首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four new crystal forms of chicken cytosolic aspartate aminotransferase have been grown from polyethylene glycol solutions. Crystals of the unliganded enzyme and of enzyme liganded with maleate diffract to 1.8 A resolution. Both the free and maleate-liganded enzymes crystallize in space group P2(1)2(1)2(1), but display slightly different cell dimensions (a = 56.9 A, b = 126.9 A and c = 124.6 A versus a = 56.5 A, b = 126.1 A and c = 124.6 A). The influence of various divalent metal ions, dioxane and non-ionic detergent beta-octylglucoside on crystallization has been investigated. The best crystals of liganded enzyme were obtained in the presence of Mg2+ ions, and these crystals were used for data collection to 1.9 A resolution.  相似文献   

2.
Endonuclease III from Escherichia coli is an iron-sulfur enzyme possessing both DNA N-glycosylase and apurinic/apyrimidinic lyase activities. It could serve to repair damaged thymine residues in DNA via base excision-repair. We have crystallized endonuclease III by a combination of dialysis and seeding techniques after exploration of a wide variety of precipitants which failed to yield macroscopic crystals. Important features of the optimized crystallization include: the use of 5 to 10% glycerol, a temperature of 15 degrees C, controlled dialysis to decrease ionic strength and macroseeding using a 200 mM-NaCl transfer buffer to dissolve microcrystalline contamination. The crystals belong to space group P2(1)2(1)2(1) with unit cell dimensions of a = 48.5 A, b = 65.8 A, c = 86.8 A, alpha = beta = gamma = 90 degrees, have one 23 kDa monomer per asymmetric unit, and diffract to 1.84 A. A native anomalous Patterson map located the iron-sulfur cluster and reaffirmed its existence. The reported crystallization procedures ensure an ample supply of crystals for the extensive heavy-atom derivative search necessary for this labile iron-sulfur enzyme. The elucidation of endonuclease III structure will facilitate not only the understanding of glycosylase and lyase mechanisms but also the structure and function of this new class of iron-sulfur proteins.  相似文献   

3.
Ferrochelatase (protoheme ferrolyase, EC 4.99.1.1) catalyzes the terminal step in the heme biosynthetic pathway, the insertion of ferrous iron into protoporphyrin IX to form protoheme IX. Previously we have demonstrated that the mammalian enzyme is associated with the inner surface of the inner mitochondrial membrane and contains a nitric oxide sensitive [2Fe-2S] cluster that is coordinated by four Cys residues whose spacing in the primary sequence is unique to animal ferrochelatase. We report here the characterization and crystallization of recombinant human ferrochelatase with an intact [2Fe-2S] cluster. Gel filtration chromatography and dynamic light scattering measurements revealed that the purified recombinant human ferrochelatase in detergent solution is a homodimer. EPR redox titrations of the enzyme yield a midpoint potential of -453+/-10 mV for the [2Fe-2S] cluster. The form of the protein that was crystallized has a single Arg to Leu substitution. This mutation has no detectable effect on enzyme activity but is critical for crystallization. The crystals belong to the space group P2(1)2(1)2(1) and have unit cell constants of a=93.5 A, b=87.7 A, and c=110.2 A. There are two molecules in the asymmetric unit and the crystals diffract to better than 2.0 A resolution. The Fe to Fe distance of the [2Fe-2S] cluster is calculated to be 2.7 A based upon the Bijvoet difference Patterson map.  相似文献   

4.
Three new crystal forms of the complex between yeast tRNAAsp and aspartyl-tRNA synthetase have been produced. The best crystals, obtained after modifying both purification and crystallization conditions, belong to space group P2(1)2(1)2(1) and diffract to 2.7 A. Unit cell parameters are a = 210.4 A, b = 145.3 A and c = 86.0 A (1 A = 0.1 nm), with one dimeric enzyme and two tRNA molecules in the asymmetric unit.  相似文献   

5.
Escherichia coli beta-hydroxydecanoyl thiol ester dehydrase, a key enzyme for the biosynthesis of unsaturated fatty acids in E. coli, has been crystallized by the vapor diffusion method at pH 5.0-5.5 using 20% (w/v) polyethylene glycol (molecular weight 8000) as a precipitant. Two crystal forms have been characterized, and both diffract to at least 1.6 A. The orthorhombic crystals belong to space group P2(1)2(1)2(1), with cell constants of a = 68.4 A, b = 87.3 A, and c = 60.3 A. Monoclinic crystals are of space group C2, with a = 131.9 A, b = 71.5 A, c = 92.5 A, and beta = 103.5 degrees.  相似文献   

6.
Ribonuclease H (RNase H) from Escherichia coli is an endonuclease that specifically degrades the RNAs of RNA:DNA hybrids. The enzyme is a single polypeptide chain of 155 amino acid residues, of which 4 are methionines. To solve the crystallographic three-dimensional structure of E. coli RNase H by the multi-wavelength anomalous diffraction technique, we have constructed methionine auxotrophic strains of E. coli that overexpress selenomethionyl RNase H. MIC88 yields about 10 mg of selenomethionyl RNase H per liter of culture, which is comparable to the overexpression of the natural recombinant protein. We have purified both proteins to homogeneity and crystallized them isomorphously in the presence of sulfate. These are Type I crystals of space group P2(1)2(1)2(1) with the cell parameters a = 41.8 A, b = 86.4 A, c = 36.4 A, one monomer per asymmetric unit, and approximately 36% (v/v) solvent. Crystals of both proteins diffract to beyond 2-A Bragg spacings and are relatively durable in an x-ray beam. On replacement of sulfate with NaCl, crystals of natural RNase H grow as Type I' (very similar to Type I) at pH between 7.0 and 8.0; at pH 8.8, crystals of Type II are obtained in space group P2(1)2(1)2(1) with a = 44.3 A, b = 87.3 A, and c = 35.7 A. Type II crystals can be converted to Type I by soaking in phosphate buffer. RNase H crystals of Type II have also been reported by Kanaya et al. (Kanaya, S., Kohara, A., Miyakawa, M., Matsuzaki, T., Morikawa, K., and Ikehara, M. (1989) J. Biol. Chem. 264, 11546-11549).  相似文献   

7.
Cytochrome c oxidase isolated from bovine heart was crystallized in the fully reduced carbon monoxide (CO)-bound form. To evaluate the structure of the O2 reaction site in crystals and in solution, the bound C-O stretch infrared band in protein crystals was compared with the band for protein solution. In solution, the C-O stretch band could be deconvoluted into two extremely narrow bands, one at 1963.6 cm-1 with delta v1/2 = 3.4 cm-1 of 60% Gaussian/40% Lorentzian character represented 86% of the total band area and the other at 1960.3 cm-1 with delta v1/2 = 3.0 cm-1 of 47% Gaussian/53% Lorentzian character represented 14% of the total band area. The crystals exhibited two deconvoluted C-O infrared bands having very similar band parameters with those in solution. These findings support the presence of two structurally similar conformers in both crystals and solution. Thus crystallization of this enzyme does not affect the structure at the CO-binding site to as great extent as has been noted for myoglobin and hemoglobin carbonyls, indicating that the active (CO- or O2-binding) site of cytochrome c oxidase must be conformationally very stable and highly ordered compared to other hemoproteins such as hemoglobin.  相似文献   

8.
Crystals of calmodulin complexed with both Ca2+ and melittin, a peptide from bee venom, have been grown from 2-methyl-2,4-pentanediol solution by using the hanging drop method of vapour diffusion. The crystals belong to space group P2(1)2(1)2(1) with a = 97.3(9) A, b = 56.5(0) A, c = 33.4(9) A and Z = 4. Analyses of the dissolved crystals by high performance liquid chromatography show that the crystals contain a 1:1 complex of calmodulin and melittin. An asymmetric unit contains one such complex and the solvent content of the crystals is 47.5% (v/v).  相似文献   

9.
Crystals of glycinamide ribonucleotide transformylase have been grown from 0.4 to 1 M ammonium sulfate, 0.6 to 1 M sodium-potassium phosphate, or 0.65 to 1 M citrate in the pH range 4.5-7.0. The single crystals display variable morphology with varying pH. The crystals belong to the orthorhombic space group C222 with cell dimensions a = 141.4 A, b = 98.2 A, c = 103.5 A. Co-crystals have also been obtained in the presence of the inhibitor 5,8-dideazafolate (KI = 18 microM) under similar crystallization conditions. Crystals of a chemically modified enzyme, iodinated at Cys-21, were grown under similar conditions within the pH range 6.5-7.0. These crystals are isomorphous with the unmodified enzyme. Crystals suitable for high resolution (less than 2.5 A) x-ray diffraction studies have been obtained for each of the above.  相似文献   

10.
Crystallization has recently emerged as a suitable process for the manufacture of biocatalysts in the form of cross-linked enzyme crystals (CLECs) or for the recovery of proteins from fermentation broths. In both instances it is essential to define conditions which control crystal size and habit, and that yield a reliable recovery of the active protein. Experiments to define the crystallization conditions usually depend on a factorial design (either incomplete or sparse matrix) or reverse screening techniques. In this work, we describe a simple procedure that allows the effect of three factors, for example protein concentration, precipitant concentration and pH, to be varied simultaneously and smoothly over a wide range. The results are mapped onto a simple triangular diagram where a 'window of crystallization' is immediately apparent, and that conveniently describes variations either in the crystal features, such as their yield, size, and habit, or in the recovery of biological activity. The approach is illustrated with two enzymes, yeast alcohol dehydrogenase (ADH I) and Candida rugosa lipase. For ADH the formation of two crystal habits (rod and hexagonal) could be controlled as a function of pH (6.5-10) and temperature (4-25 degrees C). At pH 7, in 10 to 16% w/v polyethylene glycol (PEG) 4000, only rod-shaped crystals formed whereas at pH 8, in 10 to 14% w/v PEG, only hexagonal crystals existed. For both enzymes, catalyst recovery was greatest at high crystallization agent concentrations and low protein concentration. For ADH, the greatest activity recovery was 87% whereas for the lipase crystals, by using 45% v/v 2-methyl-2,4-pentanediol (MPD) as the crystallization agent, a crystal recovery of 250 crystals per μl was obtained. For the lipase system, the use of crystal seeding was also shown to increase the crystal recovery by up to a factor of four. From the crystallization windows, the original conditions based on literature precedent (35% v/v MPD, 1 mM CaCl(2), 1.8 mg protein/ml) were altered (47.5% v/v MPD, 2 mM CaCl(2), 3 mg protein/ml). This led to an improved recovery of the lipase under conditions that scale reliably from 0.5 ml to 500 ml with no change in size, shape or recovery of the crystals themselves. Finally, these crystals were crosslinked with 5% v/v glutaraldehyde and mass and activity balances were calculated for the entire process of CLEC production. Up to 35% of the lipase activity present in the crude solid was finally recovered in the lipase CLECs after propan-2-ol fractionation, crystallization, and crosslinking.  相似文献   

11.
Well formed, tetragonal prisms of succinyl-CoA synthetase from Escherichia coli have been crystallized at room temperature from ammonium sulfate and mixtures of sodium and potassium phosphates. A systematic survey of the conditions for crystallization of the enzyme has been carried out. This has shown the addition of a small amount of an organic solvent (acetone, 2-methyl-2,4-pentanediol, tert-butyl alcohol, or tertamyl alcohol) to the phosphate media and of CoA to the sulfate media to be beneficial in producing large, single crystals suitable for analysis by x-ray diffraction methods. Preliminary examination of precession photographs reveals that the crystals from phosphate media have a unit cell of symmetry P4222 with dimensions a = b = 94 A and c = 248 A. Evidence suggests that there may be only half of the (alpha beta)2 tetramer/asymmetric unit in these crystals. The crystals from ammonium sulfate media have unit cell dimensions of a = b = 99 A and c = 399 A, a space group of P4122 (P4322), and one tetramer/asymmetric unit. They diffract to a resolution of 3.4 A. Both crystal types have large solvent contents of about 65% of the unit cell volumes. A parameter called "quality index" is introduced to facilitate comparison of crystals grown under a variety of conditions with respect to their quality of x-ray diffraction.  相似文献   

12.
Polypeptide release factor one from Thermus thermophilus, ttRF1, was purified and subjected to crystallization. Thin crystalline needles were obtained but their quality was not satisfactory for X-ray diffraction. Stable fragments of ttRF1 suitable for crystallization were screened by limited proteolysis. Three major fragments were produced by thermolysinolysis and analyzed by N-terminal sequencing and electrospray mass spectrometry. They were N-terminal fragments generated by proteolysis at amino acid positions 211, 231 and 292. The corresponding recombinant polypeptides, ttRF1(211), ttRF1(231) and ttRF1(292), were overproduced and subjected to crystallization. Of these polypeptides, ttRF1(292) gave rise to crystals that belong to P3(1) (or P3(2)) space group with unit cell parameters a = b = 64. 5 A, c = 86.6 A and diffract up to 7 A resolution.  相似文献   

13.
Arginyl-tRNA Synthetase, a class I aminoacyl tRNA synthetase playing a crucial role in protein biosynthesis, has been crystallized for the first time. Polyethylene glycol (PEG) was used as a precipitant, and the crystallization proceeded at pH 6.5. These single crystals diffracted to 2.8 A with a rotating anode X-ray source and R-axis IIc image plate detector. They have an orthorhombic space group P2(1)2(1)2 with unit cell parameters of a = 251.51 A, b = 53.12 A, and c = 52.35 A. A complete native data set has been collected at 3.1 A resolution for these crystals.  相似文献   

14.
Crystals of the homodimeric isozyme 3-3 of glutathione S-transferase from rat liver have been obtained with the hanging drop method of vapor diffusion from ammonium sulfate solutions. The successful crystallization of the enzyme required the presence of both the enzyme inhibitor (9R, 10R)-9, 10-dihydro-9-(S-glutathionyl)-10-hydroxyphenanthrene and the detergent beta-octylglucopyranoside. The crystals belong to the monoclinic space group C2, with cell dimensions of a = 88.24(8) A, b = 69.44(4) A, c = 81.28(5) A, beta = 106.01(6) degrees, and contain four dimeric enzyme molecules per unit cell. The crystals diffract to at least 2.2 A and are suitable for X-ray crystallographic structure determination at high resolution.  相似文献   

15.
The intact variant surface glycoprotein (VSG) ILTat 1.24 from Trypanosoma brucei has been crystallized. An amino-terminal domain of the protein comprising two thirds of the sequence had been crystallized previously after proteolytic digestion. Now intact VSG crystals have been grown from 50 mM-Mes (pH 6.5) containing 62% (w/v) saturated ammonium sulfate. The crystals are demonstrated to contain the intact VSG by h.p.l.c. gel filtration and reaction with an antibody to the inositol phosphate oligosaccharide on the VSG carboxy terminus. The space group of the crystals is P6(2)22 (or P6(4)22) with unit cell dimensions a = b = 184 A and c = 214 A. Preparative isoelectric focusing may have facilitated crystallization.  相似文献   

16.
We have succeeded in crystallizing complexes of a mutant ribonuclease T1 (Y45W) with the non-cognizable ribonucleotides 2'AMP and 2'UMP by macroscopic seeding of microcrystals of the mutant enzyme complexed with 2'GMP, which is the cognizable nucleotide inhibitor. The mutant enzyme has a tryptophan residue instead of Tyr45 of the wild-type enzyme and thus this mutation enhances the binding of ribonucleotides to the enzyme. The space group is P212121 with unit cell dimensions a = 49.40 A, b = 46.71 A, c = 41.02 A for the complex with 2'AMP and a = 48.97, b = 46.58 A, c = 40.97 A for the complex with 2'UMP, both of which are poorly isomorphous to the mother crystals. Diffraction data for the complexes with 2'AMP and 2'UMP were collected on a diffractometer at 1.7 A and 2.4 A resolution, respectively. The present studies show that crystallization of non-specific complexes of other protein-ligand systems with the dissociation constants around 10(-3) M, or even larger, could be feasible by application of the seeding technique. A comparison of the crystal structures of the complexes with that with 2'GMP may serve as a structural basis for the determination of differences between the specific and non-specific interactions of the enzyme.  相似文献   

17.
A thermostable mutant of kanamycin nucleotidyltransferase isolated by cloning and selection for kanamycin resistance in Bacillus stearothermophilus at 70 degrees C has been crystallized in a form suitable for high-resolution diffraction analysis. This enzyme catalyzes nucleotidyl group transfer from nucleoside triphosphates such as ATP to hydroxyl groups of various aminoglycosides, thus inactivating the antibiotic. The kanamycin nucleotidyltransferase gene, originally encoded on plasmid pUB110 from the mesophile Staphylococcus aureus, was transferred to the thermophile B. stearothermophilus via shuttle plasmids and the mutant carrying the substitutions D80Y and T130K was isolated from kanamycin-resistant colonies grown at 70 degrees C. The thermostable enzyme was crystallized in two forms from solutions of polyethylene glycol 8000 (PEG8000) using batch and vapor diffusion methods. Type I crystals grown from 19% (w/v) PEG8000 and 200 mM NaCl belong to the orthorhombic space group C222(1), have unit cell dimensions of a = 128.4, b = 156.8, c = 155.8 A, and diffract to at least 2.4-A resolution. The type II form of the crystals were grown from 10% PEG8000, 200 mM KCl, and 3 mM CoCl2, and belong to the tetragonal space group P4(1)2(1)2 or P4(3)2(1)2 with unit cell dimensions of a = b = 78.9, and c = 220.4 A; these crystals diffract to at least 2.5-A resolution.  相似文献   

18.
Crystals of the recombinant 28 kDa glutathione S-transferase from Schistosoma mansoni have been obtained by the hanging-drop method of vapor diffusion from ammonium sulfate solutions. The successful crystallization of this enzyme required the presence of a reducing agent and S-hexylglutathione. The crystals belong to the cubic space group P4(1)32 (or P4(3)32), with unit cell dimensions a = 122.6 A and contain one molecule in the asymmetric unit. The crystals diffract to at least 2.8 A resolution and are suitable for X-ray crystallographic structure analysis.  相似文献   

19.
The malic enzyme from muscle mitochondria of the parasitic nematode Ascaris suum is a tetramer of 65 kDa monomers that catalyzes the oxidative decarboxylation of malate to pyruvate and CO2 with NAD cofactor as oxidant. This malic enzyme is critical to the nematode for muscle function under anaerobic conditions. Unlike mammalian versions of the enzyme such as that found in rat liver, which require NADP as cofactor, the nematode version is an NAD-dependent enzyme. We report the crystallization of samples of the nematode enzyme at room temperature from pH 7.5 solutions of polyethylene glycol 4000 containing magnesium sulfate, NAD and sodium tartronate. Immediately upon mixing of protein and precipitant solutions, a marked precipitation of the protein occurs. Out of this precipitate, crystals appear almost immediately, most commonly in a truncated cube form that can grow to 0.5 to 0.7 mm on a cube edge in two to three days. The crystals are trigonal, space group P3(1)21 or its enantiomer, with a = b = 131.2(7) A, c = 152.6(9) A, and two monomers per asymmetric unit. Fresh crystals diffract X-radiation from a synchrotron source (lambda = 0.95 A) to about 3.0 A resolution. Rotational analysis of Patterson functions indicates that the malic enzyme tetramer has 222 symmetry.  相似文献   

20.
A new crystal form of native thermitase has been obtained using sodium formate as the precipitating agent and employing an automated crystallization procedure. The crystals have the form of tetragonal bipyramids, the longest dimension being about 0.4 mm. The space group is P4(1)2(1)2 or P4(3)2(1)2, with a = 182 A and b = c = 53.3 A. The crystals diffract beyond 2.5 A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号