced expression of alpha-amylase molecules closely related to the germination processes of rice seed.  相似文献   

8.
A computer program has been evaluated for subsite map calculations of depolymerases. The program runs in windows and uses the experimentally determined bond cleavage frequencies (BCFs) for determination of the number of subsites, the position of the catalytic site and for calculation of subsite binding energies. The apparent free energy values were optimized by minimization of the differences of the measured and calculated BCF data. The program called suma (SUbsite Mapping of alpha-Amylases) is freely available for research and educational purposes via the Internet (E-mail: gyemant@tigris.klte.hu). The advantages of this program are demonstrated through alpha-amylases of different origin, e.g. porcine pancreatic alpha-amylase (PPA) studied in our laboratory, in addition to barley and rice alpha-amylases published in the literature. Results confirm the popular 'five subsite model' for PPA with three glycone and two aglycone binding sites. Calculations for barley alpha-amylase justify the '6 + 2 + (1) model' prediction. The binding area of barley alpha-amylase is composed of six glycone, two aglycone binding sites followed by a barrier subsite at the reducing end of the binding site. Calculations for rice alpha-amylase represent an entirely new map with a '(1) + 2 + 5 model', where '(1)' is a barrier subsite at the nonreducing end of the binding site and there are two glycone and five aglycone binding sites. The rice model may be reminiscent of the action of the bacterial maltogenic amylase, that is, suggesting an exo-mechanism for this enzyme.  相似文献   

9.
An artificially inserted extra peptide (21 amino acid peptide) between the B. subtilis alpha-amylase signal peptide and the mature thermostable alpha-amylase was completely cleaved by B. subtilis alkaline protease in vitro. The cleavage to form a mature enzyme was observed between pH 7.5 and 10, but not between pH 6.0 and 6.5, although a similar protease activity toward Azocall was observed between pH 6.0 and 7.5. To analyze the effects of pH on the cleavage, CD spectra at pH 6, 8, and 11 of the NH2-terminally extended thermostable alpha-amylase were analyzed and the results were compared with those of the mature form of the alpha-amylase. It is suggested that the cleavage of the NH2-terminally extended peptide is controlled by the secondary and tertiary structure of the precursor enzyme. Similar cleavage of different NH2-terminally extended peptides by the alkaline protease was also found in other hybrid thermostable alpha-amylases obtained.  相似文献   

10.
Acid-sable alpha-amylase of Asp. niger and acid-unstable, alpha-amylase of Asp. oryzae were studied. It was demonstrated, that beside being a more acid-stable properties, alpha-amylase Asp. niger has increased thermal stability as compared to alpha-amylase Asp. oryzae. The molecular weights of acid-stable alpha-amylase and acid-unstable alpha-amylase are 58 000 and 51 000, respectively. The amino acid composition, and the C- and N-terminal amino acids of both forms of alpha-amylases were determined. It was demonstrated, that the enzymes under study contain one sylfhydryl group per mole of enzyme, which in the Ca2+-bound form plays an important role in the maintenance of the catalytically active enzyme conformation.  相似文献   

11.
12.
The cereal aleurone functions during germination by secreting hydrolases, mainly alpha-amylase, into the starchy endosperm. Multiple signal transduction pathways exist in cereal aleurone cells that enable them to modulate hydrolase production in response to both hormonal and environmental stimuli. Gibberellic acid (GA) promotes hydrolase production, whereas abscisic acid (ABA), hypoxia, and osmotic stress reduce amylase production. In an effort to identify the components of transduction pathways in aleurone cells, we have investigated the effect of okadaic acid (OA), a protein phosphatase inhibitor, on stimulus-response coupling for GA, ABA, and hypoxia. We found that OA (100 nM) completely inhibited all the GA responses that we measured, from rapid changes in cytosolic Ca2+ through changes in gene expression and accelerated cell death. OA (100 nM) partially inhibited ABA responses, as measured by changes in the level of PHAV1, a cDNA for an ABA-induced mRNA in barley. In contrast, OA had no effect on the response to hypoxia, as measured by changes in cytosolic Ca2+ and by changes in enzyme activity and RNA levels of alcohol dehydrogenase. Our data indicate that OA-sensitive protein phosphatases act early in the transduction pathway of GA but are not involved in the response to hypoxia. These data provide a basis for a model of multiple transduction pathways in which the level of cytosolic Ca2+ is a key point of convergence controlling changes in stimulus-response coupling.  相似文献   

13.
14.
Bifunctional alpha-amylase/subtilisin inhibitors have been implicated in plant defence and regulation of endogenous alpha-amylase action. The barley alpha-amylase/subtilisin inhibitor (BASI) inhibits the barley alpha-amylase 2 (AMY2) and subtilisin-type serine proteases. BASI belongs to the Kunitz-type trypsin inhibitor family of the beta-trefoil fold proteins. Diverse approaches including site-directed mutagenesis, hybrid constructions, and crystallography have been used to characterise the structures and contact residues in the AMY2/BASI complex. The three-dimensional structure of the AMY2/BASI complex is characterised by a completely hydrated Ca2+ situated at the protein interface that connects the three catalytic carboxyl groups in AMY2 with side chains in BASI via water molecules. Using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC), we have recently demonstrated Ca2+-modulated kinetics of the AMY2/BASI interaction and found that the complex formation involves minimal structural changes. The modulation of the interaction by calcium ions makes it unique among the currently known binding mechanisms of proteinaceous alpha-amylase inhibitors.  相似文献   

15.
Genomic analysis of a hyperthermophilic archaeon, Thermococcus onnurineus NA1 [1], revealed the presence of an open reading frame consisting of 1,377 bp similar to alpha-amylases from Thermococcales, encoding a 458-residue polypeptide containing a putative 25-residue signal peptide. The mature form of the alpha-amylase was cloned and the recombinant enzyme was characterized. The optimum activity of the enzyme occurred at 80 degrees C and pH 5.5. The enzyme showed a liquefying activity, hydrolyzing maltooligosaccharides, amylopectin, and starch to produce mainly maltose (G2) to maltoheptaose (G7), but not pullulan and cyclodextrin. Surprisingly, the enzyme was not highly thermostable, with half-life (t(1/2)) values of 10 min at 90 degrees C, despite the high similarity to alpha-amylases from Pyrococcus. Factors affecting the thermostability were considered to enhance the thermostability. The presence of Ca2+ seemed to be critical, significantly changing t(1/2) at 90 degrees C to 153 min by the addition of 0.5 mM Ca2+. On the other hand, the thermostability was not enhanced by the addition of Zn2+ or other divalent metals, irrespective of the concentration. The mutagenetic study showed that the recovery of zinc-binding residues (His175 and Cys189) enhanced the thermostability, indicating that the residues involved in metal binding is very critical for the thermostability.  相似文献   

16.
1. A cell-free system capable of alpha-amylase synthesis has been obtained from the aleurone layers of germinating barley. 2. This system requires potassium chloride, sucrose and an amino acid mixture in order to function. The crude preparation does not require calcium chloride. Chloramphenicol inhibits alpha-amylase synthesis as indicated both by increase in measurable enzyme activity and incorporation of l-[U-(14)C]glutamic acid.  相似文献   

17.
The complete nucleotide sequences of the cDNA and its gene that encode a bifunctional alpha-amylase/subtilisin inhibitor of rice (Oryza sativa L.) (RASI) were analyzed. RASI cDNA (939 bp) encoded a 200-residue polypeptide with a molecular mass of 21,417 Da, including a signal peptide of 22 amino acids. Sequence comparison and phylogenetic analysis showed that RASI is closely related to alpha-amylase/subtilisin inhibitors from barley and wheat. RASI was found to be expressed only in seeds, suggesting that it has a seed-specific function. A coding region of RASI cDNA without the signal peptide was introduced into Escherichia coli and was expressed as a His-tagged protein. Recombinant RASI was purified to homogeneity in a single step by Ni-chelating affinity column chromatography and characterized to elucidate the target enzyme. The recombinant inhibitor had strong inhibitory activity toward subtilisin, with an equimolar relationship, comparable with that of native RASI, and weak inhibitory activity toward some microbial alpha-amylases, but not toward animal or insect alpha-amylases. These results suggest that RASI might function in the defense of the seed against microorganisms.  相似文献   

18.
19.
A class of plant growth regulators, gibberellins, induce the synthesis of alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) in the aleurone layers of barley (Hordeum vulgare L. var. Himalaya) seeds. The purified alpha-amylase is composed of multiple isozymic forms with indistinguishable molecular weights, but different net charges. These alpha-amylase isozymes separate on isoelectric focusing gels into two groups, each containing multiple species. One group has an apparent isoelectric point (pI) of approximately 5.8 (the high pI group). The other group's pI values are around 4.5 (the low pI group). On some gels a small amount of protein focuses between the high and low pI isozymes. These proteins comigrate with the low pI isozymes upon reelectrophoresis. The synthesis of these two groups is temporally regulated. The high pI group is the dominant set of isozymes secreted from embryoless half seeds during the first two days of gibberellin administration. After four days, however, the major isozymes are those of the low pI group. This shift in isozyme pattern is due to a shift in their relative rates of synthesis. Peptide analysis of these two groups of isozymes with Staphylococcus aureus V8 protease and cyanogen bromide shows amino acid sequence differences. However, members within the same group have similar peptide patterns. Both groups of isozymes are synthesized in vitro in a wheat germ extract primed with poly(A)+ RNA isolated from gibberellin-treated aleurone layers. This indicates that the synthesis of the two groups of alpha-amylase isozymes is probably directed by two or more different populations of mature mRNA. A model that explains these observations and the available genetic information is that barley aleurone alpha-amylase isozymes are encoded by at least two sets of structural genes.  相似文献   

20.
Many plant ion channels have been identified, but little is known about how these transporters are regulated. We have investigated the regulation of a slow vacuolar (SV) ion channel in the tonoplast of barley aleurone storage protein vacuoles (SPV) using the patch-clamp technique. SPV were isolated from barley aleurone protoplasts incubated with CaCl2 in the presence or absence of gibberellic acid (GA) or abscisic acid (ABA). A slowly activating, voltage-dependent ion channel was identified in the SPV membrane. Mean channel conductance was 26 pS when 100 mM KCl was on both sides of the membrane, and reversal potential measurements indicated that most of the current was carried by K+. Treatment of protoplasts with GA3 increased whole-vacuole current density compared to SPV isolated from ABA- or CaCl2-treated cells. The opening of the SV channel was sensitive to cytosolic free Ca2+ concentration ([Ca2+]i) between 600 nM and 100 [mu]M, with higher [Ca2+]i resulting in a greater probability of channel opening. SV channel activity was reduced greater than 90% by the calmodulin (CaM) inhibitors W7 and trifluoperazine, suggesting that Ca2+ activates endogenous CaM tightly associated with the membrane. Exogenous CaM partially reversed the inhibitory effects of W7 on SV channel opening. CaM also sensitized the SV channel to Ca2+. In the presence of ~3.5 [mu]M CaM, specific current increased by approximately threefold at 2.5 [mu]M Ca2+ and by more than 13-fold at 10 [mu]M Ca2+. Since [Ca2+]i and the level of CaM increase in barley aleurone cells following exposure to GA, we suggest that Ca2+ and CaM act as signal transduction elements mediating hormone-induced changes in ion channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号