首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The recent identification in Heloderma horridum venom of exendin-3, a new member of the glucagon superfamily that acts as a pancreatic secretagogue, prompted a search for a similar peptide in Heloderma suspectum venom. An amino acid sequencing assay for peptides containing an amino-terminal histidine residue (His1) was used to isolate a 39-amino acid peptide, exendin-4, from H. suspectum venom. Exendin-4 differs from exendin-3 by two amino acid substitutions, Gly2-Glu3 in place of Ser2-Asp3, but is otherwise identical. The structural differences make exendin-4 distinct from exendin-3 in its bioactivity. In dispersed acini from guinea pig pancreas, natural and synthetic exendin-4 stimulate a monophasic increase in cAMP beginning at 100 pM that plateaus at 10 nM. The exendin-4-induced increase in cAMP is inhibited progressively by increasing concentrations of the exendin receptor antagonist, exendin-(9-39) amide. Unlike exendin-3, exendin-4 does not stimulate a second rise in acinar cAMP at concentrations greater than 100 nM, does not stimulate amylase release, and does not inhibit the binding of radiolabeled vasoactive intestinal peptide to acini. This indicates that in dispersed pancreatic acini, exendin-4 interacts only with the recently described exendin receptor.  相似文献   

2.
Mammalian VIP is identical in pig, cow, human, rat, dog and goat but differs in the guinea pig (GP) in positions 5, 9, 19, and 26. We now demonstrate that GP, goat, rat and synthetic mammalian VIP are indistinguishable in their inhibition of binding of 125I-labelled synthetic VIP to dispersed acini from GP pancreas and that GP, pig, dog, goat and synthetic VIP are also similar in their efficacy and potency in stimulating amylase release from these acini. Thus in spite of the differences in amino acid sequence, GP VIP appears to have full biologic potency in its action on dispersed acini from GP pancreas.  相似文献   

3.
Exendin-3 increased cellular cAMP levels and amylase release from dispersed acini from guinea pig pancreas. Low concentrations (0.1-3 nM) caused a 12-fold increase in cAMP, whereas higher concentrations (0.3-3 microM) caused an additional 24-fold increase in cAMP. Maximal cAMP with the highest concentration tested was the same as the maximal response with secretin, vasoactive intestinal peptide (VIP), peptide histidine isoleucine, helodermin, or helospectin-I. In terms of amylase release, exendin-3 had the same efficacy but was the least potent of these peptides. Exendin-3-induced increases in amylase release were inhibited by VIP receptor antagonists and the new peptide (greater than 0.1 microM) competed with radiolabeled VIP for binding sites on dispersed acini. Increasing concentrations of an exendin-3 fragment, exendin-3(9-39) amide, did not increase cAMP or amylase release but inhibited the increase in cAMP observed with 0.1-3 nM exendin-3. The fragment did not alter the effects of other peptides that are known to increase acinar cAMP. We conclude that exendin-3 interacts with at least two receptors on guinea pig pancreatic acini; at high concentrations (greater than 100 nM) the peptide interacts with VIP receptors, thereby causing a large increase in cAMP and stimulating amylase release; at lower concentrations (0.1-3 nM) the peptide interacts with a putative exendin receptor, thereby causing a smaller increase in cAMP of undetermined function. Exendin-3(9-39) amide is a specific exendin receptor antagonist.  相似文献   

4.
In dispersed acini from guinea pig pancreas cholera toxin bound reversibly to specific membrane binding sites to increase cellular cyclic AMP and amylase secretion. Cholera toxin did not alter outflux of 45Ca or cellular cyclic AMP. Binding of 125I-labeled cholera toxin could be detected within 5 min; however, cholera toxin did not increase cyclic AMP or amylase release until after 40 min of incubation. There was a close correlation between the dose vs. response curve for inhibition of binding of 125I-labeled cholera toxin by native toxin and the action of native toxin on cellular cyclic AMP. With different concentrations of cholera toxin, maximal stimulation of amylase release occurred when the increase in cellular cyclic AMP was approximately 35% of maximal. Cholera toxin did not alter the increase in 45Ca outflux or cellular cyclic GMP caused by cholecystokinin or carbachol but significantly augmented the increase in cellular cyclic AMP caused by secretin or vasoactive intestinal peptide. The increase in amylase secretion caused by cholera toxin plus secretin or vasoactive intestinal peptide was the same as that with cholera toxin alone. On the other hand, the increase in amylase secretion caused by cholera toxin plus cholecystokinin or carbachol was significantly greater than the sum of the increases caused by each agent alone.  相似文献   

5.
In dispersed acini from guinea pig pancreas, replacing extracellular sodium by tetraethylammonium (1) abolished carbamylcholine-stimulated amylase secretion but did not alter the increase in amylase secretion caused by the C-terminal octapeptide of cholecystokinin, bombesin, ionophore A23187, vasoactive intestinal peptide or 8-bromoadenosine 3':5' monophosphate, (2) caused a parallel rightward shift in the dose-response curve for carbamylcholine-stimulated amylase secretion and (3) inhibited binding of N-[3H]methyl scopolamine to muscarinic cholinergic receptors. Detectable inhibition of carbamylcholine-stimulated amylase secretion and binding of N-[3H]methyl scopolamine occurred with 300 microM tetraethylammonium, and half-maximal inhibition of these functions occurred with 1-2 mM tetraethylammonium. Replacing extracellular sodium by Tris did not alter the stimulation of enzyme secretion caused by any secretagogue tested. These results indicate that the tetraethylammonium is a muscarinic cholinergic receptor antagonist and that enzyme secretion from pancreatic acini does not depend on extracellular sodium.  相似文献   

6.
Action of cholera toxin on dispersed acini from guinea pig pancreas   总被引:1,自引:0,他引:1  
In dispersed acini from guinea pig pancreas cholera toxin bound reversibly to specific membrane binding sites to increase cellular cyclic AMP and amylase secretion. Cholera toxin did not alter outflux of 45Ca or cellular cyclic AMP. Binding of 125I-labeled cholera toxin could be detected within 5 min; however, cholera toxin did not increase cyclic AMP or amylase release until after 40 min of incubation. There was a close correlation between the dose vs. response curve for inhibition of bindind of 125I-labeled cholera toxin by native toxin and the action of native toxin on cellular cyclic AMP. With different concentrations of cholera toxin, maximal stimulation of amylase release occurred when the increase in cellular cyclic AMP was approximately 35% of maximal. Cholera toxin did not alter the increase in 45Ca outflux or cellular cyclic GMP caused by cholecystokinin or carbachol but significantly augmented the increase in cellular cyclic AMP caused by secretion or vasoactive intestinal peptide. The increase in amylase secretion caused by cholera toxin plus secretin or vasoactive intestinal peptide was the same as that with cholera toxin alone. On the other hand, the increase in amylase secretion caused by cholera toxin plus cholecystokinin or carbachol was significantly greater than the sum of the increases caused by each agent alone.  相似文献   

7.
To determine the role of free cytosolic calcium ([Ca+2]i) in stimulated enzyme secretion from exocrine pancreas, we determined the effects of various pancreatic secretagogues on [Ca+2]i and amylase release in dispersed acini from the guinea pig pancreas. Cholecystokinin-octapeptide (CCK-OP), carbachol, and bombesin, but not vasoactive intestinal peptide, stimulated rapid increases in [Ca+2]i from 100 to 600-800 nM that were independent of extracellular calcium. The increases in [Ca+2]i were transient (lasting less than 5 min) and correlated with an initial rapid phase of amylase release. After 5 min, secretagogue-stimulated amylase release occurred at basal [Ca+2]i. Carbachol pretreatment of the acini abolished the effects of CCK-OP and bombesin on [Ca+2]i and the initial rapid phase of amylase release. 4 beta-phorbol 12-myristate 13-acetate (PMA) had no effect on [Ca+2]i but stimulated an increase in amylase release. The addition of CCK-OP or A23187 to PMA-stimulated acini caused an increase in [Ca+2]i and PMA-stimulated amylase release only during the first 5 min after addition of these agents. These results indicate that CCK-OP, carbachol, and bombesin release calcium from an intracellular pool, resulting in a transient increase in [Ca+2]i and that this increase in [Ca+2]i mediates enzyme secretion during the first few minutes of incubation. The results with PMA suggest that secretagogue-stimulated secretion not mediated by increased [Ca+2]i (sustained secretion) is mediated by 1,2-diacylglycerol.  相似文献   

8.
9.
Leptin interplays with other peptides to control feeding behaviour in humans and animals. Using exendin-4, an agonist of glucagon-like peptide-1, we investigated whether leptin modifies its effect on food intake in the rat. In the first series, exendin-4 alone (0.1, 2 or 10 microg per rat), leptin alone (0.1, 2, 10 or 100 microg per rat) or exendin-4 and leptin together (0.1 + 0.1, 2 + 2, 10 + 10, or 2 + 100 microg per rat, respectively) were injected once intraperitoneally. In the second series animals were injected either with exendin-4 (2 microg) alone, leptin (10 microg) alone, or leptin (10 microg) + exendin-4 (2 microg) daily for 5 subsequent days. At the lowest dose used, leptin and exendin-4 injected once together, but not separately, reduced significantly a 24-hour food intake. When used in higher doses, however, leptin did not change the exendin-4-dependent suppressory effect on food consumption. No significant differences in food intake were seen between rats treated repeatedly with exendin-4 only and animals injected with both drugs. Hence, leptin and exendin-4 may act additively to inhibit appetite when present in low concentrations while, at high leptin doses, this effect is abolished. The lack of synergistic effects of exendin-4 and high leptin concentrations on food intake may explain, at least in part, mechanisms responsible for leptin resistance in subjects with hyperleptinaemia.  相似文献   

10.
Despite studies indicating the presence of specific pancreatic acinar receptors for PACAP-38, a peptide that was recently isolated from ovine hypothalamus, the actions of the new peptide on pancreatic enzyme secretion have not been examined. The present study demonstrates that in terms of cAMP production and amylase release from dispersed acini from rat pancreatic acini, PACAP-38 and an N-terminal fragment, PACAP-27, have the same potency and efficacy as vasoactive intestinal peptide (VIP). As with VIP, these actions are potentiated by adding an inhibitor of cyclic nucleotide phosphodiesterase, and combination of PACAP-38 with bombesin, CCK-8, carbachol or the calcium ionophore A23187 results in 2-fold augmentation of the secretory actions of these agents. Inhibition of PACAP-38-induced cAMP production and amylase release by two VIP-receptor antagonists indicates that the secretory effects of PACAP-38 are mediated by interaction with VIP receptors. PACAP-38, a new brain-gut peptide, may be a physiological modulator of pancreatic enzyme secretion.  相似文献   

11.
The effects of glucagon and glucagon-like peptide-1 (GLP-1) on the secretory activity of rat adrenocortical cells have been investigated in vitro. Neither hormones affected basal or agonist-stimulated aldosterone secretion of dispersed rat zona glomerulosa cells or basal corticosterone production of zona fasciculata-reticularis (inner) cells. In contrast, glucagon and GLP-1 partially (40%) inhibited ACTH (10(-9) M)-enhanced corticosterone secretion of inner cells, maximal effective concentration being 10(-7) M. The effect of 10(-7) M glucagon or GPL-1 was suppressed by 10(-6) M Des-His1-[Glu9]-glucagon amide (glucagon-A) and exendin-4(3-39) (GPL-1-A), which are selective antagonists of glucagon and GLP-1 receptors, respectively. Glucagon and GLP-1 (10(-7) M) decreased by about 45-50% cyclic-AMP production by dispersed inner adrenocortical cells in response to ACTH (10(-9) M), but not to the adenylate cyclase activator forskolin (10(-5) M). Again this effect was blocked by 10(-6) M glucagon-A or GLP-1-A. The exposure of dispersed inner cells to 10(-7) M glucagon plus GLP-1 completely suppressed corticosterone response to ACTH (10(-9) M). However, they only partially inhibited (by about 65-70%) both corticosterone response to forskolin (10(-5) M) or dibutyryl-cyclic-AMP (10(-5) M) and ACTH (10(-9) M)-enhanced cyclic-AMP production. Quantitative HPLC showed that 10(-7) M glucagon or GLP-1 did not affect ACTH-stimulated pregnenolone production, evoked a slight rise in progesterone and 11-deoxycorticosterone release, and markedly reduced (by about 55%) corticosterone secretion of dispersed inner adrenocortical cells. In light of these findings the following conclusion are drawn: (i) glucagon and GLP-1, via the activation of specific receptors, inhibit glucocorticoid response of rat adrenal cortex to ACTH; and (ii) the mechanism underlying the effect of glucagon and GLP-1 is probably two-fold, and involves both the inhibition of the ACTH-induced activation of adenylate cyclase and the impairment of the late steps of glucocorticoid synthesis.  相似文献   

12.
C Orskov  J H Nielsen 《FEBS letters》1988,229(1):175-178
We studied binding of 125I-labelled truncated-glucagon-like peptide-1 (proglucagon 78-107 amide) to a cloned rat insulin-producing cell line, RIN 5AH, in monolayer culture. Interaction of the peptide with pancreatic insulinoma cells was saturable and time dependent. Half-maximal binding was obtained when the cells were incubated in the presence of 3.3 x 10(-9) mol/l unlabelled truncated-glucagon-like peptide-1 (proglucagon 78-107 amide). Neither glucagon, full-length glucagon-like peptide-1 (proglucagon 72-107 amide) nor gastric inhibitory peptide competed for binding in concentrations up to 10(-6) mol/l.  相似文献   

13.
The pancreatic islets of the holocephalan fishes contain, in addition to A-, B- and D-cells, X-cells, which are immunoreactive towards antisera directed against the N-terminal region of glucagon but not towards antisera directed against the C-terminal region. A 36-amino-acid-residue peptide was isolated from the pancreas of a holocephalan fish, the Pacific ratfish (Hydrolagus colliei), that shows homology (69%) to mammalian glucagon in its N-terminal region and is reactive towards an N-terminally directed antiserum. Reactivity towards C-terminally directed antisera is prevented by the presence of a 7-residue C-terminal extension to the glucagon sequence that shows limited homology to the C-terminal region of glucagon-37 (oxyntomodulin). It is proposed that this peptide represents a major storage product of the islet X-cell.  相似文献   

14.
Glucagon-like peptide-1(7-36)amide (GLP-1) is a key insulinotropic hormone with the reported potential to differentiate non-insulin secreting cells into insulin-secreting cells. The short biological half-life of GLP-1 after cleavage by dipeptidylpeptidase IV (DPP IV) to GLP-1(9-36)amide is a major therapeutic drawback. Several GLP-1 analogues have been developed with improved stability and insulinotropic action. In this study, the N-terminally modified GLP-1 analogue, N-acetyl-GLP-1, was shown to be completely resistant to DPP IV, unlike native GLP-1, which was rapidly degraded. Furthermore, culture of pancreatic ductal ARIP cells for 72 h with N-acetyl-GLP-1 indicated a greater ability to induce pancreatic beta-cell-associated gene expression, including insulin and glucokinase. Further investigation of the effects of stable GLP-1 analogues on beta-cell differentiation is required to assess their potential in diabetic therapy.  相似文献   

15.
In dispersed acini from rat pancreas, cholera toxin caused a significant increase in cellular cyclic AMP but little or no change in amylase secretion. The presence of a secretagogue that causes mobilization of cellular calcium (e.g., cholecystokinin, carbamylcholine, bombesin or ionophore A23187) caused a substantial increase in the effect of cholera toxin on enzyme secretion. Cholera toxin did not alter calcium transport or the changes in calcium transport caused by other secretagogues, and secretagogues that mobilize cellular calcium did not alter cellular cyclic AMP or the increase in cyclic AMP caused by cholera toxin. These results indicate that in dispersed acini from rat pancreas there is post-receptor modulation of the action of cholera toxin by secretagogues that mobilize cellular calcium and that this modulation is a major determinant of the effect of the toxin on enzyme secretion.  相似文献   

16.
The effects of glucagon-like peptide 1 (7-36) amide [GLP-1 (7-36) amide] and glucagon on the release of islet amyloid polypeptide (IAPP), or amylin, from the isolated perfused rat pancreas were studied. In the presence of 5.6 mM glucose, GLP-1 (7-36) amide and glucagon stimulated the release of amylin from the perfused pancreas. The infusion of GLP-1 (7-36) amide at a concentration of 10(-9) M elicited a biphasic release of amylin similar to that of insulin. The cumulative output of amylin induced by 10(-9)M GLP-1 (7-36) amide was significantly higher than that by 10(-9)M glucagon (p less than 0.01). The amylin/insulin molar ratios induced by GLP-1 (7-36) amide and glucagon were about 1% and did not differ significantly. These findings suggest that GLP-1 (7-36) amide and glucagon stimulate the release of amylin from the pancreas and that the concomitant secretion of amylin and insulin might contribute to glucose homeostasis.  相似文献   

17.
Glucagon-like peptide 1 (GLP-1), an insulinotropic gastrointestinal peptide produced mainly from intestinal endocrine L-cells, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, induce satiety. The serotonin 5-HT2C receptor (5-HT2CR) and melanoroctin-4 receptor (MC4R) are involved in the regulation of food intake. Here we show that systemic administration of GLP-1 (50 and 200 μg/kg)-induced anorexia was blunted in mice with a 5HT2CR null mutation, and was attenuated in mice with a heterozygous MC4R mutation. On the other hand, systemic administration of liraglutide (50 and 100 μg/kg) suppressed food intake in mice lacking 5-HT2CR, mice with a heterozygous mutation of MC4R and wild-type mice matched for age. Moreover, once-daily consecutive intraperitoneal administration of liraglutide (100 μg/kg) over 3 days significantly suppressed daily food intake and body weight in mice with a heterozygous mutation of MC4R as well as wild-type mice. These findings suggest that GLP-1 and liraglutide induce anorexia via different central pathways.  相似文献   

18.
Glucagon-like peptide 1 (GLP-1), an insulinotropic gastrointestinal peptide produced mainly from intestinal endocrine L-cells, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, induce satiety. The serotonin 5-HT2C receptor (5-HT2CR) and melanoroctin-4 receptor (MC4R) are involved in the regulation of food intake. Here we show that systemic administration of GLP-1 (50 and 200μg/kg)-induced anorexia was blunted in mice with a 5HT2CR null mutation, and was attenuated in mice with a heterozygous MC4R mutation. On the other hand, systemic administration of liraglutide (50 and 100μg/kg) suppressed food intake in mice lacking 5-HT2CR, mice with a heterozygous mutation of MC4R and wild-type mice matched for age. Moreover, once-daily consecutive intraperitoneal administration of liraglutide (100μg/kg) over 3days significantly suppressed daily food intake and body weight in mice with a heterozygous mutation of MC4R as well as wild-type mice. These findings suggest that GLP-1 and liraglutide induce anorexia via different central pathways.  相似文献   

19.
The substrate specificity of two cationic lipases with high phospholipase A1 activity purified from guinea pig pancreas has been tested towards various neutral glycerides. Triolein hydrolysis proceeded in the absence of di- and monoolein accumulation. Optimal conditions for di- and monoolein hydrolysis included an alkaline pH (9–10), a substrate concentration of 10 mM, and the presence of sodium deoxycholate (12 and 24 mM, respectively). Pancreatic colipase (bovine) had no effect on the activity of the two lipases. The comparison between the rates of hydrolysis of various substrates revealed the following order of decreasing enzyme activity: diolein > 1(3)-monoolein > tributyrin = triacetin ⩾ triolein = 2-monoolein. No hydrolysis of p-nitrophenylacetate and cholesteryloleate could be detected. Using 1-[3H]palmitoyl-2-[14C]linoleoyl-sn-glycerol, both enzymes displayed a strong preference for the 1-position, leading to the accumulation of 2-[14C]linoleoyl-sn-glycerol. Identical activities were found for the two lipases. It is concluded that the two cationic lipases from guinea pig pancreas represent a unique group of lipolytic enzymes different from other previously described enzymes, including classical pancreatic lipase, gastric and lingual enzymes, mold lipases and carboxylesterhydrolase.  相似文献   

20.
The substrate specificity of two cationic lipases with high phospholipase a1 activity purified from guinea pig pancreas has been tested towards various natural and synthetic phospholipids. Natural glycerophospholipids carrying a 1-acyl-bond were degraded in the following order of decreasing activity: phosphatidylcholine = phosphatidylinositol > 1-acyl-sn-glycero-3-phosphocholine > phosphatidylethanolamine > phosphatidylglycerol. Sodium deoxycholate was an activator with all the phospholipids tested, each one requiring its own optimal concentration of detergent. Whereas 1-alkyl-2-acyl-sn-glycero-3-phosphocholine remained fully insensitive to enzyme degradation, 2-acyl-sn-glycero-3-phosphocholine was hydrolysed to some extent. However, additional experiments involving time-course hydrolysis revealed that this was entirely due to the migration of the 2-acyl-chain to the sn-1 position. From studies using racemic or enantiomeric phosphatidylcholines, it was concluded that the enzymes are not stereospecific. Activity against 1-acylpropanediolphosphocholine was much lower than with 1-acyl-sn-glycero-3-phosphocholine, indicating that the 2-hydroxyl group (or the 2-acyl-ester group) participates in the substrate reactivity through a strong inductive effect. Some activity could be detected against 1,3-diacylglycero-2-phosphocholine (β-phosphatidylcholine) and 1-acylglycol-2-phosphocholine. It is thus concluded that the failure of the lipases to hydrolyse the 2-acyl-bond in a natural phospholipid is due to the steric hindrance brought about by the acyl, alkyl or hydroxyl group present in the sn-1 position. The lipases might also be unable to hydrolyse acyl-ester bonds involving a secondary alcohol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号