首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acinar salivary glands of the cockroach, Periplaneta americana, are innervated by dopaminergic and serotonergic nerve fibers. Serotonin stimulates the secretion of protein-rich saliva, whereas dopamine causes the production of protein-free saliva. This suggests that dopamine acts selectively on ion-transporting peripheral cells within the acini and the duct cells, and that serotonin acts on the protein-producing central cells of the acini. We have investigated the pharmacology of the dopamine-induced secretory activity of the salivary gland of Periplaneta americana by testing several dopamine receptor agonists and antagonists. The effects of dopamine can be mimicked by the non-selective dopamine receptor agonist 6,7-ADTN and, less effectively, by the vertebrate D1 receptor-selective agonist chloro-APB. The vertebrate D1 receptor-selective agonist SKF 38393 and vertebrate D2 receptor-selective agonist R(-)-TNPA were ineffective. R(+)-Lisuride induces a secretory response with a slower onset and a lower maximal response compared with dopamine-induced secretion. However, lisuride-stimulated glands continue secreting saliva, even after lisuride-washout. Dopamine-induced secretions can be blocked by the vertebrate dopamine receptor antagonists cis(Z)-flupenthixol, chlorpromazine, and S(+)-butaclamol. Our pharmacological data do not unequivocally indicate whether the dopamine receptors on the Periplaneta salivary glands belong to the D1 or D2 subfamily of dopamine receptors, but we can confirm that the pharmacology of invertebrate dopamine receptors is remarkably different from that of their vertebrate counterparts.  相似文献   

2.
1. Certain putative transmitters were applied to the innervated cockroach salivary gland and their effects on the resting potential and the neurally evoked secretory potential of the acinar cells were observed. 2. gamma-Aminobutyric acid, glutamate, glycine, aspartate and alanine had no significant effect on the resting potential. However, gamma-aminobutyric acid and glutamate reduced the neurally evoked secretory potential but only at concentrations above 10(-3) M3. Acetylcholine and carbachol appeared to act by modifying transmitter output from the salivary nerves. These substances failed to have any effect on the resting potential. 4. The biogenic amines, adrenaline, dopamine, noradrenaline, 5-hydroxy-tryptamine and octopamine, produced hyperpolarizing responses, graded according to concentration. 5. It is suggested that dopamine, the most potent of the biogenic amines tested, is the transmitter at this junction.  相似文献   

3.
A study has been made on the effect of dopamine on salivary gland secretion rates from isolated locust salivary glands. Application of dopamine induced a concentration-dependent secretion with an IC(50) of approximately 0.3 microM. We investigated the pharmacological profile of this receptor using dopaminergic agonists and antagonists. The effects of dopamine could be mimicked by the selective D1 agonist SKF82958, but not by the D2 agonist TNPA-HCl. The receptor also showed selectively towards certain D1 agonists. SKF82958 was more potent at inducing secretion than SKF81297. We found that dopamine-induced salivary secretions were blocked by the selective D1 antagonist SCH23390, whereas the D2 antagonist sulpiride was relatively ineffective. The cAMP analogue 8-Bromo cAMP also increased secretion rates from isolated salivary glands. These data and the rank order of potency of the agonists and antagonists in this screen suggest that this receptor is a D1-type receptor.  相似文献   

4.
Bulk production and release of glue containing secretory granules takes place in the larval salivary gland during Drosophila development in order to attach the metamorphosing animal to a dry surface. These granules undergo a maturation process to prepare glue for exocytosis, which includes homotypic fusions to increase the size of granules, vesicle acidification and ion uptake. The steroid hormone 20-hydroxyecdysone is known to be required for the first and last steps of this process: glue synthesis and secretion, respectively. Here we show that the B1 isoform of Ecdysone receptor (EcR), together with its binding partner Ultraspiracle, are also necessary for the maturation of glue granules by promoting their acidification via regulation of Vha55 expression, which encodes an essential subunit of the V-ATPase proton pump. This is antagonized by the EcR-A isoform, overexpression of which decreases EcR-B1 and Vha55 expression and glue granule acidification. Our data shed light on a previously unknown, ecdysone receptor isoform-specific regulation of glue granule maturation.  相似文献   

5.
The gene for a major salivary gland secretion protein (Sgs-1) in Drosophila melanogaster has been mapped to chromosome 2 between dp (13.0) and cl (16.5). In the late third instar larva, a puff forms in this region. This puff (25 B) regresses as the ecdysteroid concentration increases prior to puparium formation. Quantitative analysis of the secretory protein 1, showed that, when present in extra dose, region 25 B results in a significant elevation in its relative amount. This suggests that the structural gene for this protein is localized in this region and that its synthesis is directly correlated to the activity of the 25 B puff.  相似文献   

6.
Summary The salivary gland of the cockroach was studied with the electron microscope. Structural modifications of the cells comprising the duct system as well as the fine structure of the cells comprising the secretory tissue have been characterized. An attempt is made to correlate certain of the structural features with functional significance.This investigation was supported by grants (RG-9230, 4706, 5479) from the National Institutes of Health and a grant (G-9879) from the National Science Foundation.  相似文献   

7.
Synopsis A series of studies was performed to assess the optimum fixation conditions for staining of carbohydrate-containing constituents of rat salivary gland secretory granules. In the parotid and submandibular salivary glands of the rat, the reactivity of secretory granules, at both the light and electron microscopic level, with routine stains and with cytochemical reagents was highly dependent upon the nature of the fixative employed. At the light microscopic level, secretory granules in rat parotid gland were periodic acid-Schiff (PAS) positive if fixed with buffered formalin fixatives. However, if the gland was fixed with lipid-solvent-containing fixatives, or with formalin at a very acid pH (as in Bouin's fixative), the PAS reactivity of the granules was lost. In the submandibular gland of rats, the acinar cells and granular tubules behaved similarly after such fixation in terms of their PAS reactivity, particularly in males; acinar cells of the female submandibular gland stained only lightly with PAS. At the fine structural level, the morphology of secretory granule constituents depended on the buffer used (cacodylate, phosphate or collidine) and on whether or not tissue was post-osmicated. Post-osmication considerably reduced the reaction of secretory granule components with stains for carbohydrates.The experimental evidence indicated that the carbohydrate-containing components of both parotid and submandibular gland secretory granules were not typical long-chain neutral or acidic mucins, but were rather glycolipids or lipophilic glycoproteins that were solubilized by lipid solvents or at acidic pH and were lost or destroyed in the presence of strong oxidants.  相似文献   

8.
The salivary gland of Periplaneta americana (L.) is innervated from both the stomatogastric nervous system (SNS) and subesophageal ganglion (SEG). Methylene-blue preparations, histological sections and electron microscopy revealed a pair of nerves from the SEG, each of which contains two axons 5–7 μ in diameter, and these are accompanied by several smaller ones. The nerves going to the salivary glands from the SNS contain a dozen or more axons, each less than 2 μ thick. Axons from two sources innervate the efferent salivary ducts, the acini, the anterior ends of the salivary reservoirs, and the reservoir suspensory muscles. A nerve which has reached an acinus forms a plexus upon its surface. Electron micrographs disclose penetration of axons with or without glial wrappings, into the intercellular spaces between gland cells. Axons without glial wrappings have been observed in intimate contact with gland-cell membranes, and several areas which resemble synaptic junctions have been seen.  相似文献   

9.
10.
Application of 5-hydroxytryptamine to the gland in vitro in concentrations as low as 10?12 M effected continuous secretion of fluid. This suggests that 5-HT or a related compound may be the neurotransmitter substance. In vivo injections of p-chorophenylalanine did not affect secretion. Applications of pilocarpine and acetylcholine had only a transitory effect upon secretions. Nerve-section studies implicate the salivary duct nerves coming from the suboesophageal ganglion as motor nerves controlling secretion. The oesophageal salivary nerves from the brain were not severed due to excessive trauma. Simultaneous electrical recordings of the salivary nerves show no common activity. Nerve section demonstrates that the activity in these nerves is efferent. Central inhibition of nervous activity occurs during sensory stimulation, etc. Electrical stimulation of the salivary duct nerve in vitro effects salivary secretion for several hours; however, the loss of secretion is not due to failure of the nerves, but to unknown factors. Histological sections of the stimulated glands failed to show cytological changes.  相似文献   

11.
12.
Rat submandibular gland was dissociated by enzymatic digestion with collagenase and hyaluronidase, followed by mild mechanical shearing and filtration through a nylon mesh. The dissociated cell populations contained predominantly groups of acinar cells which maintained their acinar arrangement. The morphological and functional viability of the cells was confirmed by electron microscopic examination and a normal secretory response to β-adrenergic or cholinergic stimulation was observed. Both isoproterenol (IPR) and carbachol caused the fusion of secretory granules into large vacuoles which were also continuous with the lumen, and into which the secretory product was released. Secretion was assessed quantitatively from the incorporation of 14C-glucosamine into the acinar cells and its subsequent release into the culture medium as labelled glycoprotein. IPR stimulated secretion to 125% of untreated controls in the concentration range 5 × 10?5 to 5 × 10?7 M, and to 110% of controls at 5 × 10?8 M, after 40 min incubation. Carbachol stimulated secretion to 131% of controls at 5 × 10?5 M and to 115% at 5 × 10?6 M but had no effect at 5 × 10?7 or 5 × 10?8 M. The secretory response was blocked by the respective β-adrenergic and cholinergic antagonists, propranolol and atropine. These findings show that dissociated rat submandibular acinar cells provide a useful in vitro model for the study of mucus synthesis and secretion.  相似文献   

13.
Summary It was shown that ribonuclease degrades the nucleolus in actively metabolizing cells. It does this without inhibiting RNA synthesis in the puffs and the nucleolus organizer. DNA synthesis still continues before or after puff formation, while amino acid incorporation is inhibited before the puffs are formed, indicating pre-existence of proteins involved in the process of puff formation.Dedicated to Professor H. Bauer on the occasion of his 60th birthday. — Research sponsored jointly by the U. S. Atomic Energy Commission under contract with the Union Carbide Corporation, the International Laboratory of Genetics and Biophysics, Naples, Italy (Partially supported by Euratom), and the Whitman Laboratory, University of Chicago, Chicago, Illinois.Supported by NTH Postdoctoral Fellowship 2-F 2–6 M-17, 187-02.  相似文献   

14.
Rat submandibular gland slices, incubated in continuously-gassed Krebs-Ringer bicarbonate buffer, were shown to release K+ in response to α-adrenergic and muscarinic cholinergic stimulation. The system employed the specific α-, β-adrenergic and cholinergic receptor-blocking agents phentolamine, propranolol and atropine, respectively, in combination with the agonists l-epinephrine and carbamylcholine both of which required the presence of Ca2+ for their effect. The introduction of Ca2+ into the cell via the ionophore A23187, with all neurotransmitter receptors blocked, resulted in K+ release. Ouabain also allowed extensive K+ release which was in addition to, and hence independent of, that elicited by epinephrine and carbamylcholine. Ethacrynic acid, a potent inhibitor of salivary secretion in vivo, had no influence on K+ movement. K+ was released by both physalaemin and an eledoisin-related peptide independently of normal neurotransmitter receptors. The activity of the eledoisin-related peptide did not require the presence of extracellular Ca2+. The implication of cyclic GMP at some stage of K+ release was suggested by experiments with a phosphodiesterase inhibitor.The results support an hypothesis where the initial stimulus at either α-adrenergic or muscarinic cholinergic receptors causes an immediate permeability change such that Ca2+ enters the cells resulting in K+ release. The loss of K+ is quickly countered by the ouabain-sensitive (Na+ + K+) ATPase which would be activated by the lowered intracellular K+ levels.  相似文献   

15.
16.
The acinar salivary glands of cockroaches receive a dual innervation from the subesophageal ganglion and the stomatogastric nervous system. Acinar cells are surrounded by a plexus of dopaminergic and serotonergic varicose fibers. In addition, serotonergic terminals lie deep in the extracellular spaces between acinar cells. Excitation-secretion coupling in cockroach salivary glands is stimulated by both dopamine and serotonin. These monoamines cause increases in the intracellular concentrations of cAMP and Ca(2+). Stimulation of the glands by serotonin results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Thus, two elementary secretory processes, namely electrolyte/water secretion and protein secretion, are triggered by different aminergic transmitters. Because of its simplicity and experimental accessibility, cockroach salivary glands have been used extensively as a model system to study the cellular actions of biogenic amines and to examine the pharmacological properties of biogenic amine receptors. In this review, we summarize current knowledge concerning the aminergic control of cockroach salivary glands and discuss our efforts to characterize Periplaneta biogenic amine receptors molecularly.  相似文献   

17.
18.
Baumann  Otto  Dames  Petra  Kühnel  Dana  Walz  Bernd 《BMC physiology》2002,2(1):1-10

Background  

Iron deficiency (ID) results in ventricular hypertrophy, believed to involve sympathetic stimulation. We hypothesized that with ID 1) intravenous norepinephrine would alter heart rate (HR) and contractility, 2) abdominal aorta would be larger and more distensible, and 3) the beta-blocker propanolol would reduce hypertrophy.  相似文献   

19.
20.
Recent studies show i.v. administered pentagastrin and cholecystokinin to evoke protein/amylase secretion from the rat parotid gland and to stimulate gland protein synthesis, the two phenomena being abolished by cholecystokinin receptor antagonists. In the rat parotid gland, non-adrenergic, non-cholinergic transmission mechanisms contribute to secretion of fluid and protein/amylase. Since cholecystokinin may act as a neurotransmitter, activation of cholecystokinin receptors of the gland might contribute to the parasympathetic nerve-evoked secretion. In this study, the parasympathetic innervation was stimulated in non-atropinized (in periods of 2 min) or atropinized (in periods of 3 min) pentobarbitone-anaesthetized rats before and after administration of the cholecystokinin-A receptor antagonist lorglumide (48 mg/kg, i.v.) and the cholecystokinin-B receptor antagonist itriglumide (5.5 mg/kg, i.v.). The non-adrenergic, non-cholinergic transmission fatigues rapidly resulting in declining responses. Therefore, atropinized rats, not receiving the cholecystokinin receptor antagonists, had to serve as controls. Neither at a stimulation frequency of 10 Hz nor of 40 Hz were the secretory responses of the atropinized rats affected by the receptor antagonists. After lorglumide, the saliva volume and the amylase output were (expressed as percentage of the response to the stimulation period before the administration of the antagonist) 98.0+/-3.8% (vs. control 91.1+/-4.0%) and 91.9+/-4.9% (vs. 87.7+/-3.7%) at 10 Hz, respectively, and 79.8+/-4.5% (vs. 77.3+/-2.1%) and 73.6+/-5.3% (vs. 71.7+/-2.3%) at 40 Hz, respectively. After itriglumide, the corresponding percentage figures for saliva volume and amylase output were, at 10 Hz, 99.5+/-8.9% (vs. 92.0+/-2.8%) and 95.8+/-11.8% (vs. 89.2+/-6.4%), respectively, and, at 40 Hz, 74.0+/-3.1% (vs. 79.6+/-2.2%) and 66.6+/-3.3% (vs. 63.9+/-6.0%), respectively. Similarly, the antagonists were without effect on the parotid secretory responses of non-atropinized rats subjected to stimulation at 10 Hz. Thus, under physiological conditions, the cholecystokinin receptors of the parotid gland are likely to be stimulated by circulating hormones rather than by nervous activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号