首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Annelid systematics and the ingroup relationships of polychaete annelids are matter of ongoing debates in recent analyses. For the investigation of sedentary polychaete relationships a molecular phylogenetic analysis was conducted based on 94 sequences of 18S rDNA, including unpublished sequences of 13 polychaete species. The data set was analyzed with maximum parsimony and maximum likelihood methods, as wells as Bayesian inference. As in previous molecular analyses the monophyly of many traditional polychaete families is confirmed. No evidence has been found for a possible monophyly of Canalipalpata or Scolecida. In all analyses a placement of the Echiura as a derived polychaete ingroup with a close relationship to the Capitellidae is confirmed. The orbiniids appear paraphyletic with regard to Questa. Travisia is transferred from Opheliidae to Scalibregmatidae. The remaining opheliids include a yet undescribed ctenodrilid species from Elba, whereas the other investigated ctenodrilid Ctenodrilus serratus groups with the Cirratulidae and shows a close affinity to the cirratulid genus Dodecaceria. A common ancestry of Branchiomaldane and Arenicola, which has been predicted on morphological data, is confirmed by the analysis and a sistergroup relationship between Arenicolidae and Maldanidae is also recovered. These results support our assumption that on the basis of a broader taxon sampling the phylogenetic position of controversially discussed taxa can be inferred by using 18S rDNA sequence data.  相似文献   

2.
The superfamily Conoidea is one of the most speciose groups of marine mollusks, with estimates of about 340 recent valid genera and subgenera, and 4000 named living species. Previous classifications were based on shell and anatomical characters, and clades and phylogenetic relationships are far from well assessed. Based on a dataset of ca. 100 terminal taxa belonging to 57 genera, information provided by fragments of one mitochondrial (COI) and three nuclear (28S, 18S and H3) genes is used to infer the first molecular phylogeny of this group. Analyses are performed on each gene independently as well as for a data matrix where all genes are concatenated, using Maximum Likelihood, Maximum Parsimony and Bayesian approaches. Several well-supported clades are defined and are only partly identifiable to currently recognized families and subfamilies. The nested sampling used in our study allows a discussion of the classification at various taxonomical levels, and several genera, subfamilies and families are found polyphyletic.  相似文献   

3.
The phylogenetic relationships of the members of the phylum Sipuncula are investigated by means of DNA sequence data from three nuclear markers, two ribosomal genes (18S rRNA and the D3 expansion fragment of 28S rRNA), and one protein-coding gene, histone H3. Phylogenetic analysis via direct optimization of DNA sequence data using parsimony as optimality criterion is executed for 12 combinations of parameter sets accounting for different indel costs and transversion/transition cost ratios in a sensitivity analysis framework. Alternative outgroup analyses are also performed to test whether they affected rooting of the sipunculan topology. Nodal support is measured by parsimony jackknifing and Bremer support values. Results from the different partitions are highly congruent, and the combined analysis for the parameter set that minimizes overall incongruence supports monophyly of Sipuncula, but nonmonophyly of several higher taxa recognized for the phylum. Mostly responsible for this is the split of the family Sipunculidae in three main lineages, with the genus Sipunculus being the sister group to the remaining sipunculans, the genus Phascolopsis nesting within the Golfingiiformes, and the genus Siphonosoma being associated to the Phascolosomatidea. Other interesting results are the position of Phascolion within Golfingiidae and the position of Antillesoma within Aspidosiphonidae. These results are not affected by the loci selected or by the outgroup chosen. The position of Apionsoma is discussed, although more data would be needed to better ascertain its phylogenetic affinities. Monophyly of the genera with multiple representatives (Themiste, Aspidosiphon, and Phascolosoma) is well supported, but not the monophyly of the genera Nephasoma or Golfingia. Interesting phylogeographic questions arise from analysis of multiple representatives of a few species.  相似文献   

4.
The anuran tribe Paini, family Dicroglossidae, is known in this group only from Asia. The phylogenetic relationships and often the taxonomic recognition of species are controversial. In order to stabilize the classification, we used approximately 2100 bp of nuclear (rhodopsin, tyrosinase) and mitochondrial (12S, 16S rRNA) DNA sequence data to infer the phylogenetic relationships of these frogs. Phylogenetic trees reconstructed using Bayesian inference and maximum parsimony methods supported a monophyletic tribe Paini. Two distinct groups (I,II) were recovered with the mtDNA alone and the total concatenated data (mtDNA+nuDNA). The recognition of two genera, Quasipaa and Nanorana, was supported. Group I, Quasipaa, is widespread east of the Hengduan Mountain Ranges and consists of taxa from relatively low elevations in southern China, Vietnam and Laos. Group II, Nanorana, contains a mix of species occurring from high to low elevation predominantly in the Qinghai-Tibetan Plateau and Hengduan Mountain Ranges. The occurrence of frogs at high elevations appears to be a derived ecological condition. The composition of some major species groups based on morphological characteristics strongly conflicts with the molecular analysis. Some possible cryptic species are indicated by the molecular analyses. The incorporation of genetic data from type localities helped to resolve some of the taxonomic problems, although further combined analyses of morphological data from type specimens are required. The two nuDNA gene segments proved to be very informative for resolving higher phylogenetic relationships and more nuclear data should be explored to be more confident in the relationships.  相似文献   

5.
Phylogenetic relationships were studied based on DNA sequences obtained from all recognized genera of the family Corvidae sensu stricto . The aligned data set consists 2589 bp obtained from one mitochondrial and two nuclear genes. Maximum parsimony, maximum-likelihood, and Bayesian inference analyses were used to estimate phylogenetic relationships. The analyses were done for each gene separately, as well as for all genes combined. An analysis of a taxonomically expanded data set of cytochrome b sequences was performed in order to infer the phylogenetic positions of six genera for which nuclear genes could not be obtained. Monophyly of the Corvidae is supported by all analyses, as well as by the occurrence of a deletion of 16 bp in the β-fibrinogen intron in all ingroup taxa. Temnurus and Pyrrhocorax are placed as the sister group to all other corvids, while Cissa and Urocissa appear as the next clade inside them. Further up in the tree, two larger and well-supported clades of genera were recovered by the analyses. One has an entirely New World distribution (the New World jays), while the other includes mostly Eurasian (and one African) taxa. Outside these two major clades are Cyanopica and Perisoreus whose phylogenetic positions could not be determined by the present data. A biogeographic analysis of our data suggests that the Corvidae underwent an initial radiation in Southeast Asia. This is consistent with the observation that almost all basal clades in the phylogenetic tree consist of species adapted to tropical and subtropical forest habitats.  相似文献   

6.
The phylogenetic relationships of orbiniid taxa were reconstructed based on sequence data of the mitochondrial 16S rRNA and nuclear 18S rRNA genes. Both genes were analysed separately and in combination using maximum likelihood, Bayesian inference and maximum parsimony. Regardless of the method used, a clade consisting of the investigated Orbiniidae, Methanoaricia dendrobranchiata and Questa was strongly supported by the 18S dataset. The analysis of the combined dataset suggests inclusion of M. dendrobranchiata within the Orbiniidae with close relationships to species of Orbinia and Phylo, rather than as a sister taxon to all other orbiniids. Evidence is given for the paraphyletic status of Leitoscoloplos , Naineris , Orbinia , Phylo and Scoloplos , which represent the most species-rich genera of the Orbiniidae. It is thus reasoned that the morphological characters presently used for genus diagnosis are not informative for cladistic analysis. No support is found for the hypothesis that taxa of the Protoariciinae represent juveniles of Orbiniinae. Instead, in the case of Protoaricia oerstedi , strong support for a progenetic origin is found.  © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society , 2005, 144 , 59−73.  相似文献   

7.
Current knowledge of the evolutionary relationships amongst the wolf spiders (Araneae: Lycosidae) is based on assessment of morphological similarity or phylogenetic analysis of a small number of taxa. In order to enhance the current understanding of lycosid relationships, phylogenies of 70 lycosid species were reconstructed by parsimony and Bayesian methods using three molecular markers; the mitochondrial genes 12S rRNA, NADH1, and the nuclear gene 28S rRNA. The resultant trees from the mitochondrial markers were used to assess the current taxonomic status of the Lycosidae and to assess the evolutionary history of sheet-web construction in the group. The results suggest that a number of genera are not monophyletic, including Lycosa, Arctosa, Alopecosa, and Artoria. At the subfamilial level, the status of Pardosinae needs to be re-assessed, and the position of a number of genera within their respective subfamilies is in doubt (e.g., Hippasa and Arctosa in Lycosinae and Xerolycosa, Aulonia and Hygrolycosa in Venoniinae). In addition, a major clade of strictly Australasian taxa may require the creation of a new subfamily. The analysis of sheet-web building in Lycosidae revealed that the interpretation of this trait as an ancestral state relies on two factors: (1) an asymmetrical model favoring the loss of sheet-webs and (2) that the suspended silken tube of Pirata is directly descended from sheet-web building. Paralogous copies of the nuclear 28S rRNA gene were sequenced, confounding the interpretation of the phylogenetic analysis and suggesting that a cautionary approach should be taken to the further use of this gene for lycosid phylogenetic analysis.  相似文献   

8.
The Maldanidae annelid worms are reviewed and the phylogenetic relationships of their subgroups provided, based on Hennigian principles and maximum parsimony. Characters were coded as binary and multistate (transformation series). We used 33 terminal taxa (species), and 50 characters. Characters were treated as unordered and of equal weight, and analysis was run in TNT. Three equally most-parsimonious trees were obtained with heuristic searches, with lengths of 64 steps; CI = 0.95, and RI = 0.98. The monophyly of Maldanidae was supported with 100% of bootstrap and jackknife values. As a result of our analysis, Arenicolidae remains the sister-group of Maldanidae, and both should be referred to Maldanomorpha. Maldanidae was supported by the following synapomorphies: dorsal prostomium; prostomium keel-shaped and fused to peristomium; torus globose behind median chaetigers; median chaetigers greatly elongated; number of pre-anal segments reduced. The subfamily Bogueinae was not monophyletic; Boguea and Boguella were included within Rhodininae. Clymenura, previously included in the Clymenurinae, was included within Euclymeninae. The taxa Notoproctinae, Maldaninae, Nicomachinae and Euclymeninae were grouped in the Maldanoplaca, a new taxon. Eight further new clades have been found, but were not named.  相似文献   

9.
Reconstructing the phylogeny of the Sipuncula   总被引:9,自引:0,他引:9  
Sipunculans are marine spiralian worms with possible close affinities to the Mollusca or Annelida. Currently 147 species, 17 genera, 6 families, 4 orders and 2 classes are recognized. In this paper we review sipunculan morphology, anatomy, paleontological data and historical affiliations. We have conducted cladistic analyses for two data sets to elucidate the phylogenetic relationships among sipunculan species. We first analyzed the relationships among the 45 species of Phascolosomatidea with representatives of the Sipunculidea as outgroups, using 35 morphological characters. The resulting consensus tree has low resolution and branch support is low for most branches. The second analysis was based on DNA sequence data from two nuclear ribosomal genes (18S rRNA and 28S rRNA) and one nuclear protein-coding gene, histone H3. Outgroups were chosen among representative spiralians. In a third analysis, the molecular data were combined with the morphological data. Data were analyzed using parsimony as the optimality criterion and branch support evaluated with jackknifing and Bremer support values. Branch support for outgroup relationships is low but the monophyly of the Sipuncula is well supported. Within Sipuncula, the monophyly of the two major groups, Phascolosomatidea and Sipunculidea is not confirmed. Of the currently recognized families, only Themistidae appears monophyletic. The Aspidosiphonidae, Phascolosomatidae and Golfingiidae would be monophyletic with some adjustments in their definition. The Sipunculidae is clearly polyphyletic, with Sipunculus nudus as the sister group to the remaining Sipuncula, Siphonosoma cumanense the sister group to a clade containing Siphonosoma vastumand the Phascolosomatidea, and Phascolopsis gouldi grouping within the Golfingiiformes, as suggested previously by some authors. Of the genera with multiple representatives, only Phascolosoma and Themiste are monophyletic as currently defined. We are aiming to expand our current dataset with more species in our molecular database and more detailed morphological studies.  相似文献   

10.
Abstract Phylogenetic relationships among thirty-two species of mosquitoes in subfamily Anophelinae are inferred from portions of the mitochondrial genes COI and COII, the nuclear 18S small subunit rRNA gene and the expansion D2 region of the nuclear large subunit 28S rRNA gene. Sequences were obtained from the genera Anopheles , Bironella and Chagasia . Representatives of all six subgenera of Anopheles were included: Anopheles , Cellia , Kerteszia , Lophopodomyia , Nyssorhynchus and Stethomyia. Using parsimony and maximum likelihood methods, various combinations of these DNA sequence data were analysed separately: 18S, 28S, combined 18S and 28S, combined COI and COII, and combined 18S, 28S, COI and COII ('total evidence'). The combined rDNA data contain strong phylogenetic signal, moderately to strongly supporting most clades in MP and ML analyses; however, the mtDNA data (analysed as either nucleotide or amino acid sequences) contain little phylogenetic signal, except for relationships of very recently derived groups of species and, at the deepest level, for the monophyly of Anophelinae. The paraphyly of Anopheles relative to Bironella is confirmed by most analyses and statistical tests. Support for the monophyly of subgenera Anopheles , Cellia , Kerteszia and Nyssorhynchus is indicated by most analyses. Subgenus Lophopodomyia is reconstructed as the sister to Bironella , nested within a clade also containing Nyssorhynchus and Kerteszia . The most basal relationships within genus Anopheles are not well resolved by any of the data partitions, although the results of statistical analyses of the rDNA data (S-H-tests, likelihood ratio tests for monophyly and Bayesian MCMC analyses) suggest that the clade consisting of Bironella , Lophopodomyia , Nyssorhynchus and Kerteszia is the sister to the clade containing Cellia and Anopheles .  相似文献   

11.
The complete 18S (SSU) rRNA as well partial 28S (LSU) rRNA and partial mitochondrial COI sequences have been used to reconstruct the phylogenetic relationships within Opisthobranchia with special focus on the pelagic orders Thecosomata and Gymnosomata. Maximum parsimony, maximum likelihood, distance as well as Bayesian analysis of a combined dataset of the three genes reveals that Thecosomata and Gymnosomata are sister groups and together are closely related to Anaspidea. Possible sister taxon to Thecosomata, Gymnosomata and Anaspidea is Cephalaspidea s. str . Analysis of a taxon-extended dataset of partial 28S sequences supported a basal position of Limacina within Euthecosomata. Within Cavolinidae, Creseis is basal to the other taxa. Other phylogenetic implications from the present results are also discussed. Investigation of the morphology and histology of Thecosomata and Gymnosomata as well as several other opisthobranch taxa helped to identify autapomorphies for Thecosomata and Gymnosomata as well as apomorphies for the clades including these taxa.  相似文献   

12.
Regions of the mitochondrial genome were sequenced and analysed in representative species of poison frogs, in order to investigate phylogenetic relationships within the family Dendrobatidae. Mitochondrial DNA (mfDNA) fragments from three gene regions; cytochrome b, 16S ribosomal RNA (rRNA), and 12S rRNA, provided 1198 base pairs of DNA sequence and 589 informative sites. Phylogenetic analysis using parsimony was used to infer the evolutionary relationships among the species in the survey. Our analysis supported previous partitions of species into the genera Epipedobates, Phyllobates and Dendrobates , with two exceptions; Epipedobates (Allobates) femoralis was placed outside the clade containing the other toxic dendrobatids, and Minyobates minutus was placed within the genus Dendrobates. Genetic distances estimated between all pairs of taxa using the Kimura 2-parameter model indicated substantial genetic divergence between species, particularly those found in Amazonia. Time of divergence estimates were highly variable depending on gene region, but even the lowest estimates were inconsistent with the Pleistocene Refugia hypothesis.  相似文献   

13.
Doradidae is a putatively monophyletic group of South American freshwater catfishes containing 30 extant genera and 72 valid species. Only one study to date has attempted to estimate phylogenetic relationships among doradids. This morphological analysis partitioned species into two basal genera ( Wertheimeria and Francisodoras ) and a crown group of three subfamilies (Platydoradinae, Astrodoradinae and Doradinae) whose relationships were unresolved. No subsequent work has been done to resolve the subfamilial trichotomy or to assess whether postulated intergeneric relationships are accurate. We address this problem with complete sequences (2.5 kilobases, kb) of mitochondrial 12S and 16S rRNA genes and partial (1.3 kb) sequences of the nuclear elongation factor-1 alpha (EF1α) gene from representatives of 23 doradid genera (43 species) and 13 outgroups from additional siluriform families. Phylogenetic analysis of these data yields strong support for the monophyly of Doradidae and Astrodoradinae (as well as other relationships), but otherwise shows significant conflict with morphological results. A partial re-examination of published morphological data indicates that many characters may have been incorrectly polarized and many taxa have incorrect state assignments. Our results provide a framework for ongoing efforts to describe the species-level diversity of this poorly understood neotropical family.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 140 , 551–575.  相似文献   

14.
Although morphological characters distinguishing echiniscid genera and species are well understood, the phylogenetic relationships of these taxa are not well established. We thus investigated the phylogeny of Echiniscidae, assessed the monophyly of Echiniscus, and explored the value of cuticular ornamentation as a phylogenetic character within Echiniscus. To do this, DNA was extracted from single individuals for multiple Echiniscus species, and 18S and 28S rRNA gene fragments were sequenced. Each specimen was photographed, and published in an open database prior to DNA extraction, to make morphological evidence available for future inquiries. An updated phylogeny of the class Heterotardigrada is provided, and conflict between the obtained molecular trees and the distribution of dorsal plates among echiniscid genera is highlighted. The monophyly of Echiniscus was corroborated by the data, with the recent genus Diploechiniscus inferred as its sister group, and Testechiniscus as the sister group of this assemblage. Three groups that closely correspond to specific types of cuticular design in Echiniscus have been found with a parsimony network constructed with 18S rRNA data. © 2013 The Linnean Society of London  相似文献   

15.
Notoriously slow rates of molecular evolution and convergent evolution among some morphological characters have limited phylogenetic resolution for the palm family (Arecaceae). This study adds nuclear DNA (18S SSU rRNA) and chloroplast DNA (cpDNA; atpB and rbcL) sequence data for 65 genera of palms and characterizes molecular variation for each molecule. Phylogenetic relationships were estimated with maximum likelihood and maximum parsimony techniques for the new data and for previously published molecular data for 45 palm genera. Maximum parsimony analysis was also used to compare molecular and morphological data for 33 palm genera. Incongruence among datasets was detected between cpDNA and 18S data and between molecular and morphological data. Most conflict between nuclear and cpDNA data was associated with the genus Nypa. Several taxa showed relatively long branches with 18S data, but phylogenetic resolution of these taxa was essentially the same for 18S and cpDNA data. Base composition bias for 18S that contributed to erroneous phylogenetic resolution in other taxa did not seem to be present in Palmae. Morphological data were incongruent with all molecular data due to apparent morphological homoplasy for Caryoteae, Ceroxyloideae, Iriarteae, and Thrinacinae. Both cpDNA and nuclear 18S data firmly resolved Caryoteae with Borasseae of Coryphoideae, suggesting that at least some morphological characters used to place Caryoteae in Arecoideae are homoplastic. In this study, increased character sampling seems to be more important than increased taxon sampling; a comparison of the full (65-taxon) and reduced (45- and 33-taxon) datasets suggests little difference in core topology but considerably more nodal support with the increased character sample sizes. These results indicate a general trend toward a stable estimate of phylogenetic relationships for the Palmae. Although the 33-taxon topologies are even better resolved, they lack several critical taxa and are affected by incongruence between molecular and morphological data. As such, a comparison of results from the 45- and 33-taxon trees offers the best available reference for phylogenetic inference on palms.  相似文献   

16.
DNA sequences were gathered from mitochondrial COII and nuclear ribosomal 18S and 28S genes for 21 moth species in the tribe Josiini (Notodontidae: Dioptinae) and two outgroup genera. These data complement a previously published morphological character set for the same taxa. We examine whether relationships in the Josiini are best reflected by a single phylogenetic analysis of all the data, or by a consensus of separate trees generated from DNA and morphology. Even in cases where analyses of partitioned data produce incongruent cladograms, the underlying disagreement between partitions is relatively small. While both molecular and morphological data provide useful character information by themselves, we conclude that the best supported phylogenetic hypothesis is the one derived from combined analysis.  相似文献   

17.
This is the first comprehensive study to evaluate the relationships between the western palearctic harvestman families Dicranolasmatidae, Trogulidae and Nemastomatidae with focus on the phylogeny and systematics of Trogulidae, using combined sequence data of the nuclear 28S rRNA and the mitochondrial cytochrome b gene. Bayesian analysis and Maximum parsimony do not reliably resolve Dicranolasma as distinct family but place it on a similar phylogenetic level as several lineages of Trogulidae. Nemastomatidae and Trogulidae turned out to be monophyletic, as did genera Anelasmocephalus and Trogulus within the Trogulidae. The genera Calathocratus, Platybessobius and Trogulocratus each appeared para or polyphyletic, respectively and are synonymized with Calathocratus. The monotypic genus Kofiniotis is well supported. We show molecular data to be in general concordance with taxa characterized by morphology. Molecular data are especially useful to calibrate morphological characters for systematic purposes within homogeneous taxa. In the majority of closely related valid species we show the lowest level of genetic distance to be not lower than 5%. By this threshold in terms of traditionally accepted species the estimated number of species turns out to be 1.5–2.4 times higher than previously believed. With respect to European fauna cryptic diversity in Trogulidae is obviously extraordinarily high and hitherto largely underestimated.  相似文献   

18.
Naidinae (former Naididae) is a group of small aquatic clitellate annelids, common worldwide. In this study, we evaluated the phylogenetic status of Naidinae, and examined the phylogenetic relationships within the group. Sequence data from two mitochondrial genes (12S rDNA and 16S rDNA), and one nuclear gene (18S rDNA), were used. Sequences were obtained from 27 naidine species, 24 species from the other tubificid subfamilies, and five outgroup taxa. New sequences (in all 108) as well as GenBank data were used. The data were analysed by parsimony and Bayesian inference. The tree topologies emanating from the different analyses are congruent to a great extent. Naidinae is not found to be monophyletic. The naidine genus Pristina appears to be a derived group within a clade consisting of several genera (Ainudrilus, Epirodrilus, Monopylephorus, and Rhyacodrilus) from another tubificid subfamily, Rhyacodrilinae. These results demonstrate the need for a taxonomic revision: either Ainudrilus, Epirodrilus, Monopylephorus, and Rhyacodrilus should be included within Naidinae, or Pristina should be excluded from this subfamily. Monophyly of four out of six naidine genera represented by more than one species is supported: Chaetogaster, Dero, Paranais, and Pristina, respectively.  相似文献   

19.
基于78种直翅目昆虫的18S rRNA基因全序列构建了直翅目各主要类群间的系统发育关系。本研究的结果支持直翅目的单系性,但不支持蝗亚目和螽亚目各自的单系性;直翅目下除蜢总科和蝗总科外各总科的划分多数与Otte系统相一致;蜢总科的单系性得不到支持;蝗总科的剑角蝗科、斑腿蝗科、斑翅蝗科、网翅蝗科和槌角蝗科5科均不是单系群,各物种间的遗传距离差异不大,应合并为一科,即蝗科;本研究支持将Otte系统中蚱总科和螽蟖总科下各亚科级阶元提升为科级阶元;18S rRNA基因全序列可以作为划分科级阶元的工具,当位于同一分支上互成姐妹群的类群间的遗传距离超过1%时,这几个类群属于不同的科;但由于其在进化上的保守性,18S rRNA基因只能用于纲目等高级阶元间关系的研究,而由其获得的总科以下阶元间的关系并不可靠。  相似文献   

20.
Morphology can be misleading in the representation of phylogenetic relationships, especially in simple organisms like cnidarians and particularly in hydrozoans. These suspension feeders are widely distributed in many marine ecosystems, and the family Aglaopheniidae Marktanner‐Turneretscher, 1890 is among the most diverse and visible, especially on tropical coral reefs. The taxonomy of this family is based on morphological characters with emphasis on reproductive structures for the identification of genera. This study is the most comprehensive molecular phylogeny of the Aglaopheniidae to date, including six genera and 38 species, of which 13 were investigated for the first time and sampled on tropical coral reefs throughout the Indo‐Pacific region. For newly sampled individuals, we sequenced the 16S rRNA, the nuclear locus comprising the complete ITS1‐5.8S rRNA gene‐ITS2 and the first intron of the calmodulin nuclear gene. Phylogenetic analyses of the data revealed and confirmed a general polyphyly, or doubtful monophyly, of all sampled genera in tropical regions based on both the mitochondrial and nuclear markers. Our results revealed that several morphological characters used today are unsuited to resolve phylogenetic relationships between species and genera, as well as the high phyletic diversity within this family. Future revision of the classification of this family will require extensive geographic sampling and the use of an integrative approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号