首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 161 毫秒
1.
M. P. Austin 《Ecography》1999,22(5):465-484
The contribution of vegetation ecology to the study of biodiversity depends on better communication between the different research paradigms in ecology. Recent developments in vegetation theory and associated statistical modelling techniques are reviewed for their relevance to biodiversity. Species composition and collective properties such as species richness vary as a continuum in a multi-dimensional environmental space; a concept which needs to be incorporated into biodiversity studies. Different kinds of environmental gradients can be recognised and species responses to them vary. Species response curves of eucalypts to an environmental gradient of mean annual temperature have been shown to exhibit a particular pattern of skewed response curves. Generalised linear modelling (GLM) and generalised additive modelling (GAM) techniques are important tools for biodiversity studies. They have successfully distinguished the contribution of environmental (climatic) and spatial (history and species dispersal ability) variables in determining forest tree composition in New Zealand. Species richness studies are examined at global, regional and local scales. At all scales, direct and resource environmental gradients need to be incorporated into the analysis rather than indirect gradients e.g. latitude which have no direct physiological influence on biota. Evidence indicates that species richness at the regional scale is sensitive to environment, confounding current studies on local/regional species richness relationships. Plant community experiments require designs based on environmental gradients rather than dependent biological properties such as productivity or species richness to avoid confounding the biotic components. Neglect of climatic and other environmental gradients and the concentration on the collective properties of species assemblages has limited recent biodiversity studies. Conservation evaluation could benefit from greater use of the continuum concepts and statistical modelling techniques of vegetation ecology. The future development of ecology will depend on testing the different assumptions of competing research paradigms and a more inclusive synthesis of ecological theory.  相似文献   

2.
陆地植物群落物种多样性的梯度变化特征   总被引:167,自引:14,他引:167  
研究陆地植物落物种多样性随环境因子及群落演替梯度的变化特征是揭示生物多样性与生态因子相互关系的重要方面,根据近期国内外的文献,综述了这方面的研究进展。随纬度的降低,通常物咱多样性随中,随不分梯度的变化,物种多样性的变化有6种趋势;随海拔高的变化,物处多样性有5种模式;随土壤养分梯度的变化,表现出不同的规律;演替过程中物种多样生的变化趋势相似。关于植物群落物种多样性梯度格局的机制有多种假说,但仍需进  相似文献   

3.
植物间的相互作用对种群动态和群落结构有着重要的影响。大量的野外实验已经揭示了正相互作用(互利)在群落中的普遍存在及其重要性。为了弥补野外实验方法的不足, 模型方法被越来越多地应用于正相互作用及其生态学效应的研究中。该文基于个体模型研究, 探讨了植物间正相互作用对种群动态和群落结构的影响。介绍了植物间正相互作用的定义和发生机制、植物间相互作用与环境梯度的关系。正相互作用是指发生在相邻的植物个体之间, 至少对其中一个个体有益的相互作用。植物通过直接(生境改善或资源富集)或间接(协同防御等)作用使局部环境有利于邻体而发生正相互作用。胁迫梯度假说认为互利的强度或重要性随着环境胁迫度的增加而增加, 但是越来越多的经验研究认为胁迫梯度假说需要改进。以网格模型和影响域模型为例, 介绍了基于个体的植物间相互作用模型方法。基于个体模型, 对近年来国内外正相互作用对种群时间动态(如生物量-密度关系)、空间分布格局和群落结构(如群落生物量-物种丰富度关系)影响的研究进行了总结。指出未来的研究应集中在对正相互作用概念和机制的理解, 新的模型, 新的种群、群落, 甚至生态系统问题, 以及在全球变化背景下进行相关的研究。  相似文献   

4.
A new model for the continuum concept   总被引:10,自引:0,他引:10  
A reformulation of the continuum concept is presented after considering the implications of the community/continuum controversy and current niche theory. Community is a spatial concept dependent on landscape pattern while the continuum is an environmental concept referring to an abstract space. When applying niche theory to plants, the mechanisms of competition are ill-defined and the assumption of bell-shaped response curves for species unrealistic.Eight testable propositions on the pattern of response of vegetation to environmental gradients are presented 1. Environmental gradients are of two types. a) resource gradients or b) direct physiological gradients. 2. The fundamental niche response of species to resource gradients is a series of similar nested response curves. 3. The fundamental niche response of species to direct gradients is a series of separate, independent, overlapping response curves. 4. Species fundamental response curves are such that they have a relative performance advantage in some part of the environmental space. 5. The shape of the realized niche is variable even bimodal but predictable from the fundamental response given the other species present. Propositions 6–8 describe the response shapes of emergent community properties to environmental gradient; species richness is bimodal, dominance trimodal and standing crop unimodal. Detailed comparisons of these propositions are made with the alternative theories of Ellenberg, Gauch and Whittaker, Grime, and Tilman. These theories are incomplete lacking several generally accepted properties of plants and vegetation.  相似文献   

5.
Abstract. We review patterns of plant species richness with respect to variables related to resource availability and variables that have direct physiological impact on plant growth or resource availability. This review suggests that there are a variety of patterns of species richness along environmental gradients reported in the literature. However, part of this diversity may be explained by the different types and lengths of gradients studied, and by the limited analysis applied to the data. To advance in understanding species richness patterns along environmental gradients, we emphasise the importance of: (1) using variables that are related to the growth of plants (latitudinal and altitudinal gradients have no direct process impact on plant growth); (2) using multivariate gradients, not single variables; (3) comparing patterns for different life forms; and (4) testing for different shapes in the species richness response (not only linear) and for interaction between variables.  相似文献   

6.
Abstract. Comparisons of the positions of species on Grimes'C-S-R triangular ordination model with their responses to individual environmental gradients indicates that the C-S-R model does not necessarily predict species ecological behaviour. The importance of the stress, productivity and disturbance gradients relative to other environmental gradients needs to be determined. In studies of species behaviour along a biomass/productivity gradient the collective vegetation property, biomass, has been confused with the environmental factor, fertility. Patterns of responses to biomass gradients e.g. Keddy's centrifugal model, should be examined in a two-dimensional environmental space to avoid such confounding effects. Assumptions regarding the shapes of species responses to environmental gradients remain untested. A recent model of species response functions to environmental gradients suggested that skewed responses curves show a pattern in the direction of the skew, always with the tail towards the presumed most mesic position on the gradient. Further evidence is presented to support this model for a temperature gradient in eucalypt forest in south-eastern Australia. 21 out of 24 species tested conform to the model.  相似文献   

7.
Abstract The vegetation patterns in the Central Coast region of New South Wales have been extensively studied with respect to single environmental variables, particularly soil nutrients. However, few data are available on the effects of multiple environmental variables. This study examines the relationships between vegetation and multiple environmental variables in natural vegetation on two underlying rock types, Hawkesbury Sandstone and Narrabeen Group shales and sandstones, in Ku-ring-gai Chase National Park, Sydney. Floristic composition and 17 environmental factors were characterized using duplicate 500 m2 quadrats from 50 sites representing a wide range of vegetation types. The patterns in vegetation and environmental factors were examined through multivariate analyses: indicator species analysis was used to provide an objective classification of plant community types, and the relationships between vegetation and environmental factors within the two soil types were examined through indirect and direct gradient analyses. Eleven plant communities were identified, which showed strong agreement with previous studies. The measured environmental factors showed strong correlations with vegetation patterns: within both soil types, the measured environmental variables explained approximately 32–35% of the variation in vegetation. No single measured environmental variable adequately described the observed gradients in vegetation; rather, vegetation gradients showed strong correlations with complex environmental gradients. These complex environmental gradients included nutrient, moisture, and soil physical and site variables. These results suggest that a simple ‘nutrient’ hypothesis regarding vegetation patterns in the Central Coast region is inadequate to explain variation in vegetation within soil types.  相似文献   

8.
A central focus of ecology is identifying the factors that shape spatial patterns of species diversity and this is particularly relevant in an era of global change. Positive relationships between plant and consumer diversity are common, but could be driven by direct responses of each trophic level to underlying environmental gradients, or indirectly where changes in environmental conditions propagate through food webs. Here we use structural equation modeling to examine the relative importance of soil resource availability and disturbance (fire) in mediating relationships between plant and grasshopper richness in insular grasslands. We found a positive relationship between plant and consumer richness that became stronger after accounting for disturbance, despite unique responses of plants and consumers to the two environmental gradients. Plant richness responded to an underlying gradient in soil resource availability. Time since the last fire had a direct positive effect on grasshopper richness but had no effect on plant richness. This work supports that plant and consumer richness are functionally linked, rather than having similar responses to environmental gradients. By disentangling the direct and indirect processes underlying a positive relationship between plant and consumer diversity in a natural system that spans multiple environmental gradients, we demonstrate the importance of investigating biodiversity through explicit multivariate models.  相似文献   

9.
Abstract. Moisture and nutrient gradients consistently explain much of the variation in plant species composition and abundance, but these gradients are not spatially explicit and only reveal species responses to resource levels. This study links these abstract gradients to quantitative, spatial models of hill‐slope assembly. A gradient analysis in the mixed‐wood boreal forest demonstrates that patterns of upland vegetation distribution are correlated to soil moisture and nutrient gradients. Variation in species abundance with time since the last fire is removed from the gradient analysis in order to avoid confounding the physical environment gradients. The physical‐environment gradients are related to qualitative positions on the hill slope i.e. crest, mid‐slope, bottom‐slope. However, hill‐slope shape can be quantitatively described and compared by fitting allometric equations to the slope profiles. Using these equations, we show that hill‐slope profiles on similar surficial materials have similar parameters, despite coming from widely separated locations. We then quantitatively link the moisture and nutrient gradients to the equations. Moisture and nutrients significantly increase as distance down‐slope from the ridgeline increases. Corresponding vegetation composition changes too. These relationships characterize the general pattern of vegetation change down most hill slopes in the area. Since hill slopes are a universal feature of all landscapes, these principles may characterize landscape scale spatial patterns of vegetation in many environments.  相似文献   

10.
高寒草甸不同海拔梯度下多年生黄帚橐吾的克隆生长特征   总被引:8,自引:2,他引:6  
通过对多年生植物黄帚橐吾(Ligularia virgaurea)在四个不同海拔梯度下的克隆生长行为进行研究,结果表明:(1)资源水平(土壤养分)、干扰和群落性质影响间隔物(spacer)长度的变化。在第一和第四海拔梯度中(土壤养分较丰富)间隔物长度较短,而在第二和第三海拔梯度中(土壤养分较贫乏)间隔物长度较长,说明其能对资源水平和生境优劣作出反应。(2)分枝强度(branching intensity)随资源水平的增加而上升。(3)在高海拔、寒冷和资源较丰富的生境中,其生物量的投资偏向于地下部分生物量,说明黄帚橐吾的资源分配方式受到环境资源条件和群落性质的影响。  相似文献   

11.
Dense ungulate populations in forest accompanied by high grazing intensities have the potential to affect plant population dynamics, and such herbivory effects on populations are hypothesised to differ along environmental gradients. We investigated red deer grazing and resource interaction effects on the performance and dynamics of the functionally important boreal shrub Vaccinium myrtillus using integral projection models (IPMs). We sampled data from 900 V. myrtillus ramets in 30 plots in two consecutive years across the boreo-nemoral pine forest on the island Svanøy, western Norway. The plots spanned two environmental gradients: a red deer grazing intensity gradient (assessed by Cervus elaphus faecal pellets), and a relative resource gradient (DCA-ordination of species composition). The use of IPMs enabled projections of population growth rate (λ) using continuous plant size instead of forcing stage division upon the demographic data. We used the environmental gradients as continuous variables to explain the dynamics of V. myrtillus populations and found that both increasing grazing intensity and resource levels negatively affected λ of the V. myrtillus populations. Interestingly, these factors interacted: the negative effects of grazing were strongest in the resource-rich vegetation, and higher resource levels reduced λ more strongly than at low resource levels when grazing intensities became higher. Populations with λ > 1 were projected if the grazing intensity was less than or equal to the mean grazing intensity on the island, and indicated that V. myrtillus is relatively tolerant of grazing. Variance decomposing showed that the decrease of λ along the grazing gradient, both at low and high resource levels, was largely caused by reductions in plant growth. The use of IPMs together with important environmental gradients offered novel possibilities to study the synthesised effect of different factors on plant population dynamics. Here, we show that the population response of an abundant boreal shrub to ungulate grazing depends on resource level.  相似文献   

12.
The conceptual framework of direct gradient analysis (DGA) is discussed in relation to the functional, factorial approach to vegetation. Both approaches use abstract simplified environment gradients with which to correlate vegetation response. Environmental scalars based on physical process models of environment and/or known biological growth processes can be incorporated to make analyses less location specific. An example of an environmental scalar (radiation index) for converting aspect and slope measurements to the more biologically relevant radiation input at a site is given. The problem of the shape of species response curves to environmental gradients is examined using a sample of 1 286 plots from eucalypt forest in southern New South Wales. An important conclusion is that skewed or bimodal response curves may be due to unsatisfactory distribution of observations and/or unrecognized environmental factors. The use of Generalized Linear Modelling (GLM) as a method for providing a statistical basis for DGA is presented. Analyses using GLM, and presence/absence data are presented for a range of eucalypt species (Eucalyptus rossii, E. dalrympleana, E. fastigata etc.). Successful prediction of species distributions (realized niches) can be achieved with mean annual temperature, mean annual rainfall, radiation index and geology. Quadratic terms are required in many cases, indicating bell-shaped response curves. The major variability associated with species niches is shown to be related to a limited number (4) of environmental factors. DGA with biologically relevant scalars and appropriate statistical methods is suitable for studying many problems of species' realized niches and plant community composition.  相似文献   

13.
Aims Environmental gradients are drivers of species diversity; however, we know relatively little about the evolutionary processes underlying these relationships. A potentially powerful approach to studying diversity gradients is to quantify the phylogenetic structure within and between assemblages arrayed along broad spatial and environmental gradients. Here, we evaluate the phylogenetic structure of plant assemblages along an environmental gradient with the expectation that the habitat specialization of entire lineages is an important evolutionary pattern influencing the structure of tree communities along environmental gradients.Methods We evaluated the effect of several environmental variables on the phylogenetic structure of plant assemblages in 145 plots distributed in northwestern South America that cover a broad environmental gradient. The phylogenetic alpha diversity was quantified for each plot and the phylogenetic beta diversity between each pair of plots was also quantified. Both the alpha and beta diversity measures were then related to spatial and environmental gradients in the study system.Important findings We found that gradients in temperature and potential evapotranspiration have a strong relationship with the phylogenetic alpha diversity in our study system, with phylogenetic overdispersion in low temperatures and phylogenetic clustering at higher temperatures. Further, the phylogenetic beta diversity between two plots increases with an increasing difference in temperature, whereas annual precipitation was not a significant predictor of community phylogenetic turnover. We also found that the phylogenetic structure of the plots in our study system was related to the degree of seasonal flooding and seasonality in precipitation. In particular, more stressful environments such as dry forests and flooded forests showed phylogenetic clustering. Finally, in contrast with previous studies, we find that phylogenetic beta diversity was not strongly related to the spatial distance separating two forest plots, which may be the result of the importance of the three independent mountain ranges in our study system, which generate a high degree of environmental variation over very short distances. In conclusion, we found that environmental gradients are important drivers of both phylogenetic alpha and phylogenetic beta diversities in these forests over spatial distance.  相似文献   

14.
Aim To assess the scale of variation for major environmental gradients in Norway. To obtain a step‐less model for this variation and to use this model to evaluate the extent to which the consensus expert classification of Norway into vegetation regions can be predicted from environmental variables. To discuss the potential of step‐less models for understanding natural variation at regional scales, for stratification and for predictive modelling of species distributions and land‐cover types. Location The mainland of Norway. Methods Fifty‐four climatic, topographical, hydrological and geological variables were recorded for grid cells with spatial resolution (grain size) of 1 × 1, 5 × 5 and 10 × 10 km, spanning the entire mainland of Norway. Principal components analyses (PCA) were used to summarize variation in three primary data matrices and three random subsets of these. Results The first four principal components explained between 75% and 85% of the variation in the data sets. All PCAs revealed four consistent environmental gradients, in order of decreasing importance: (1) regional variation (gradient) from coast to inland and from oceanic/humid to continental areas; (2) regional variation from north to south and from high to low altitudes; (3) regional variation from north to south and from inland to coast, related to solar radiation; and (4) topographic (terrain relief) variation on finer scales than (1–3). The first two PCA axes corresponded to the two bioclimatic gradients used in expert classifications of Norway into biogeographical regions: vegetation sections (from highly oceanic to slightly continental) and vegetation zones (from nemoral to alpine). Main conclusions Our PCA analyses substantiate the current view of bioclimatic regional vegetation variation in Norway, provide an explicit characterization of this variation in terms of climatic variables, and show that environmental variability can be reproduced as GIS layers in step‐less models. These models have the potential to become important tools for future predictive modelling within resource management, conservation planning and biogeographical (and other ecological) research.  相似文献   

15.
连续温度梯度下昆虫趋温性的研究现状与展望   总被引:7,自引:2,他引:5  
马春森  马罡  杜尧  杨和平 《生态学报》2005,25(12):3390-3397
昆虫作为一种能够自由活动的生物,可以通过运动主动选择对其有利的环境温度。大多数研究中昆虫被迫接受人为设定的恒温或变温,并未体现出昆虫本身对适宜温度的主动选择性。连续温度梯度是在某一介质的两端产生由高到低连续变化的温度范围。在一定温度梯度中昆虫趋温行为的研究揭示了其主动选择的适宜温度,这对了解昆虫的空间动态、提高测报准确性和开发防治新方法有重要意义。总结了产生连续温度梯度的各种装置,致冷、加热和温度测量方法以及昆虫趋温行为的观察装置和方法,包括在植物体上(内)及空气、下垫面、粮食和土壤等介质中产生温度梯度的方法及装置。各装置以水浴或电器设备制冷或加热,肉眼观察手工记录或以摄像机、声音信号采集系统等方法记录昆虫的行为。综述了多种昆虫生长发育、栖息、产卵或取食的偏好温度,总结了性别、发育阶段和生态型等生理因素及光照、湿度和预适应温度等环境因子对昆虫偏好温度变化的影响。昆虫的趋温性因种而异,同种昆虫不同发育阶段或不同生命活动所趋温度不同。多数种类昆虫雄性成虫的偏好温度比雌性略高。某些昆虫的多型现象可能导致其种内不同生态型的偏好温度存在差异。光照和湿度的变化会影响某些昆虫对温度的反应。有些昆虫经预适应温度训练后,其偏好温度发生改变。某些昆虫对温度的偏好呈现出一定的日变化和季节变化规律。饥饿条件下昆虫的偏好温度降低。温度梯度的有无及其方向、温度的高低、温差的大小等因素都会影响昆虫的活动性。最后分析了本类研究中存在的问题和不足,并展望了未来的研究方向,指出开展对重要农林作物害虫和天敌趋温行为及其生理学机制,外界环境因素影响昆虫趋温性等方面的探索将是未来该领域研究的重点内容。  相似文献   

16.
A theory of the spatial and temporal dynamics of plant communities   总被引:14,自引:0,他引:14  
An individual-based model of plant competition for light that uses a definition of plant functional types based on adaptations for the simultaneous use of water and light can reproduce the fundamental spatial and temporal patterns of plant communities. This model shows that succession and zonation result from the same basic processes. Succession is interpreted as a temporal shift in species dominance, primarily in response to autogenic changes in light availability. Zonation is interpreted as a spatial shift in species dominance, primarily in response to the effect of allogenic changes in water availability on the dynamics of competition for light. Patterns of succession at different points along a moisture gradient can be used to examine changes in the ecological roles of various functional types, as well as to address questions of shifts in patterns of resource use through time.Our model is based on the cost-benefit concept that plant adaptations for the simultaneous use of two or more resources are limited by physiological and life history constraints. Three general sets of adaptive constraints produce inverse correlations in the ability of plants to efficiently use (1) light at both high and low availability, (2) water at both high and low availability, and (3) both water and light at low availabilities.The results of this type of individual-based model can be aggregated to examine phenomena at several levels of system organization (i.e., subdisciplines of ecology), including (1) plant growth responses over a range of environmental conditions, (2) population dynamics and size structure, (3) experimental and field observations on the distribution of species across environmental gradients, (4) studies of successional pattern, (5) plant physiognomy and community structure across environmental gradients, and (6) nutrient cycling.  相似文献   

17.
There has been growing recent use of elevational gradients as tools for assessing effects of temperature changes on vegetation properties, because these gradients enable temperature effects to be considered over larger spatial and temporal scales than is possible through conventional experiments. While many studies have explored the direct effects of temperature, the indirect effects of temperature through its long‐term influence on soil abiotic or biotic properties remain essentially unexplored. We performed two climate chamber experiments using soils from a subarctic elevational gradient in Abisko, Sweden to investigate the direct effects of temperature, and indirect effects of temperature via soil legacies, on growth of two grass species. The soils were collected from each of two vegetation types (heath, dominated by dwarf shrubs, and meadow, dominated by graminoids and herbs) at each of three elevations. We found that plants responded to both the direct effect of temperature and its indirect effect via soil legacies, and that direct and indirect effects were largely decoupled. Vegetation type was a major determinant of plant responses to both the direct and indirect effects of temperature; responses to soils from increasing elevation were stronger and showed a more linear decline for meadow than for heath soils. The influence of soil biota on plant growth was independent of elevation, with a positive influence across all elevations regardless of soil origin for meadow soils but not for heath soils. Taken together, this means that responses of plant growth to soil legacy effects of temperature across the elevational gradient were driven primarily by soil abiotic, and not biotic, factors. These findings emphasize that vegetation type is a strong determinant of how temperature variation across elevational gradients impacts on plant growth, and highlight the need for considering both direct and indirect effects of temperature on plant responses to future climate change.  相似文献   

18.
Water is crucial for plant productivity and survival as a fundamental resource, but water conditions can also cause physiological stress and mechanical disturbance to vegetation. However, these different influences of water on vegetation patterns have not been evaluated simultaneously. Here, we demonstrate the importance of three water aspects (spatial and temporal variation of soil moisture and fluvial disturbance) for three ecologically and evolutionary distinct taxonomical groups (vascular plants, mosses and lichens) in Fennoscandian mountain tundra. Fine‐scale plant occurrence data for 271 species were collected from 378 × 1 m2 plots sampled over broad environmental gradients (water, temperature, radiation, soil pH, cryogenic processes and the dominant allelopathic plant species). While controlling all other key environmental variables, water in its different aspects proved to be a crucial environmental driver, acting on individual species and on community characteristics. The inclusion of the water variables significantly improved our models. In this high‐latitude system, the importance of spatial variability of water exceeds the importance of temperature for the fine‐scale distribution of species from the three taxonomical groups. We found differing responses to the three water variables between and within the taxonomical groups. Water as a resource was the most important water‐related variable in species distribution models across all taxonomical groups. Both water resource and disturbance were strongly related to vascular plant species richness, whereas for moss species richness, water resources had the highest influence. For lichen species richness, water disturbance was the most influential water‐related variable. These findings demonstrate that water variables are not only independent properties of tundra hydrology, but also that water is truly a multifaceted driver of vegetation patterns at high‐latitudes.  相似文献   

19.
Aim We tested the hypothesis that distributions of Mexican bats are defined by shared responses to environmental gradients for the entire Mexican bat metacommunity and for each of four metaensembles (frugivores, nectarivores, gleaning insectivores, and aerial insectivores). Further, we identified the main environmental factors to which bats respond for multiple spatial extents. Location Mexico. Methods Using bat presence–absence data, as well as vegetation composition for each of 31 sites, we analysed metacommunity structure via a comprehensive, hierarchical approach that uses reciprocal averaging (RA) to detect latent environmental gradients corresponding to each metacommunity structure (e.g. Clementsian, Gleasonian, nested, random). Canonical correspondence analysis (CCA) was used to relate such gradients to variation in vegetation composition. Results For all bat species and for each ensemble, the primary gradient of ordination from RA, which is based on species data only, recovered an axis of humidity that matched that obtained for the first axis of the CCA ordination, which is based both on vegetation attributes and on species composition of sites. For the complete assemblage as well as for aerial and gleaning insectivores, analyses revealed Clementsian or quasi‐Clementsian structures with discrete compartments (distinctive groups of species along portions of an environmental gradient) coincident with the humidity gradient and with the Nearctic–Neotropical divide. Within‐compartment analysis further revealed Clementsian or quasi‐Clementsian structures corresponding to a gradient of elevational complexity that matched the second ordination axis in CCA. Frugivores had quasi‐nested structure, whereas nectarivores had Gleasonian structure. Main conclusions Our hierarchical approach to metacommunity analysis detected complex metacommunity structures associated with multiple environmental gradients at different spatial extents. More importantly, the resulting structures and their extent along environmental gradients are determined by ensemble‐specific characteristics and not by arbitrarily circumscribed study areas. This property renders compartment‐level analyses particularly useful for large‐scale ecological analyses in areas where more than one gradient may exist and species sorting may occur at multiple scales.  相似文献   

20.
Aims In this study, we examined the extent to which between-species leaf size variation relates to variation in the intensity of leaf production in herbaceous angiosperms. Leaf size variation has been most commonly interpreted in terms of biomechanical constraints (e.g. affected by plant size limitations) or in terms of direct adaptation associated with leaf size effects in optimizing important physiological functions of individual leaves along environmental gradients (e.g. involving temperature and moisture). An additional interpretation is explored here, where adaptation may be more directly associated with the number of leaves produced and where relatively small leaf size then results as a trade-off of high 'leafing intensity'—i.e. number of leaves produced per unit plant body size.Methods The relationships between mean individual leaf mass, number of leaves and plant body size were examined for 127 species of herbaceous angiosperms collected from natural populations in southern Ontario, Canada.Important findings In all, 88% of the variation in mean individual leaf mass across species, spanning four orders of magnitude, is accounted for by a negative isometric (proportional) trade-off relationship with leafing intensity. These results parallel those reported in recent studies of woody species. Because each leaf is normally associated with an axillary bud or meristem, having a high leafing intensity is equivalent to having a greater number of meristems per unit body size—i.e. a larger 'bud bank'. According to the 'leafing intensity premium' hypothesis, because an axillary meristem represents the potential to produce either a new shoot or a reproductive structure, high leafing intensity should confer greater architectural and/or reproductive plasticity (with relatively small leaf size required as a trade-off). This greater plasticity, we suggest, should be especially important for smaller species since they are likely to suffer greater suppression of growth and reproduction from competition within multi-species vegetation. Accordingly, we tested and found support for the prediction that smaller species have not just smaller leaves generally but also higher leafing intensities, thus conferring larger bud banks, i.e. more meristems per unit plant body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号