首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial ferritin (MtF) is a newly identified ferritin encoded by an intronless gene on chromosome 5q23.1. The mature recombinant MtF has a ferroxidase center and binds iron in vitro similarly to H-ferritin. To explore the structural and functional aspects of MtF, we expressed the following forms in HeLa cells: the MtF precursor (approximately 28 kDa), a mutant MtF precursor with a mutated ferroxidase center, a truncated MtF lacking the approximately 6-kDa mitochondrial leader sequence, and a chimeric H-ferritin with this leader sequence. The experiments show that all constructs with the leader sequence were processed into approximately 22-kDa subunits that assembled into multimeric shells electrophoretically distinct from the cytosolic ferritins. Mature MtF was found in the matrix of mitochondria, where it is a homopolymer. The wild type MtF and the mitochondrially targeted H-ferritin both incorporated the (55)Fe label in vivo. The mutant MtF with an inactivated ferroxidase center did not take up iron, nor did the truncated MtF expressed transiently in cytoplasm. Increased levels of MtF both in transient and in stable transfectants resulted in a greater retention of iron as MtF in mitochondria, a decrease in the levels of cytosolic ferritins, and up-regulation of transferrin receptor. Neither effect occurred with the mutant MtF with the inactivated ferroxidase center. Our results indicate that exogenous iron is as available to mitochondrial ferritin as it is to cytosolic ferritins and that the level of MtF expression may have profound consequences for cellular iron homeostasis.  相似文献   

2.
Ferritins are ubiquitous iron mineralizing and storage proteins that play an important role in iron homeostasis. Although excess iron is stored in the cytoplasm, most of the metabolically active iron is processed in the mitochondria of the cell. Little is known about how these organelles regulate iron homeostasis and toxicity. The recently discovered human mitochondrial ferritin (MtF), unlike other mammalian ferritins, is a homopolymer of 24 subunits that has a high degree of sequence homology with human H-chain ferritin (HuHF). Parallel experiments with MtF and HuHF reported here reveal striking differences in their iron oxidation and hydrolysis chemistry despite their similar diFe ferroxidase centers. In contrast to HuHF, MtF does not regenerate its ferroxidase activity after oxidation of its initial complement of Fe(II) and generally has considerably slower ferroxidation and mineralization activities as well. MtF exhibits sigmoidal kinetics of mineralization more characteristic of an L-chain than an H-chain ferritin. Site-directed mutagenesis reveals that serine 144, a residue situated near the ferroxidase center in MtF but absent from HuHF, is one player in this impairment of activity. Additionally only one-half of the 24 ferroxidase centers of MtF are functional, further contributing to its lower activity. Stopped-flow absorption spectrometry of Fe(II) oxidation by O(2) in MtF shows the formation of a transient diiron(III) mu-peroxo species (lambda(max) = 650 nm) as observed in HuHF. Also, as for HuHF, minimal hydroxyl radical is produced during the oxidative deposition of iron in MtF using O(2) as the oxidant. However, the 2Fe(II) + H(2)O(2) detoxification reaction found in HuHF does not occur in MtF. The structural differences and the physiological implications of the unique iron oxidation properties of MtF are discussed in light of these results.  相似文献   

3.
4.
Early embryonic lethality of H ferritin gene deletion in mice   总被引:17,自引:0,他引:17  
Ferritin molecules play an important role in the control of intracellular iron distribution and in the constitution of long term iron stores. In vitro studies on recombinant ferritin subunits have shown that the ferroxidase activity associated with the H subunit is necessary for iron uptake by the ferritin molecule, whereas the L subunit facilitates iron core formation inside the protein shell. However, plant and bacterial ferritins have only a single type of subunit which probably fulfills both functions. To assess the biological significance of the ferroxidase activity associated with the H subunit, we disrupted the H ferritin gene (Fth) in mice by homologous recombination. Fth(+/-) mice are healthy, fertile, and do not differ significantly from their control littermates. However, Fth(-/-) embryos die between 3.5 and 9.5 days of development, suggesting that there is no functional redundancy between the two ferritin subunits and that, in the absence of H subunits, L ferritin homopolymers are not able to maintain iron in a bioavailable and nontoxic form. The pattern of expression of the wild type Fth gene in 9.5-day embryos is suggestive of an important function of the H ferritin gene in the heart.  相似文献   

5.
It is widely believed that the putative nucleation site (Glu61, Glu64, and Glu67) in mammalian H-chain ferritin plays an important role in mineral core formation in this protein. Studies of nucleation site variant A2 (E61A/E64A/E67A) of H-chain ferritin have traditionally shown impaired iron oxidation activity and mineralization. However, recent measurements have suggested that the previously observed impairment may be due to disruption of the ferroxidase site of the protein since Glu61 is a shared ligand of the ferroxidase and nucleation sites of the protein. This study employed a new nucleation site variant A1 (E64A/E67A) which retains the ferroxidase site ligand Glu61. The data (O(2) uptake, iron binding, and conventional and stopped-flow kinetics measurements) show that variant A1 retains a completely functional ferroxidase site and has iron oxidation and mineralization properties similar to those of the wild-type human H-chain protein. Thus, in contrast to previously published literature, this study demonstrates that the putative "nucleation site" does not play an important role in iron uptake or mineralization in H-chain ferritin.  相似文献   

6.
Translational regulation of ferritin synthesis by iron   总被引:2,自引:0,他引:2  
R S Eisenstein  H N Munro 《Enzyme》1990,44(1-4):42-58
  相似文献   

7.
Mitochondrial ferritin is a recently identified protein precursor encoded by an intronless gene. It is specifically taken up by the mitochondria and processed to a mature protein that assembles into functional ferritin shells. The full mature recombinant protein and its S144A mutant were produced to study structural and functional properties. They yielded high quality crystals from Mg(II) solutions which diffracted up to 1.38 Angstrom resolution. The 3D structures of the two proteins resulted very similar to that of human H-ferritin, to which they have high level of sequence identity (approximately 80%). Metal-binding sites were identified in the native crystals and in those soaked in Mn(II) and Zn(II) solutions. The ferroxidase center binds binuclear iron at the sites A and B, and the structures showed that the A site was always fully occupied by Mg(II), Mn(II) or Zn(II), while the occupancy of the B site was variable. In addition, distinct Mg(II) and Zn(II)-binding sites were found in the 3-fold axes to block the hydrophilic channels. Other metal-binding sites, never observed before in H-ferritin, were found on the cavity surface near the ferroxidase center and near the 4-fold axes. Mitochondrial ferritin showed biochemical properties remarkably similar to those of human H-ferritin, except for the difficulty in renaturing to yield ferritin shells and for a reduced ( approximately 41%) rate in ferroxidase activity. This was partially rescued by the substitution of the bulkier Ser144 with Ala, which occurs in H-ferritin. The residue is exposed on a channel that connects the ferroxidase center with the cavity. The finding that the mutation increased both catalytic activity and the occupancy of the B site demonstrated that the channel is functionally important. In conclusion, the present data define the structure of human mitochondrial ferritin and provide new data on the iron pathways within the H-type ferritin shell.  相似文献   

8.
Iron homeostasis is tightly regulated, as cells work to conserve this essential but potentially toxic metal. The translation of many iron proteins is controlled by the binding of two cytoplasmic proteins, iron regulatory protein 1 and 2 (IRP1 and IRP2) to stem loop structures, known as iron-responsive elements (IREs), found in the untranslated regions of their mRNAs. In short, when iron is depleted, IRP1 or IRP2 bind IREs; this decreases the synthesis of proteins involved in iron storage and mitochondrial metabolism (e.g. ferritin and mitochondrial aconitase) and increases the synthesis of those involved in iron uptake (e.g. transferrin receptor). It is likely that more iron-containing proteins have IREs and that other IRPs may exist. One obvious place to search is in Complex I of the mitochondrial respiratory chain, which contains at least 6 iron-sulfur (Fe-S) subunits. Interestingly, in idiopathic Parkinson's disease, iron homeostasis is altered, and Complex I activity is diminished. These findings led us to investigate whether iron status affects the Fe-S subunits of Complex I. We found that the protein levels of the 75-kDa subunit of Complex I were modulated by levels of iron in the cell, whereas mRNA levels were minimally changed. Isolation of a clone of the 75-kDa Fe-S subunit with a more complete 5'-untranslated region sequence revealed a novel IRE-like stem loop sequence. RNA-protein gel shift assays demonstrated that a specific cytoplasmic protein bound the novel IRE and that the binding of the protein was affected by iron status. Western blot analysis and supershift assays showed that this cytosolic protein is neither IRP1 nor IRP2. In addition, ferritin IRE was able to compete for binding with this putative IRP. These results suggest that the 75-kDa Fe-S subunit of mitochondrial Complex I may be regulated by a novel IRE-IRP system.  相似文献   

9.
Iron can be released from ferritin and utilized by isolated rat liver mitochondria for the synthesis of heme. Mobilization of iron from ferritin is initiated by the binding of ferritin to the mitochondria in an manner compatible with binding sites or receptors for ferritin on the mitochondria. The binding completes rapidly, it is independent of temperature, saturable, reversible and enhanced by K+ and Mg2+. The amount of ferritin binding sites is approx. 0.8 pmol/mg mitochondrial protein, and the affinity constant is 6.4 . 10(6)M-1. The binding kinetics correlate well with the functional features of the ferritin-mitochondrial interaction: i.e. mobilization of iron from ferritin followed by insertion of the iron into heme. The results support the concept of ferritin as a possible donor of iron to the mitochondria.  相似文献   

10.
Ferritin is a major intracellular iron storage protein in higher vertebrates and plays an important role in iron metabolism. In this study, we identified and analyzed the biological activity of a ferritin M subunit (CsFerM) from half-smooth tongue sole (Cynoglossus semilaevis). The open reading frame (ORF) of CsFerM is 534?bp and encodes a protein that shares 79.7-86.4% overall sequence identities with the ferritin M subunits of a number of teleosts. In silico analysis identified in CsFerM a eukaryotic ferritin domain with conserved ferroxidase diiron center and ferrihydrite nucleation center. Quantitative real time RT-PCR analysis showed that under normal physiological conditions, expression of CsFerM was highest in liver, moderate in gill, spleen, and muscle, and low in gut, heart, and brain. Following experimental challenge with bacterial pathogens, CsFerM expression was significantly upregulated in kidney, spleen, and liver in time-dependent manners. Biological activity analysis showed that recombinant CsFerM purified from Escherichia coli exhibited apparent iron-binding activity and, when present in the culture medium of six different species of fish bacterial pathogens, completely inhibited bacterial growth. In contrast, a mutant CsFerM that bears alanine substitution at two conserved residues of the ferroxidase diiron center and ferrihydrite nucleation center was abolished in both iron-binding and antimicrobial capacity. These results demonstrate that CsFerM is a biologically active iron chelator with broad-spectrum antibacterial activity, which suggests a role for CsFerM in not only iron storage but also innate immunity. These results also indicate the importance of the conserved iron uptake and mineralization sites to the function of CsFerM.  相似文献   

11.
Ferritin plays a key role in cellular iron metabolism, which includes iron storage and detoxification. From disk abalone, Haliotis discus discus, the cDNA that encodes the two ferritin subunits abalone ferritin subunit 1 (Abf1) and abalone ferritin subunit 2 (Abf2) were cloned. The complete cDNA coding sequences for Abf1 and Abf2 contained 621 and 549 bp, encoding for 207 and 183 amino acid residues, respectively. The H. discus discus Abf2 subunit contained a highly conserved motif for the ferroxidase center, which consists of seven residues of a typical vertebrate heavy-chain ferritin with a typical stem-loop structure. Abf2 mRNA contains a 27 bp iron-responsive element (IRE) in the 5'UTR position. This IRE exhibited 96% similarity with pearl and Pacific oyster and 67% similarity with human H type IREs. However, the Abf1 subunit had neither ferroxidase center residues nor the IRE motif sequence; instead, it contained iron-binding region signature 2 (IBRS) residues. Recombinant Abf1 and Abf2 proteins were purified and the respective sizes were about 24 and 21 kDa. Abf1 and Abf2 exhibited iron-chelating activity 44.2% and 22.0%, respectively, at protein concentration of 6 microg/ml. Analysis of tissue-specific expression by RT-PCR revealed that Abf1 and Abf2 ferritin mRNAs were expressed in various abalone tissues, such as gill, mantle, gonad, foot and digestive tract in a wide distribution profile, but Abf2 expression was more prominent than Abf1.  相似文献   

12.
Ferritins: a family of molecules for iron storage, antioxidation and more   总被引:1,自引:0,他引:1  
Ferritins are characterized by highly conserved three-dimensional structures similar to spherical shells, designed to accommodate large amounts of iron in a safe, soluble and bioavailable form. They can have different architectures with 12 or 24 equivalent or non-equivalent subunits, all surrounding a large cavity. All ferritins readily interact with Fe(II) to induce its oxidation and deposition in the cavity in a mineral form, in a reaction that is catalyzed by a ferroxidase center. This is an anti-oxidant activity that consumes Fe(II) and peroxides, the reagents that produce toxic free radicals in the Fenton reaction. The mechanism of ferritin iron incorporation has been characterized in detail, while that of iron release and recycling has been less thoroughly studied. Generally ferritin expression is regulated by iron and by oxidative damage, and in vertebrates it has a central role in the control of cellular iron homeostasis. Ferritin is mostly cytosolic but is found also in mammalian mitochondria and nuclei, in plant plastids and is secreted in insects. In vertebrates the cytosolic ferritins are composed of H and L subunit types and their assembly in a tissues specific ratio that permits flexibility to adapt to cell needs. The H-ferritin can translocate to the nuclei in some cell types to protect DNA from iron toxicity, or can be actively secreted, accomplishing various functions. The mitochondrial ferritin is found in mammals, it has a restricted tissue distribution and it seems to protect the mitochondria from iron toxicity and oxidative damage. The various functions attributed to the cytosolic, nuclear, secretory and mitochondrial ferritins are discussed.  相似文献   

13.
Ferritin utilizes ferroxidase activity to incorporate iron. Iron uptake kinetics of bovine spleen apoferritin (H: L = 1 : 1.1) were compared with those of recombinant H chain ferritin and L chain ferritin homopolymers. H chain ferritin homopolymer showed an iron uptake rate identical to bovine spleen apoferritin (0.19 and 0.21 mmol/min/micromol of protein, respectively), and both showed iron concentration-dependent uptake. In contrast, the L chain homopolymer, which lacks ferroxidase, did not incorporate iron and showed the same level of iron autoxidation in the absence of ferritin. Bovine spleen apoferritin was shown to have two iron concentration-dependent uptake pathways over a range of 0.02-0.25 mM ferrous ammonium sulfate (FAS) by an Eadie-Scatchard plot (v/[FAS] versus v), whereas the H chain ferritin homopolymer was found to have only one pathway. Of the two Km values found in bovine spleen apoferritin, the lower mean Km value was 9.0 microM, while that of the H chain homopolymer was 11.0 microM. H chain ferritin homopolymer reached a saturating iron uptake rate at 0.1 mM FAS, while bovine spleen apoferritin incorporated more iron even at 0.25 mM FAS. These results suggest that the intrinsic ferroxidase of ferritin plays a significant role in iron uptake, and the L chain cooperates with the H chain to increase iron uptake.  相似文献   

14.
These studies assessed the fate and localization of incoming iron in 6-8-day rat reticulocytes during inhibition of heme synthesis by succinylacetone. Succinylacetone inhibition of heme synthesis increased iron uptake by increasing the rate of receptor recycling without affecting receptor KD for transferrin, transferrin uptake, or total receptor number. Its net effect was to amplify the number of surface transferrin receptors by recruitment of receptors from an intracellular pool. Despite increased iron influx in inhibited cells, only 2-4% of total incoming iron was diverted into ferritin. The majority of incoming iron (65-80%) in succinylacetone-inhibited cells was recovered in the stroma, where ultrastructural and enzymic analyses revealed it to be accumulated mainly in mitochondria. Intramitochondrial iron (70-75%) was localized mainly in the inner membrane fraction. Removal of succinylacetone restored heme synthesis, utilizing iron accumulated within mitochondria for its support. Thus, inhibition of heme synthesis in rat reticulocytes results in accumulation of incoming iron in a functional mobile intramitochondrial precursor iron pool used directly for heme synthesis. Under normal conditions, there is no significant intracellular or intramitochondrial iron pool in reticulocytes, which are therefore dependent upon continuous delivery of transferrin-bound iron to maintain heme synthesis. Ferritin plays an insignificant role in iron metabolism of reticulocytes.  相似文献   

15.
铁是血红素、线粒体呼吸链复合体和各种生物酶的重要辅助因子,参与氧气运输、氧化还原反应和代谢物合成等生物过程。铁蛋白(ferritin)是一种铁存储蛋白质,通过储存和释放铁来维持机体内铁平衡。铁自噬(ferritinophagy)作为一种选择性自噬方式,介导铁蛋白降解释放游离铁,参与细胞内铁含量的调控。适度铁自噬维持细胞内铁含量稳定,但铁自噬过度会释放出大量游离铁。通过芬顿 (Fenton)反应催化产生大量的活性氧(reactive oxygen species, ROS),发生脂质过氧化造成细胞受损。因此,铁自噬在维持细胞生理性铁稳态中发挥至关重要的作用。核受体共激活因子4 (nuclear receptor co-activator 4, NCOA4)被认为是铁自噬的关键调节因子,与铁蛋白靶向结合,并传递至溶酶体中降解释放游离铁,其介导的铁自噬构成了铁代谢的重要组成部分。最新研究表明,NCOA4受体内铁含量、自噬、溶酶体和低氧等因素的调控。NCOA4介导的铁蛋白降解与铁死亡(ferroptosis)有关。铁死亡是自噬性细胞死亡过程。铁自噬通过调节细胞铁稳态和细胞ROS生成,成为诱导铁死亡的上游机制,与贫血、神经退行性疾病、癌症、缺血/再灌注损伤与疾病的发生发展密切相关。本文针对NCOA4介导的铁自噬通路在铁死亡中的功能特征,探讨NCOA4在这些疾病中的作用,可能为相关疾病的治疗提供启示。  相似文献   

16.
Li C  Hu X  Zhao G 《Biochimie》2009,91(2):230-239
It was established that ferritin from pea seed is composed of 26.5 and 28.0kDa subunits, but the relationship between the two subunits is unclear. The present study by both MALDI-TOF-MS and MS/MS indicated that the 28.0kDa subunit is distinct from the 26.5kDa subunit although they might share high homology in amino acid sequence, a result suggesting that pea seed ferritin is encoded by at least two genes. This result is not consistent with previous proposal that the 28.0kDa subunit is converted into the 26.5kDa subunit upon cleavage of its N-terminal sequence by free radical. Also, present results indicated that pea seed ferritin contains two different kinds of ferroxidase centers located in the 28.0 and 26.5kDa subunits, respectively. This is an exception among all known ferritins. Therefore, it is of special interest to know the role of the two subunits in iron oxidative deposition. Spectrophotometric titration and stopped flow results indicated that 48 ferrous ions can be bound and oxidized by oxygen at the ferroxidase sites, demonstrating that all of the ferroxidase sites are active and involved in fast Fe(II) oxidation. However, unlike H and L subunits in horse spleen ferritin (HoSF), both the 28.0 and 26.5 subunits lack cooperation in iron turnover into the inner cavity of pea seed ferritin.  相似文献   

17.
18.
19.
Ferritin is a ubiquitous and highly conserved protein which plays a major role in iron homeostasis. We have identified and sequenced a full-length cDNA for murine ferritin heavy chain. The isolated cDNA is 819 nucleotides in length. It includes 546 nucleotides which encode a protein of 182 amino acids, a 5' noncoding sequence of 120 nucleotides, and a 3'-noncoding region of 153 nucleotides. The sequence displays a high degree of homology to human ferritin H, and includes a portion of the iron-responsive element conserved in chick, frog, and human ferritin. Tumor necrosis factor (TNF), a cytokine which mediates elements of the stress response, induces expression of ferritin H mRNA. Both mouse TA1 adipocytes and human muscle cells increase expression of ferritin H mRNA 4-6-fold after 48 h exposure to TNF. This increase occurs both prior and subsequent to differentiation of adipocytes and muscle cells, and is accompanied by an increase in the synthesis of the ferritin H subunit. These findings suggest a novel role for TNF in iron metabolism.  相似文献   

20.
Fe(III) storage by ferritin is an essential process of the iron homeostasis machinery. It begins by translocation of Fe(II) from outside the hollow spherical shape structure of the protein, which is formed as the result of self-assembly of 24 subunits, to a di-iron binding site, the ferroxidase center, buried in the middle of each active subunit. The pathway of Fe(II) to the ferroxidase center has remained elusive, and the importance of self-assembly for the functioning of the ferroxidase center has not been investigated. Here we report spectroscopic and metal ion binding studies with a mutant of ferritin from Pyrococcus furiosus (PfFtn) in which self-assembly was abolished by a single amino acid substitution. We show that in this mutant metal ion binding to the ferroxidase center and Fe(II) oxidation at this site was obliterated. However, metal ion binding to a conserved third site (site C), which is located in the inner surface of each subunit in the vicinity of the ferroxidase center and is believed to be the path for Fe(II) to the ferroxidase center, was not disrupted. These results are the basis of a new model for Fe(II) translocation to the ferroxidase center: self-assembly creates channels that guide the Fe(II) ions toward the ferroxidase center directly through the protein shell and not via the internal cavity and site C. The results may be of significance for understanding the molecular basis of ferritin-related disorders such as neuroferritinopathy in which the 24-meric structure with 432 symmetry is distorted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号